跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.74) 您好!臺灣時間:2022/08/12 20:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪士平
研究生(外文):Shih-Ping Hong
論文名稱:新型高導電性含硫烷取代基之聚苯胺共聚合物
論文名稱(外文):Highly conductive new aniline copolymers containing alkylthio substituents
指導教授:韓建中韓建中引用關係
指導教授(外文):Chien-Chung Han
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:245
中文關鍵詞:聚苯胺
外文關鍵詞:polyaniline
相關次數:
  • 被引用被引用:0
  • 點閱點閱:379
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
導電高分子具有相當有趣及獨特的電性、磁性與光學性質,並同時保有傳統高分子的機械性質與加工性質,因為同時擁有這些令人驚豔的獨特性質,使其在許多不同的應用領域中都極具有發展的潛力,成為非常熱門的材料之一。聚苯胺相較於其他的導電高分子而言,在實際商品應用上則具有較大的應用潛力,因其合成方法簡易且單體價格便宜,經由質子酸摻雜反應後的導電度高,無論是摻雜態或未摻雜態對於環境中空氣與水氣的穩定性皆佳,且聚苯胺具有獨特的光電性質,因此成為目前最被積極開發研究的導電高分子材料之一。
本論文的研究目標是針對聚苯胺做更深入的電化學研究,並利用本實驗室所開發出之同步還原與取代反應,將硫醇引進到聚苯胺的主鏈上,進而形成含有硫烷側鏈取代基之聚苯胺共聚合物,期望能藉由此硫烷側鏈取代基來改善聚苯胺衍生物的溶解性質,同時保有聚苯胺原本的高導電度,使其具有更高更廣泛的商品應用價值。並藉由所合成的一系列含不同鏈長之硫烷取代基的聚苯胺衍生物(Pani-SR;R:Et、Bu、Oc、DD),針對各種不同之性質做更深入的研究,進一步的探討此系列硫烷取代基之推電子效應與其立體障礙對於聚苯胺的影響,希望可以真正的瞭解其取代基所造成的影響並藉此設計合成出更具實用價值的導電高分子材料。
在本論文研究中,我們已經建立起一個新的電化學方式來增進聚苯胺薄膜的導電度,這個方法不但相當快速而且也符合環境保護的要求,在水溶液系統下即可達到很好的效果,可避免使用m-cresol這一類具有高毒性的有機溶劑。對於膜厚為100 nm的聚苯胺薄膜,其電化學前處理時間不超過2.5 min即可完成,而且此方法也可以應用到那些更厚的聚苯胺單離薄膜(如10 mm厚)。只要藉由一個簡單的電化學控制,將聚苯胺控制在一個有效的還原電位下使其轉變成完全還原態(LB),即可於短短的5 min之內將其導電度提高約一個級數,這樣一個新奇的電化學方式提供了另一個嶄新的方法,解決許多導電高分子實際應用上的困難。
於本論文研究中也首次成功的以CRS方法由聚苯胺高分子合成出一系列包含有Pani-SEt、Pani-SBu、Pani-SOc、與Pani-SDD等四種不同鏈長的硫烷取代基的聚苯胺共聚合物,並以ATRIR、XPS、SIMS、GPC等儀器鑑定證明所合成而得的Pani-SR共聚合物,同時也從UV-vis的研究證明了此一系列聚苯胺共聚合物之硫烷取代基的推電子效應確實都增加高分子主鏈上的電子雲密度,造成UV-vis光譜吸收的紅位移現象;由溶解度測試證明硫烷取代基的引入確實改變其溶解參數,使此一系列聚苯胺共聚合物可高度溶解於原本聚苯胺無法溶解的非溶劑中,如THF、1, 4 -dioxane、2-methoxyethyl ether、與2-methoxy ethanol等有機溶劑,且隨著硫烷取代基鏈長的增長而有更明顯的改善;導電度方面的研究則是出乎意料的隨著硫烷取代基鏈長的增長而增加,甚至當側鏈取代基為立體障礙很大的正辛硫烷或正十二硫烷時,其導電度不但都比反應前的聚苯胺(約2 ~ 3 S/cm)還高而且甚至可高達10 S/cm,如此高溶解度以及高導電度的聚苯胺衍生物,是目前已知文獻上所報導的聚苯胺衍生物中導電度最高的例子,同時也突破了在導電高分子領域中的研究人員對於導電高分子衍生物的導電度一定會隨其取代基的立體障礙增大而下降的迷思;更進一步藉由EPR的研究證明這些立體障礙很大的硫烷側鏈取代基引進聚苯胺高分子後,確實增加其高分子主鏈的電子密度同時也使其自旋電子於分子鏈上非定域化的程度更高。
這一系列經CRS方式所合成的含不同鏈長硫烷取代聚苯胺共聚合物,表現出於一般常見溶劑的高溶解度以及導電度的改善,證明此CRS反應確實是一個非常有用的方法學,除了可以很容易的引進各種不同的硫烷取代基,突破傳統氧化聚合反應的限制之外,還可以保有聚苯胺高分子本身的主鏈結構並且同時表現出取代基真正所貢獻的效應,開啟了另一扇製備各種不同聚苯胺衍生物的窗口。

Owing to its unique electrooptical and magnetic properties, conducting polymer is one of the recent focuses in the field of material research. Polyanilines have been demonstrated to be particularly useful in many applications, such as biosensors, lightemitting diodes, molecular devices, conducting photoresists, optical switches, smart windows, transistors, rechargeable battery, and anticorrosion. For most of the applications, the conducting ability of polyaniline is one of the important and key properties.
A fast, simple, and environmentally friendly new electrochemical method for enhancing the conductivity of a preformed polyaniline film has been found in this dissertation. Utilizing this method of electrochemical forcing pretreatment at a certain effective voltage, a polyaniline solid matrix can be made more conductive. For example, the conductivity of a preformed polyaniline film (as thick as 10 m) can be easily enhanced by about an order of magnitude within a pretreatment time of only ca. 5 min. The UV-vis-NIR and ESR spectroscopic evidences indicated that the charge carriers in the polyaniline matrix are more delocalized after such electrochemical pretreatments. The results of CV studies indicated that the resultant polyaniline film has higher charge transport efficiency and a greater redox rate. Such phenomenon may be linked with a possible backbone conformational change, as induced by this novel electrochemical pretreatment, within the solid matrix of polyaniline film. The discovery of this novel electrochemical method opens up a new dimension for controlling and/or enhancing the conductivity of polyaniline, which are critical for many practical applications of conducting polymers.
Highly conductive new aniline copolymers containing alkylthio substituent have been first prepared from unsubstituted polyaniline, utilizing a concurrent reduction and substitution reaction performed in the solid-state matrix of polyaniline. The resultant copolymer film after one reaction treatment cycle was found to contain ca. 30 - 40 mol% of alkylthio group, and was as conductive (3 - 10 S/cm) as its parent polyaniline film (2-3 S/cm). All these new butylthioaniline copolymers are highly soluble in THF, dioxane, 2-methoxyethylether and 2-methoxyethanol, which are non-solvents for the parent polyaniline. Since the molecular weights of these aniline copolymers are higher than their parent unsubstituted polyaniline, the enhanced solubility in THF and other organic solvents is mainly contributed by the solubility parameter change of the resulted copolymers causing by the substitution of alkylthio group. Compared to their alkoxy analogues, e.g. poly(butoxyaniline) (2 x 10-3 S/cm) and poly(dibutoxyaniline) (7 x 10-4 S/cm), the unusual high conductivity of these new alkylthio-containing aniline copolymers in combination with their good solubility in THF and other common organic solvents is especially worth to note. The results suggest that the concurrent reduction and substitution route is a better way, as compared with the conventional copolymerization method, for preparing aniline copolymers with a more conjugated and regular backbone structure.

摘 要 I
Abstract III
謝 誌 V
目 錄 VII
圖 目 錄 XIII
表 目 錄 XX

(1) (a) Patil, A. O.; Heeger, A. J.; Wudl, F. Chem. Rew. 1988, 88, 183. (b) MacDiarmid, A. G.; Yang, L. S.; Huang, W. S.; Humphrey, B. D. Synth. Met. 1987, 18, 393. (c) Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J. Nature 1992, 357, 477. (d) One-Dimensional Metals: Physics and Materials Science; Roth, S. VCH: Weinheim, 1995.
(2) Hyodo, K. Electrochim. Acta. 1994, 39, 265.
(3) MacDiarmid, A. G.; Yang, L. S.; Huang, W. S.; Humphrey, B. D. Synth. Met. 1987, 18, 393.
(4) Hoa, D. T.; Kumar, T. N. S.; Punekar, N. S.; Srinivasa, R. S.; Lai, R.; Contractor, A. Q. Anal. Chem. 1992, 64, 2645.
(5) Paul, E. W.; Ricco, A. J.; Wrighton, M. S. J. Phy. Chem. 1985, 89, 1441.
(6) Chao, S.; Wrighton, M. S. J. Am. Chem. Soc. 1987, 109, 6627.
(7) Osaheni, J. A.; Jenekhe, S. A.; Vanherzeel, H.; Meth, J. S. Chem. Mater. 1991, 3, 218.
(8) (a) Nishino, A. J. Power Sources 1996, 60, 137. (b) Yamamoto, H.; Oshima, M.; Fukuda, M.; Isa, I.; Yoshino, K. J. Power Sources 1996, 60, 173.
(9) Natta, G.; Mazzanti, G.; Corradini, P. Atti Accad. Naz. Lince Rend. Cl. Sci. Fis. Mat. Natur. 1958, 25, 3.
(10) (a) Shirakawa, H.; Ikeda, S. Polym. J. 1971, 2, 231. (b) Ito, T.; Shirakawa, H.; Ikeda, S.; J. Polym. Sci. Polym. Chem. Ed. 1974, 12, 10.
(11) (a) Shirakawa,H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. J. Chem. Soc., Chem. Commun. 1977, 578. (b) Chiang, C. K.; Fincher, C. R.; Rark, Y. W.; Heeer, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; MacDiarmid, A. G. Phys. Rev. Lett. 1977, 39, 1098.
(12) Handbook of chemistry and physics P. David Ed.; The Chemical Rubber Company. 1991.
(13) Diaz, A. F.; Kanazdwd, K. K. in “Extended Linear Chain Compo- unds”(G. S. Miller, ed.), Plenum, New York, 1982, p3.
(14) Baughman, R. M.; Bredas, J. L.; Elsenbaumer, R. L.; Shacklette, L. W. Chem. Rev. 1982, 82, 209.
(15) Kaneto, K.; Ura, S.; Yoshino, K.; Inuishi, Y. Jap. J. of App. Phys. 1984, 23, 189.
(16) MacDiarmid, A. G.; Chiang, J. C.; Halpern, M.; Huang, W. S.; Mu, S. L.; Somasir, N. L. D. Mol, Cryst. Liq. Cryst., 1985, 121, 173.
(17) Schön, J. H.; Dodabalapur, A.; Bao, Z.; Kloc, Ch.; Schenker, O.; Batlogg, B. Nature 2001, 410, 189.
(18) Wood, A. S. “ Tapping the power of intrinsic conductivity ”, Modern Plastic Int., 1991, Aug., 33.
(19) Bredas, J. L.; Silbey, R.; Boudreaux, D. S. and Chance, R. R. J. Am. Chem. Soc. 1983, 105, 6555.
(20) Intrinsically Conducting Polymers: An Emerging Technology; Aldissi, M. Ed.; Kluwer Academic Publishers: Dordrecht, Boston and London, 1993; p4.
(21) MacDiarmid, A. G.; Epstein, A. J. Synth. Met. 1994, 65, 103.
(22) McCullough, R. D.; Lowe, R. D. J. Chem. Soc., Chem. Commun. 1992, 70.
(23) (a) Chiang, J. C.; MacDiarmid A. G. Synth. Met. 1986, 13, 193. (b) Angelopoulos, M.; Asturias, G. E.; Ermer, S. P.; Ray, A.; Scherr, E. M.; MacDiarmid, A. G. Mol. Cryst. Liq. Cryst. 1988, 160, 151.
(24) Han, C. C.; Elsenbaumer, R. L. Synth. Met. 1989, 30, 123.
(25) Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539.
(26) 鋁固態電解電容器之簡介,蔡麗端,材料與社會,1993, 80, 110.
(27) (a) Wei, Y.; Focke, W. W.; Wnek, G. E.; Ray, A.; MacDiarmid, A. G. J. Phys. Chem. 1989, 93, 495. (b) Conklin, J. A.; Huang, S. C.; Huang, S. M.; Wen, T.; Kaner, R. B. Macromolecules 1995, 28, 6522. (c) Bidan, G.; Genies, E. M.; Penneau, J. F. J. Electroanal. Chem. 1989, 271, 59. (d) Bodalia, R.; Stern, R.; Batich, C.; Duran, R. J. Polym. Sci., Polym. Chem. 1993, 31, 2123. (e) Genies, E. M.; Noel, P. J. Electroanal. Chem. 1991, 310, 89. (f) Chevalier, J.-W.; Bergeron, J.-Y.; Dao, L. H. Macromolecules 1992, 25, 3325. (g) Cattarin, S.; Doubova, L.; Mengoli, G.; Zotti, G. Electrochim. Acta 1988, 33, 1077. (h) Leclerc, M.; Guay, J.; Dao, L. H. Macromolecules 1989, 22, 649. (i) Shenlong, W.; Fosong, W.; Xiaohui, G. Synth. Met. 1986, 16, 99. (j) D’Aprano, G.; Leclerc, M.; Zotti, G.; Schiavon, G. Chem. Mater. 1995, 7, 33. (k) Mattoso, L. H. C.; MacDiarmid, A. G.; Epstein, A. J. Synth. Met. 1994, 68, 1. (l) Dhawan, S. K.; Trivedi, D. C. Synth. Met. 1993, 60, 67. (m) MacInnis, D., Jr.; Funt, B. L. Synth. Met. 1988, 25, 235. (n) Gupta, M. C.; Umare, S. S. Macromolecules 1992, 25, 138. (o) Lacroix, J. C.; Garcia, P.; Audiere, J. P.; Clement, R.; Kahn, O. Synth. Met. 1991, 44, 117.
(28) (a) Han, C. C.; Jeng, R. C. Chem. Commun. 1997, 553. (b) Han, C. C.; Hseih, W. D.; Yeh, J. Y.; Hong, S. P. Chem. Mater. 1999, 11, 480. (c) Han, C. C.; Hong, S. P.; Yang, K. F.; Bai, M. Y.; Lu, C. H.; Huang, C. S. Macromolecules 2001, 34, 587.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文