跳到主要內容

臺灣博碩士論文加值系統

(44.197.230.180) 您好!臺灣時間:2022/08/20 09:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:尤禎祥
研究生(外文):Jen-Shiang K. Yu
論文名稱:應用數值方法於光譜學與全位能面之理論研究
論文名稱(外文):Theoretical Studies of the Spectroscopy and Global Potential Energy Surfaces with Numerical Methods
指導教授:游靜惠
指導教授(外文):Chin-Hui Yu
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:195
中文關鍵詞:全初始化理論計算密度泛函理論化學光譜電致發光全位能面效能評比
外文關鍵詞:ab initiodensity functional theorychemical spectroscopyelectroluminescenceglobal potential energy surfacebenchmarkLinux
相關次數:
  • 被引用被引用:0
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文係以ab initio全初始化理論計算及密度泛函理論,配合應用數值方法來研究化學光譜及反應之全位能面。研究課題包含1.以Gaussian-2方法估計sulfenyl chlorides化合物之第一離子化能量; 2.指定單重組態之完全活化空間自洽場理論(designated single-configuration CASSCF, DSCCAS)計算鹵烷及其不飽和烯類之離子化能量; 3. 基態CH2全位能面之解析函數表示法最適化; 4. PPV有機電致發光聚合物之理論光譜計算。最後一個主題則討論近年來個人電腦軟硬體、程式編譯器與數值函式庫的進展對電子結構計算的增益。
Ab initio calculations as well as density functional theories are utilized to study chemical spectroscopy and global potential surfaces with numerical methods. The subjects cover the first ionization energy of sulfenyl chlorides by Gaussian-2 scheme, the ionization energies of alkyl halides and corresponding alkenes with designated single-configuration complete active space self-consistent field (DSCCAS) method, the fitting for analytical expressions of the global potential energy surfaces of ground-state CH2, and the theoretical spectra of electroluminescent polymers as the poly(p-phenylene vinylene) and its derivatives. The final topic describes recent advances in the electronic structure calculations with modern hardware and software as well as optimized compilers and numerical libraries on personal computers.
摘要 i
Abstract ii
Table of Contents iii
List of Tables v
List of Figures viii
CHAPTER 1. Overview 1
CHAPTER 2. Computational Methods 5
I. Hartree-Fock and Self-Consistent Field Method 5
II. Configuration Interaction and Multiconfiguration SCF 6
III. The Many-Body Perturbation Theory 12
IV. The Coupled-Cluster Theory 16
V. Density Functional Theory (DFT) 18
VI. Time-Dependent DFT 23
REFERENCES 25
CHAPTER 3. Theoretical Evaluation for the Photoionization Energy of Sulfenyl Chlorides 29
I. Introduction 29
II. Computational Methods 30
III. Results and Discussion 31
(A) CH3SCl 32
(B) CH3CH2SCl 34
(C) CH3SCH2Cl and CH3SCH2Cl+ 35
(D) Charge Distributions 36
REFERENCES 47
CHAPTER 4. The Evaluation of Ionization Energy for Alkyl Halides 49
I. Introduction 49
II. Methodology 51
III. Results and Discussion 54
(A) Saturated Systems 54
(B) Unsaturated Systems 56
(C) Molecules with Higher Symmetry 57
(D) Small Linear Molecules 58
(E) Assignments of Orbital Characters 59
IV. Concluding Remarks 60
REFERENCES 77
CHAPTER 5. The Fitting of the Global Potential Energy Surface of CH2 79
I. Introduction 79
II. Computational Details 84
III. Results and Discussion 86
IV. Conclusion 92
APPENDIX: The Functions to fit the Potential Energy Surfaces 93
(A) The Simons-Parr-Finlan (SPF) Polynomial 93
(B) Jensen Function 95
(C) The Sorbie-Murrell (SM) Function 97
(D) The Bivariate Spline Fitting 106
REFERENCES 129
CHAPTER 6. The Electronic Spectra of Poly (p-phenylene vinylene) and Its Derivatives with Time-Dependent DFT 133
I. Introduction 133
II. Theoretical Models and Calculations 135
III. Results and Discussion 136
(A) The excitation energy of PPV 136
(B) The excitation energies of substituted PPVs 137
(C) The emission spectra of PPV 139
IV. Concluding Remarks 140
REFERENCES 160
CHAPTER 7. Recent Advances in PC-Linux Systems for Electronic Structure Computations by Optimized Compilers and Numerical Libraries 163
I. Introduction 163
II. System Detail 168
III. Benchmark Setup 170
IV. Results and Discussion 172
(A) Mathematical Libraries 173
(B) Compiler Options 174
(i) Architectural Optimizations 174
(ii) Vectorization for SSE and SSE2 175
(iii) Inter-procedural Optimization 176
(C) SpecFP2000 Benchmark 177
V. Concluding Remark 178
REFERENCES AND NOTES 189
CHAPTER 8. Summary 193
List of Tables
CHAPTER 3.
TABLE I. Energies (EG2) and several important structural parameters of each species 38
TABLE II. Scaled vibrational frequencies in the unit of cm-1 of singlet CH3SCl, triplet CH3SCl and doublet CH3SCl+ 39
TABLE III. Scaled vibrational frequencies in the unit of cm-1 of singlet CH3CH2SCl, triplet CH3CH2SCl and doublet CH3CH2SCl+ 40
TABLE IV. Theoretical vibrational frequencies in the unit of cm-1 of singlet CH3SCH2Cl and doublet CH3SCH2Cl+ calculated at HF/6-31G(d) 41
TABLE V. Predicted ionization energies (IE) and vertical IEs of CH3SCl, CH3CH2SCl and CH3SCH2Cl using the GAUSSIAN-2 method 42
TABLE VI. Atomic charge densities of CH3SCH2Cl, CH3CH2SCl and their cations derived at the level of HF/6-311+G(3df,2p) 43
CHAPTER 4.
TABLE I. The first ten vertical ionization energies of fluoroethane CH3CH2F) 61
TABLE II. The first ten vertical ionization energies of chloroethane (CH3CH2Cl) 62
TABLE III. The first 13 vertical ionization energies of 1,1-dichloroethane (CH3CHCl2) 63
TABLE IV. The first 16 vertical ionization energies of 1,1-dichloro-1-fluoro- ethane (CH3CFCl2) 64
TABLE V. The first 11 vertical ionization energies of 1,1,1-trichloroethane (CH3CCl3) 65
TABLE VI. The first 13 vertical ionization energies of 2-chloropropane (CH3CClCH3) 66
TABLE VII. The first six vertical ionization energies of ethylene (C2H4) 67
TABLE VIII. The first 12 vertical ionization energies of cis-1,2-dichloro- ethylene (HClC=CHCl) 68
TABLE IX. The first 12 vertical ionization energies of trans-1,2-dichloro- ethylene (ClHC=CHCl) 69
TABLE X. The first 12 vertical ionization energies of 1,1-dichloroethylene (H2C=CCl2) 70
TABLE XI. The first ten vertical ionization energies of 1,1,2-trichloroethylene (HClC=CCl2) 71
TABLE XII. The vertical ionization energies of methane (CH4) 72
TABLE XIII. The vertical ionization energies of acetylene (C2H2) 73
TABLE XIV. The vertical ionization energies of acetylene (C2H2) using the geometry of C2H2+ 74
CHAPTER 5.
Table I. The combination of coordinate grids for the global PES calculation of CH2 with CCSD(T)/cc-pVTZ method 107
Table II. The optimized structures and energies of all the species involved in the CH2 dissociation reaction at various levels of theories 108
Table III. The fitted parameters of the SPF polynomial, Jensen function and the SM function. 109
Table IV. The fitting errors of the three analytical functions. The unit of the energies is in kcal/mol. The zero of the PES is shift to CH2(3B1) 111
Table V. The accuracy analyses of the three analytical functions listed by energy deviation. 112
CHAPTER 6.
TABLE I. The stoichiochemical formulae of the modeling PPV (1a) monomer through heptamer as well as the numbers of basis functions of corresponding basis sets 141
TABLE II. The stoichiochemistry formulae of the models of substituted PPV polymers (2a, 2b, 3b, and 3b) as well as the numbers of basis functions of corresponding basis sets 142
TABLE III. The SCLE-TD excitation energies (Eex, in eV) of PPV (1a) with non-zero oscillator strengths (f) of the 1Bu←1Ag transition by the BP86 density functional 143
TABLE IV. The SCLE-TD excitation energies (Eex, in eV) of PPV (1a) with non-zero oscillator strengths (f) of the 1Bu←1Ag transition by the BLYP density functional 144
TABLE V. The SCLE-TD excitation energies (Eex, in eV) of PPV (1a) with non-zero oscillator strengths (f) of the 1Bu←1Ag transition by the B3LYP density functional 145
TABLE V. The SCLE-TD band gap (Eex, in eV) of PPV derivatives (2a, 2b, 3a and 3b) by restricted B3LYP functional with 6-31G* basis sets, using the geometries optimized at the level of B3LYP/STO-3G. 146
TABLE VII. The corresponding absorption wavelengths and excited states of PPV and its derivatives by extrapolation 147
TABLE VIII. The SCLE-TD emission energy (Eem, in eV) of PPV (1a) by B3LYP density functional with 6-31G* basis sets using CIS optimized structures 147
CHAPTER 7.
Table I. The hardware specifications and the software configurations of the tested AMD Athlon systems in detail 181
Table II. The hardware specifications and the software configurations for the Intel Pentium 4, Alpha and SGI systems in detail 182
Table III. The detailed description of each jobs selected for benchmark 183
Table IV. The CPU time that each test job consumes on single-CPU AMD Athlon and AthlonXP systems. 184
Table V. The CPU time that each test job consumes on single-CPU AMD Athlon and AthlonXP systems 185
Table VI. The CPU time that each test job consumes on the dual-CPU AMD Athlon and AthlonMP systems 186
Table VII. The CPU time that each test job consumes on the Intel Pentium 4, Alpha and SGI systems 187
Table VIII. The performance correlation between the SpecFP2000 marks and the best GAUSSIAN 98 results on PC-Linux systems 188
List of Figures
CHAPTER 3.
Figure 1. The Geometries of singlet CH3SCl, triplet CH3SCl and doublet CH3SCl+, optimized at MP2(full)/6-31G(d) level 44
Figure 2. The Geometries of singlet CH3CH2SCl, triplet CH3CH2SCl and doublet CH3CH2SCl+, optimized at MP2(full)/6-31G(d) level 45
Figure 3. The Geometries of singlet CH3SCH2Cl, triplet CH3SCH2Cl and doublet CH3SCH2Cl +, optimized at MP2(full)/6-31G(d) level 46
CHAPTER 4.
Figure 1. The MOLDEN visualization of the orbital character of the vertical excitations of fluoroethane by DSCCAS method with 6-31G* basis 75
CHAPTER 5.
Figure 1. The relative energy levels at CCSD(T)/cc-pVTZ level of theory 113
Figure 2. The PES fitting by the all three functions at one C-H bond constraint being 1.071 Å with ∠HCH= 134.1° 114
Figure 3. The PES fitting by the SM function at one C-H bond constraint being 10.71 Å with ∠HCH=39° and 134.1° 115
Figure 4. The PES fitting by the SPF polynomial at one C-H bond constraint being 10.71 Å with ∠HCH=39° and 134.1° 116
Figure 5. The PES fitting by the Jensen function at one C-H bond constraint being 10.71 Å with ∠HCH=39° and 134.1° 117
Figure 6. The PES fitting by the SPF polynomial with one C-H bond constrained at 1.071 Å 118
Figure 7. The PES fitting by the SPF polynomial with ∠HCH constrained at 134.13° 119
Figure 8. The PES fitting by the Jensen function with one C-H bond constrained at 1.071 Å 120
Figure 9. The PES fitting by the Jensen function with ∠HCH constrained at 134.13° 121
Figure 10. The comparison: the SPF polynomial and the Jensen function with one C-H bond constrained at 1.071 Å 122
Figure 11. The PES fitting by the SM function with one C-H bond constrained at 1.071 Å and 10.71 Å, respectively 123
Figure 12. The PES fitting by the SM function with ∠HCH constrained at 134.13° 124
Figure 13. The PES reconstructed by spline fitting with ÐHCH=94.1° 125
Figure 14. The PES reconstructed by spline fitting with ÐHCH=114.1° 126
Figure 15. The PES reconstructed by spline fitting with ÐHCH=134.1° 127
CHAPTER 6.
Figure 1. The general structures of PPV (1a), methyl- and methoxy- substituted PPV (2a and 2b) as well as their nitriles (3a and 3b) 148
Figure 2. The modeling structures of PPV (1a) monomer through heptamer 149
Figure 3. The modeling structures of methyl-substituted PPV (2a) monomer through hexamer 150
Figure 4. The modeling structures of methoxy-substituted PPV (2b) monomer through hexamer 151
Figure 5. The modeling structures of methyl-substituted PPV nitrile (3a) monomer, trimer and pentamer. 152
Figure 6. The modeling structures of methoxy-substituted PPV nitrile (3b) monomer, trimer and pentamer 153
Figure 7. The excitation energy (Eex, in eV) of PPV (1a) by SCLE-TD-BP86 method with various basis sets 154
Figure 8. The excitation energy (Eex, in eV) of PPV (1a) by SCLE-TD-BLYP method with various basis sets 155
Figure 9. The excitation energy (Eex, in eV) of PPV (1a) by SCLE-TD-B3LYP method with various basis sets 156
Figure 10. The excitation energy (Eex, in eV) of 2a, 2b, 3a and 3b by SCLE- TD-B3LYP method with the 6-31G* basis set 157
Figure 11. Using time-dependent theory for S0←S1 vertical emission calculation. 158
Figure 12. The emission spectrum (Eem, in eV) of PPV (1a) by SCLE-TD- B3LYP method with the 6-31G* basis set 159
S. M. Blinder, Am. J. Phys. 33, 431 (1965), and references therein.
J. C. Slater, Phys. Rev. 36, 57 (1930).
C. C. J. Roothan, Rev. Mod. Phys. 23, 69 (1951).
J. A. Pople, R. Seeger and R. Krishnan, Int. J. Quant. Chem. Symp. 11, 149 (1977).
R. Krishnan, H. B. Schlegel and J. A. Pople, J. Chem. Phys. 72, 4654 (1980).
K. Raghavachari and J. A. Pople, Int. J. Quant. Chem. 20, 167 (1981).
D. Hegarty and M. A. Robb, Mol. Phys. 38, 1795 (1979).
R. H. E. Eade and M. A. Robb, Chem. Phys. Lett. 83, 362 (1981).
H.-J. Werner and W. Meyer, J. Chem. Phys. 73, 2342 (1980) ; H.-J. Werner and W. Meyer, J. Chem. Phys. 74, 5794 (1981) ; H.-J. Werner, Adv. Chem. Phys. LXIX, 1 (1987).
H.-J. Werner and P. J. Knowles, J. Chem. Phys. 82, 5053 (1985) ; P. J. Knowles and H.-J. Werner, Chem. Phys. Lett. 115, 259 (1985).
C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934).
H.-J. Werner, Mol. Phys. 89, 645 (1996) ; P. Celani and H.-J. Werner, J. Chem. Phys. 112, 5546 (2000).
M. Head-Gordon, J. A. Pople and M. J. Frisch, Chem. Phys. Lett. 153, 503 (1988).
R.J. Bartlett, Annu. Rev. Phys. Chem. 32, 359 (1981).
J. A. Pople, R. Seeger and R. Krishnan, Int. J. Quant. Chem. Symp. 11, 149 (1977).
R. Krishnan and J. A. Pople, Int. J. Quant. Chem. 14, 91 (1978).
K. Raghavachari, J. A. Pople, E. S. Replogle and M. Head-Gordon, J. Phys. Chem. 94, 5579 (1990)
R. J. Bartlett and G. D. Purvis, Int. J. Quant. Chem. 14, 516 (1978).
J. A. Pople, R. Krishnan, H. B. Schlegel and J. S. Binkley, Int. J. Quant. Chem. XIV, 545 (1978).
L. H. Thomas, Proc. Camb. Phil. Soc. 23, 542 (1927). [Reprinted in March (1975)]
E. Fermi, Rend. Accad. Lincei. 6, 602 (1927) ; E. Fermi, Z. Phys. 48, 73 (1928a) [A translation in to English may be found in March (1975)]; E. Fermi, Rend. Accad. Lincei. 7, 342 (1928b) ; E. Fermi and E. Adami, Accad. Ital. Rome 6, 117 (1934).
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965).
J. C. Slater, Quantum Theory of Molecular and Solids Vol. 4 : The Self-Consistent Field for Molecular Solids, McGraw-Hill: New York, 1974.
A. D. Becke, Phys. Rev. A 38, 3098 (1988).
S. H. Vosko, L. Wilk and M. Nusair, Canadian J. Phys. 58, 1200 (1980).
C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 37, 785 (1988) ; B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chem. Phys. Lett. 157, 200 (1989).
J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
J. P. Perdew, Phys. Rev. B 33, 8822 (1986).
J. P. Perdew and Y. Wang, Phys. Rev. B 33, 8822 (1986).
A. D. Becke, J. Chem. Phys. 104, 1040 (1993).
A. D. Becke, J. Chem. Phys. 98, 5648 (1993); J. A. Pople, M. Head-Gordon, D. J. Fox, K. Raghavachari and L. A. Curtiss, J. Chem. Phys. 90, 5622 (1989); L. A. Curtiss, C. Jones, G. W. Trucks, K. Raghavachari and J. A. Pople, J. Chem. Phys. 93, 2537 (1990).
M. E. Casida, C. Jamorski, K. C. Casida and D. R. Salahub, J. Chem. Phys. 108, 4439 (1998)
M. E. Casida, in Recent Advances in Density Functional Methods, Part I, edited by D. P. Chong (Singapore, World Scientific, 1995), p. 155.
M. E. Casida, in Recent Developments and Applications of Modern Density Functional Theory, edited by J. M. Seminario, Theoretical and Computational Chemistry Vol. 4 (Elsevier Science, Amsterdam, 1996), p. 391.
C. Jamorski, M. E. Casida, and D. R. Salahub, J. Chem. Phys. 104, 5134 (1996).
C. W. Spicer, E. G. Chapman, B. J. Finlayson-Pitts, R. A. Plastridge, J. M. Hubbe, J. D. Fast, and C. M. Berkowitz, Nature (London) 394, 353 (1998).
A. A. P. Pszenny, W. C. Keene, D. J. Jacob, S. Fan, J. R. Maben, M. P. Zetwo, M. Springer-Young, and J. N. Galloway, Geophys. Res. Lett. 20, 699 (1993).
H. B. Singh, G. L. Gregory, B. Anderson, E. Browell, G. W. Sachse, D. D. Davis, J. Crawford, J. D. Bradshaw, R. Talbot, D. R. Blake, D. Thornton, R. Newell, and J. Merrill, J. Geophys. Res. 101, 1907 (1996).
W. C. Keene, J. R. Maben, A. A. P. Pszenny, and J. N. Galloway, Environ.Sci. Technol. 27, 866 (1993); K. W. Oum, M. J. Lakin, D. O. DeHaan, T. Brauers, and B. J. Finlayson-Pitts, Science 279, 74 (1998).
M. O. Andreae, ‘‘The ocean as a source of atmospheric sulfur compounds,’’ in The Role of Air—Sea Exchange in Geochemical Cycing, edited by P. Buat-Menard (Reidel, Dordrecht, Netherlands, 1986), pp. 331—362. ; T. S. Bates, B. K. Lamb, A. Guenther, J. Dignon, and R. E. Stoiber, J. Atmos. Chem. 14, 315 (1992).
L. A. Curtiss and K. Raghavachari, J. Chem. Phys. 103, 4192 (1995).
Gaussian 98, Revision A.7, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.
B.-M. Cheng, E.-P. Chew, J.-S. K. Yu and C.-h. Yu, J. Chem. Phys. 114, 4817 (2001).
B.-M. Cheng, E.-P. Chew, C.-P. Liu, J.-S. K. Yu and C.-h. Yu, J. Chem. Phys. 111, 10093 (1999).
B.-M. Cheng, E.-P. Chew, C.-P. Liu, J.-S. K. Yu and C.-h. Yu, J. Chem. Phys. 110, 4757 (1999).
P. F. Bernath, Spectra of Atoms and Molecules, (Oxford University Press, New York, 1995), p. 305.
K. Kimura, S. Katsumata, Y. Achiba, T. Yamazaki and S. Iwata, Handbook of HeI Photoelectron Spectra of Foundamental Organic Molecules, (Japan Scientific Societies Press, Tokyo, 1981).
I. Tamm, J. Phys. USSR 9, 449 (1945); S. M. Dancoff, Phys. Rev. 78, 382 (1950); J. A. Pople, Trans. Faraday Soc. 49, 1375 (1953); J. Del Bene, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 55, 2236 (1971).
J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, J. Phys. Chem. 96, 135 (1992).
I. N. Levine, Quantum Chemistry Fifth Ed., (Pretice Hall International Inc. New Jersey, (2000), p. 562.
J. F. Stanton, J. Gauss, N. Ishikawa and M. Head-Gordon, J. Chem. Phys. 103, 4160 (1995).
D. Hegarty and M. A. Robb, Mol. Phys. 38, 1795 (1979).
R. H. E. Eade and M. A. Robb, Chem. Phys. Lett. 83, 362 (1981).
H. B. Schlegel and M. A. Robb, Chem. Phys. Lett. 93, 43 (1982).
F. Bernardi, A. Bottini, J. J. W. McDougall, M. A. Robb and H. B. Schlegel, Far. Symp. Chem. Soc. 19, 137 (1984).
H.-J. Werner and P. J. Knowles, J. Chem. Phys. 82, 5053 (1985).
P. J. Knowles and H.-J. Werner, Chem. Phys. Lett. 115, 259 (1985).
H.-J. Werner and P.J. Knowles, J. Chem. Phys. 89, 5803 (1988).
P.J. Knowles and H.-J. Werner, Chem. Phys. Lett. 145, 514 (1988).
MOLPRO is a package of ab initio programs written by H.-J. Werner and P. J. Knowles, with contributions from R. D. Amos, A. Bernhardsson, A. Berning, P. Celani, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, T. Korona, R. Lindh, A. W. Lloyd, S. J. McNicholas, F. R. Manby, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, R. Pitzer, G. Rauhut, M. Schütz, H. Stoll, A. J. Stone, R. Tarroni, and T. Thorsteinsson.
P.-O. Widmark, P.-A. Malmqvist and B. O.Roos, Theor. Chim. Acta. 77, 291 (1990).
P.-O. Widmark, B. J. Persson and B. O. Roos, Theor. Chim. Acta. 79, 419 (1991).
G. Schaftenaar and J. H. Noordik, J. Comput.-Aided Mol. Design. 14, 123 (2000).
S.-Y. Chiang, T.-T. Wang, J.-S. K. Yu, and C.-h. Yu, Chem. Phys. Lett., 329, 185 (2000).
P. W. Atkins, Physical Chemistry, (Oxford University Press, Oxford, 1990), p. 862-867.
D. G. Truhlar, F. B. Brown, D. W. Schwenke, R. Steckler, and B. C. Garrett, in Comparison of ab initio quantum chemistry with experiment for small molecules, edited by R. J. Barlett (D. Reidel, Holland, 1985), p. 95-140.
P. R. Bunker, in Comparison of ab initio quantum chemistry with experiment for small molecules, edited by R. J. Barlett (D. Reidel, Holland, 1985), p. 141-170.
W. Reuter, B. Engels, and S. D. Peyerimhoff, J. Phys. Chem. 96, 6221 (1992), and references therein.
J. March, Advanced Organic Chemistry, 2nd ed., (McGraw-Hill, New York, 1977).
I.-C. Chen, W. H. Green Jr., and C. B. Moore, J. Chem. Phys. 89, 314 (1988).
J. F. Liebman and J. Simons, Molecular Structure and Energetics, Vol. V, J. F. Liebman and A. Greenberg, Eds., (VCH Publishers, Florida, 1986), ch. 3.
R. B. Beärda, M. C. van Hemert, and E. F. van Dishoeck, J. Chem. Phys. 97, 8240 (1992).
G. J. Kroes, E. F. van Dishoeck, R. B. Beärda, and M. C. van Hemert, J. Chem. Phys. 99, 228 (1993).
G. Herzberg and J. Shoosmith, Nature, London, 183, 1801 (1959).
J. M. Foster and S. F. Boys, Rev. Mod. Phys. 32, 305 (1960).
G. Herzberg, Proc. R. Soc. London Ser. A. 262, 291 (1961).
P. C. H. Jordan and H. C. Longuet-Higgings, Mol. Phys. 5, 121 (1962).
J. A. Pople and G. A. Segal, J. Chem. Phys. 44, 3289 (1966).
J. F. Harrison and L. C. Allen, J. Am. Chem. Soc. 91, 807 (1969).
C. F. Bender and H. F. Schaefer III, J. Am. Chem. Soc. 92, 4984 (1970).
R. A. Bernheim, H. W. Bernard, P. S. Wang, L. S. Wood, and P. S. Skell, J. Chem. Phys. 53, 1280 (1970).
E. Wasserman, W. A. Yager, and V J. Kuck, Chem. Phys. Lett. 7, 409, (1970).
R. A. Bernheim, H. W. Bernard, P. S. Wang, L. S. Wood, and P. S. Skell, J. Chem. Phys. 54, 3223 (1971).
D. R. McLaughlin, C. F. Bender, and H. F. Schaefer III, Theoret. Chim. Acta. 25, 352 (1972).
P. R. Bunker and P. Jensen, J. Chem. Phys. 79, 1224 (1983).
W. A. Goddard, Science, 227, 917 (1985), and references therein.
H. F. Schaefer III, Science, 231, 1100 (1986), and references therein.
R. J. Blint, and M. D. Newton, Chem. Phys. Lett. 32, 178 (1975).
M. E. Casida, M. M. L. Chen, R. D. MacGregor, and H. F. Schaefer III, Isr. J. Chem, 19, 127 (1980).
P. Knowles, N. C. Handy, and S. Carter, Mol. Phys. 49, 681 (1983).
L. B. Harding, J. Phys. Chem. 87, 441 (1983).
A. D. McLean, P. R. Bunker, R. M. Escribano, and P. Jensen, J. Chem. Phys. 87, 2166 (1987).
P. Jensen and P. R. Bunker, J. Chem. Phys. 89, 1327 (1988).
D. C. Comeau, I. Shavitt, P. Jensen, and P. R. Bunker, J. Chem. Phys. 90, 6491 (1989).
R. A. Beärda, M. C. van Hemert, and E. F. Van Dishoeck, J. Chem. Phys. 97, 8240 (1992).
L. B. Harding, R. Guadagnini, and G. C. Schatz, J. Phys, Chem. 97, 5472 (1993).
V. J. Barclay, I. P. Hamilton, and P. Jensen, J. Chem. Phys. 99, 9709, (1993).
P. Jensen, J. Mol. Spectrosc. 128, 478 (1988).
P. Jensen, J. Chem. Soc. Faraday Trans. 2, 84, 1315 (1988).
J. P. Watts, J. Gauss, and R. J. Barlett, J. Chem. Phys. 98, 8718 (1993).
ACES II is a program product of the Quantum Theory Project, University of Florida. Authors: J. F. Stanton, J. Gauss, J. D. Watts, M. Nooijen, N. Oliphant, S. A. Perera, P. G. Szalay, W. J. Lauderdale, S. A. Kucharski, S. R. Gwaltney, S. Beck, A. Balková D. E. Bernholdt, K. K. Baeck, P. Rozyczko, H. Sekino, C. Hober, and R. J. Bartlett. Integral packages included are VMOL (J. Almlöf and P. R. Taylor); VPROPS (P. Taylor) ABACUS; (T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, J. Olsen, and P. R. Taylor).
J. E. Dennis Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, (Prentice-Hall, New Jersey, 1983); K. Levenberg, Q. Appl. Math. 2, 164 (1944); D. Marquardt, SIAM J. Appl. Math. 11, 431 (1963); Moré, Jorge, B. Garbow, and K. Hillstorm, User Guide for MINPACK-1, Argonne National Labs Report ANL-80-74, Argonne, Illinois (1980).
M. D. Marshall and A. R. W. McKellar, J. Chem. Phys. 85, 3716 (1986).
R. A. Beärda, G.-J. Kroes, M. C. Hemert, B. Heumann, R. Schinke, and E. F. van Dishoeck, J. Chem. Phys. 100, 1113 (1994).
G. Simons, R. G. Parr, and J. M. Finlan, J. Chem. Phys. 59, 3229 (1973).
G. Simons, J. Chem. Phys. 61, 369 (1974).
J. T. Hougen, P. R. Bunker, and J. W. C. Johns, J. Mol. Spectrosc. 34, 136 (1970).
K. S. Sorbie and J. N. Murrell, Mol. Phys. 29, 1387 (1975).
M. J. Redmon and G. C. Schatz, Chem. Phys. 54, 365 (1981).
S. Carter, I. M. Mills, and J. N. Murrell, J. Chem. Soc. Faraday Trans2. 1, 148 (1979).
G. C. Schatz and H. Elgersma, Chem. Phys. Lett. 73, 21 (1980).
L. C. Geiger and G. C. Schatz, J. Chem. Phys. 88, 214 (1984).
G. Kroes, E. F. van Dishoeck, R. A. Beärda, and M. C. van Hemert, J. Chem. Phys. 99, 228 (1993).
Y. Shirota, J. Mater. Chem., 10 (2000) 1.
M. Pope, H. P. Kallmann and P. Magnante, J. Chem. Phys., 38 (1963) 2042.
J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn and A. B. Holmes, Nature, 347 (1990) 539.
P. Gomes da Costa, R. G. Dandrea and E. M. Conwell, Phys. Rev. B., 47 (1993) 1800.
J. Cornil, D. Beljonne, D. A. dos Santos, J. L. Brédas, Synth. Met., 76 (1996) 101.
M. J. S. Dewar, E. G. Zeobisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 107 (1985) 3902.
J. A. Pople, D. L. Beveridge and P. A. Dobosh, J. Chem. Phys., 47 (1967) 2026.
M. C. Zerner, G. H. Loew, R. F. Kichner and U. T. Mueller-Westerhoff, J. Am. Chem. Soc., 102 (1980) 589.
W. Fröner, Ferenc Bogar and Reinhard Knab, J. Mol. Sctruct., 430 (1998) 73.
S. H. Vosko, L. Wilk and M. Nusair, Canadian J. Phys., 58 (1980) 1200.
M. E. Vaschetto and M. Springborg, Synth. Met., 101 (1999) 502.
M. E. Casida, C. Jamorski, K. C. Casida and D. R. Salahub, J. Chem. Phys., 108 (1998) 4439.
O. Kwon and M. L. McKee, J. Phys. Chem. A, 104 (2000) 7106.
Gaussian 98 (Revision A.8), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.
A. D. Becke, Phys. Rev. A, 38, 3098 (1988); J. P. Perdew, Phys. Rev. B, 33 (1986) 8822.
C. Lee, W. Yang and R. G. Parr, Physical Review B, 37 (1988) 785; B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chem. Phys. Lett., 157 (1989) 200.
A. D. Becke, J. Chem. Phys., 98 (1993) 5648; J. A. Pople, M. Head-Gordon, D. J. Fox, K. Raghavachari and L. A. Curtiss, J. Chem. Phys., 90 (1989) 5622; L. A. Curtiss, C. Jones, G. W. Trucks, K. Raghavachari and J. A. Pople, J. Chem. Phys., 93 (1990) 2537.
H. F. M. Schoo and R. J. C. E. Demandt, Philips J. Res., 51 (1998) 527.
http://www.linux.org.
http://www.freebsd.org.
Tirado-Rives, J.; Jorgensen, W. L. Viability of Molecular Modeling with Pentium-Based PCs. J. Comput. Chem. 1996, 17, 1385-1386.
Yu, J.-S. K.; Yu, C.-H. Benchmarks of the PC-Unix Computer with Electronic Structure Calculation. J. Chem. Inf. Comput. Sci. 1997, 37, 1111-1114.
Nicklaus, M. C.; Williams, R. W.; Bienfait, B.; Billings, E. S.; Hodošček, M. Computational Chemistry on Commodity-Type Computers. J. Chem. Inf. Comput. Sci. 1998, 38, 893-905.
For the benchmark results of chipsets for AMD Athlon CPUs, see “Accelerating Athlon - VIA Releases KT266A Chipset” at http://www6.tomshardware.com/mainboard/01q3/010902/index.html. For the benchmark results of chipsets for Intel Pentium 4, refer to “The Best Thing That Could Happen To Intel''s Pentium 4 -The SiS645 Chipset” at http://www6.tomshardware.com/mainboard/
01q4/011008/index.html.
http://cm.bell-labs.com/netlib/f2c/index.html.
Using and Porting GNU Fortran, http://gcc.gnu.org/onlinedocs/g77.html.
Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. General Atomic and Molecular Electronic-Structure System. J. Comput. Chem. 1993, 14, 1347.
MOLPRO is a package of ab initio programs written by H.-J. Werner and P. J. Knowles, with contributions from R. D. Amos, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, T. Leininger, R. Lindh, A. W. Lloyd, W. Meyer, M. E. Mura, A. Nicklaß, P. Palmieri, K. Peterson, R. Pitzer, P. Pulay, G. Rauhut, M. Schütz, H. Stoll, A. J. Stone and T. Thorsteinsson.
http://www4.tomshardware.com/business/00q4/001118/comdex-01.html.
http://www4.tomshardware.com/cpu/00q4/001120/p4-10.html#
sse2_the_new_double_precision_streaming_simd_extensions.
Lawson, C. L.; Hanson, R. J.; Kincaid, D.; Krogh, F. T. Basic Linear Algebra Subprograms for FORTRAN Usage. ACM Trans. Math. Soft. 1979, 5, 308-323.
Dongarra, J. J.; Du Croz, J.; Hammarling, S.; Hanson, R. J. An Extended Set of FORTRAN Basic Linear Algebra Subprograms. ACM Trans. Math. Soft. 1988, 14, 1-17.
Dongarra, J. J.; Du Croz, J.; Hammarling, S.; Hanson, R. J. Algorithm 656: An Extended Set of FORTRAN Basic Linear Algebra Subprograms. ACM Trans. Math. Soft. 1988, 14, 18-32.
Dongarra, J. J.; Du Croz, J.; Duff, I. S.; Hammarling, S. A Set of Level 3 Basic Linear Algebra Subprograms. ACM Trans. Math. Soft. 1990, 16, 1-17.
Dongarra, J. J.; Du Croz, J.; Duff, I. S.; Hammarling, S. Algorithm 679: A Set of Level 3 Basic Linear Algebra Subprograms. ACM Trans. Math. Soft. 1990, 16, 18-28.
Kamath, C.; Ho, R.; Manley, D. P. DXML: A High-performance Scientific Subroutine Library. DIGITAL Technical Journal; Compaq: Summer 1994; Vol. 6, No. 3. Electronic version downloaded from http://www.research.compaq.com/wrl/DECarchives/DTJ/DTJF04/DTJF04SC.TXT.
http://www-1.ibm.com/servers/eserver/pseries/software/sp/essl.html.
http://www.netlib.org/blas.
http://www.netlib.org.
Whatley, R. C.; Petitet A.; Dongarra, J. J. Automated Empirical Optimization of Software and the ATLAS Project, dated Sep. 19, 2001. Download from http://www.netlib.org/lapack/lawns/lawn147.ps. The ATLAS source code can be downloaded from http://math-atlas.sourceforge.net or http://www.netlib.org/atlas.
http://math-atlas.sourceforge.net/faq.html#help.
http://www.ccl.net/chemistry/resources/messages/index.shtml. Established in 1991, the Computational Chemistry List (CCL) is dedicated to fostering communication within the world-wide community of researchers involved in chemistry-focused computation. See http://www.ccl.net.
GAUSSIAN 98 (Revision A.11), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2001.
SPEC CPU2000 is the next-generation industry-standardized CPU-intensive benchmark suite. SPEC designed CPU2000 to provide a comparative measure of compute intensive performance across the widest practical range of hardware. See http://www.spec.org/osg/cpu2000
http://www.slackware.org.
http://www.debian.org.
http://www.pgroup.com/prodworkpgf77.htm.
http://developer.intel.com/software/products/compilers/f50/linux/.
See the “Installing additional f77 interfaces” section of the ATLAS FAQ at http://math-atlas.sourceforge.net/errata.html#MultF77.
Specifying this flag while compiling MOLPRO 2000 can overcome the 2GB limitation.
http://www.spec.org/osg/cpu2000/results/res1999q4/cpu2000-19991130-00010.html.
http://www.spec.org/osg/cpu2000/results/res2001q3/cpu2000-20010827-00817.html. The -QxW option by ifc under Microsoft Windows generates specialized code to run exclusively on the Pentium 4 processor supporting its new instruction extensions. Refer to the manual of Intel FORTRAN Compiler.
http://developer.intel.com/software/products/compilers/f50/linux/noncom.htm.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top