|
1. Stickle, D. F., Presta, L. G., Dill, K. A. and Rose, G. D. (1992) Hydrogen bonding in globular proteins. J. Mol. Biol. 226, 1143-1159. 2. Lesser, G. J. and Rose, G. D. (1990) Hydrophobicity of amino acid subgroups in proteins. Proteins 8, 6-13. 3. Wagner, D. and Wuthrich, K. (1986) Observation of internal mobility of proteins by nuclear magnetic resonance in solution. Methods Enzymol. 131, 307-326. 4. Dunitz, J. D. (1995) Win some, lose some: enthalpy-entropy compensation in weak intermolecular interactions. Chem. Biol. 2, 709-712. 5. Cavanagh, J. and Akke, M. (2000) May the driving force be with you ¾ whatever it is. Nature Struct. Biol. 7, 11-13. 6. Karplus, M. (1986) Internal dynamics of proteins. Methods Enzymol. 131, 283-307. 7. Pace, C. N. (1990) Conformational stability of globular proteins. Trends Biochem. Sci. 15, 14-17. 8. McDonald, I. K. and Thornton, J. M. (1994) Satisfying hydrogen bonding potential in proteins. J. Mol. Biol. 238, 777-793. 9. Tanford, C. (1970) Protein denaturation. C. Theoretical models for the mechanism of denaturation. Adv. Protein Chem. 25, 1-95. 10. Anfinsen, C. B. (1973) Principles that govern the folding of protein chains. Science 181, 223-230. 11. Schellman, J. A. (1978) Solvent denaturation. Biopolymers 17, 1305-1322. 12. Alonso, D. O. V. and Dill, K. A. (1991) Solvent denaturation and stabilization of globular proteins. Biochemistry 30, 5974-5985. 13. Myers, J. K., Pace, C. N. and Scholtz, J. M. (1995) Denaturant m values and heat capacity change: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 4, 2138-2148. 14. Pace, C. N. (1986) Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 131, 266-280. 15. Fersht, A. (1999) Structure and Mechanism in protein science. Freeman Press, New York, 508-539. 16. Freire, E. (2001) The thermodynamic linkage between protein structure, stability and function. Methods Mol. Biol. 168, 37-68. 17. Privalov, P. L. (1990) Cold denaturation of proteins. Crit. Rev. Biochem. Mol. Biol. 25, 281-305. 18. Jarabak, J., Seeds, A. E. and Talalay, P. (1971) Cold inactivation of L-threonine deaminase from Rhodospirillum rubrum. Involvement of hydrophobic interactions. Eur. J. Biochem. 21, 447-454. 19. Pfeil, W. and Privalov, P. L. (1976) Thermodynamic investigations of proteins. I. Standard functions for proteins with lysozyme as an example. Biophys. Chem. 4, 23-32. 20. Pfeil, W. and Privalov, P. L. (1976) Thermodynamic investigations of proteins. II. Calorimetric study of lysozyme denaturation by guanidine hydrochloride. Biophys. Chem. 4, 33-40. 21. Pfeil, W. and Privalov, P. L. (1976) Thermodynamic investigations of proteins. III. Thermodynamic description of lysozyme. Biophys. Chem. 4, 41-50. 22. Ishima, R. and Torchia, D. A. (2000) Protein dynamics from NMR. Nat. Struct. Biol. 7, 740-743. 23. Palmer, A. G. III, Kroenke, C. D. and Loria, J. P. (2001) Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol. 339, 204-238. 24. Kay, L. E. (1998) Protein dynamics from NMR. Nat. Struct. Biol. 5, 513-517. 25. Palmer, A. G. III (1997) Probing molecular motion by NMR. Curr. Opin. Struct. Biol. 7, 732-737. 26. Palmer, A. G. III (1993) Dynamic properties of proteins from NMR spectroscopy. Curr. Opin. Biotech. 4, 385-391. 27. Cavanagh, J. Fairbrother, W. J., Palmer, A. G. III, Skelton, N. J. (1996) Protein NMR spectroscopy. Academic Press, New York, 243-300. 28. Jardetzky O. and Lefevre, J. F. (1998) Protein dynamics, function and design. Plenum Press, New York, 95-145. 29. Farrow, N. A., Zhang, O., Szabo, A., Torchia, D. A. and Kay, L. E. (1995) Spectral density function mapping using 15N relaxation data exclusively. J. Biol. NMR 6, 153-162. 30. Richarz, R., Nagayama, K. and Wuthrich, K. (1980) Carbon-13 nuclear magnetic resonance relaxation studies of internal mobility of the polypeptide chain in basic pancreatic trypsin inhibitor and a selectively reduced analogue. Biochemistry 19, 5189-5196. 31. Brainard, J. R. and Szabo, A. (1981) Theory for nuclear magnetic relaxation of probes in anisotropic systems: application of cholesterol in phospholipid vesicles. Biochemistry 20, 4618-4628. 32. Lipari, G. and Szabo, A. (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4549-4558. 33. Lipari, G. and Szabo, A. (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J. Am. Chem. Soc. 104, 4559-4570. 34. Clore, G. M., Driscoll, P. C., Wingfield, P. T. and Gronenborn, A. M. (1990) Analysis of the backbone dynamics of interleukin-1 beta using two-dimensional inverse detected heteronuclear 15N-1H NMR spectroscopy. Biochemistry 29, 7387-7401. 35. Palmer, A. G. III (2001) NMR probes of molecular dynamics: overview and comparison with other techniques. Annu. Rev. Biophys. Biomol. Struct. 30, 129-55. 36. Wagner, G. (1997) An account of NMR in structural biology. Nat. Struct. Biol. NMR supplement, 841-844. 37. Nicholson, L. K., Yamazaki, T., Torchia, D. A., Grzesiek, S., Bax, A., Stahl, S. J., Kaufman, J. D., Wingfield, P. T., Lam, P. Y. and Jadhav, P. K. (1995) Flexibility and function in HIV-1 protease. Nat. Struct. Biol. 2, 274-80. 38. Mandel, A. M., Akke, M. and Palmer, A. G. III. (1995) Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J. Mol. Biol. 246, 144-163. 39. Kay, L. E., Torchia, D. D. and Bax, A. (1989) Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28, 8972-8979. 40. Cheng, J. W., Lepre, C. A., Chambers, S. P., Fulghum, J. R., Thomson, J. A. and Moore, J. M. (1993) 15N NMR relaxation studies of the FK506 binding protein: backbone dynamics of the uncomplexed receptor. Biochemistry 32, 9000-9010. 41. Matsuo, H. (1999) Identification by NMR spectroscopy of residues at contact surfaces in large, slowly exchanging macromolecular complexes. J. Am. Chem. Soc. 121, 9903-9904. 42. Volkman, B. F., Lipson, D., Wemmer, D. E. and Kern, D. (2001) Two-state allosteric behavior in a single-domain signaling protein. Science 291, 2429-2433. 43. Wikstrom, A., Berglund, H., Hambraeus, C., van der Berg, S. and Hard, T. (1999) Conformational dynamics and molecular recognition: backbone dynamics of the estrogen receptor DNA-binding domain. J. Mol. Biol. 289, 963-979. 44. Ishima, R., Freedberg, D. I., Wang, Y. X., Louis, J. M. and Torchia, D. A. (1999) Flap opening and dimer-interface flexibility in the free and inhibitor-bound HIV protease, and their implications for function. Structure Fold Des. 7, 1047-1055. 45. Frauenfelder, H., Sligar, S. G. and Wolynes, P. G. (1991) The energy landscapes and motions of proteins. Science 254, 1958-1603. 46. Bryngelson, J. D., Onuchic, J. N., Socci, N. D., Wolynes, P. G., (1995) Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 21, 167-195. 47. Bai, Y. and Englander, S. W. (1996) Future directions in folding: the multi-state nature of protein structure. Proteins 24, 145-151. 48. Bai, Y., Milne, J. S., Mayne, L. and Englander, S. W. (1994) Protein stability parameters measured by hydrogen exchange. Proteins 20, 4-14. 49. Englander, S. W., Mayne, L., Bai, Y. and Sosnick, T. R. (1997) Hydrogen exchange. Protein Sci. 6, 1101-1109. 50. Wuthrich, K. (1986) NMR of proteins and nucleic acids. New York, Wiley, 44-92. 51. Bax, A. (1994) Multidimensional nuclear magnetic resonance methods for protein studies. Curr. Opin. Struct. Biol. 4, 738-744. 52. Woodward, C., Simon, I. and Tuchsen, E. (1982) Hydrogen exchange and the dynamic structure of proteins. Mol. Cell. Biochem. 48, 135-160. 53. Woodword, C. (1993) Is the slow exchange core the protein folding core? Trends Biochem. Sci. 18, 359-360. 54. Englander, S. W. and Kallengbach, N. R. (1983) Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q. Rev. Biophys. 16, 521-655. 55. Englaner, S. W., Sosnick, T. R., Englander, J. J. and Mayne, L. (1996) Mechanisms and uses of hydrogen exchange. Curr. Opin. Struct. Boil. 6, 18-23. 56. Huyghues-Despointes, B. M. P., Pace, C. N., Englander, S. W. and Scholtz, J. M. (2001) Measuring the conformational stability of a protein by hydrogen exchange. Methods Mol. Biol. 168, 69-92. 57. Bai, Y., Milne, J. S., Mayne, L. and Englnader, S. W. (1993) Primary structure effects on peptide group hydrogen exchange. Proteins 17, 75-86. 58. Bai, Y., Sosnick, T. R., Mayne, L. and Engalnder, S. W. (1995) Protein folding intermediates: Native-state hydrogen exchange. Science 269, 192-197. 59. Hivdt, A. and Nielsen, S. O. (1966) Hydrogen exchange in proteins. Adv. Protein Chem. 21, 287-386. 60. Orban, J., Alexander, P., Bryan, P. and Khare, D. (1995) Assessment of stability in the protein G B1 and B2 domains from hydrogen-deuterium exchange: comparison with calorimetric data. Biochemistry 34, 15291-15300. 61. Perrett, S., Clarke, J., Hounslow, A. M. and Fersht, A. R. (1995) Relationship between equilibrium amide proton exchange behavior and the folding pathway of barnase. Biochemistry 34, 9288-9298. 62. Swint-Kruse, L. and Robertson, A. D. (1996) Temperature and pH dependence of hydrogen exchange and global stability for ovomucoid third domain. Biochemistry 35, 171-180. 63. Huyghues-Despointes, B. M. P., Scholtz, J. M. and Pace, C. N. (1999) Protein conformational stabilities can be determined from hydrogen exchange rates. Nat. Struct. Biol. 6, 910-912. 64. Roder, H., Wagner, G. and Wuthrich, K. (1985) Amide proton exchange in proteins by EX1 kinetics: studies of the basic pancreatic trypsin inhibitor at variable pD and temperature. Biochemistry 24, 7396-7407. 65. Arrington, C. B. and Robertson, A. D. (1997) Microsecond protein folding kinetics from native-state hydrogen exchange. Biochemistry 36, 8686-8691. 66. Bryan, W. D. (1970) The mechanism of hydrogen exchange in proteins. Recent Prog. Surf. Sci. 3, 101-120. 67. Wagner, G. and Wuthrich, K. (1979) Structural interpretation of amide proton exchange in BPTI and related proteins. J. Mol. Biol. 134, 75-94. 68. Chamberlain, A. K. and Marqusee, S. (1997) Touring the landscapes: partially unfolded proteins examined by hydrogen exchange. Structure 5, 8859-863. 69. Conrad, E. (1998) Heparin Binding Progeins (Academic, New York), pp. 301-348. 70. Basilico, C. and Moscatelli, D. (1992) The FGF family of growth factors and oncogenes. Adv. Cancer Res. 59, 115-165. 71. Friesel, R. B. and Maciag, T. (1995) Molecular mechanisms of angiogenesis: fibroblast growth factor signal transduction. FASEB J. 9, 919-925. 72. Ruoslahti, E. and Yamaguchi. Y. (1991) Proteoglycans as modulators of growth factor activities. Cell 64, 867-869. 73. Lindhal, U., Lindholt, K., Spillmann, D. and Kjellen, L. (1994) More to heparin than anticoagulation. Thromb. Res. 75, 1-32. 74. Rapraeger, A. C., Krufka, A. and Olwin, B. B. (1991) Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252, 1705-1708. 75. Zhu, X., Komiya, H., Chirino, A., Faham, S., Arakawa, T., S., Hsu, B. T. and Rees, D. C. (1991) Three-dimensional structures of acidic and basic fibroblast growth factors. Science 251, 90-93. 76. Pineda-Lucena, A., Jimenez, M. A., Lozano, R. M., Nieto, J. L., Santoro, J., Rico, M. and Gallego, G. G. (1996) Three-dimensional structure of acidic fibroblast growth factor in solution: effects of binding to a heparin functional analog. J. Mol. Biol. 264, 162-178. 77. Ogura, K., Nagata, H., Habushi, H., Kimata, K., Tate, S., Ravera, M. W., Jaye, M., Schlessinger, J. and Inagaki, F. (1999) Solution structure of human acidic fibroblast growth factor and interaction with heparin-derived hexasaccharide. J. Biomol. NMR 13, 11-24. 78. Thronton, J. M., Orengo, C. A., Todd, A. E. and Pearl, F. M. (1999) From structure to function: approaches and limitations. J. Mol. Biol. 293, 937-953. 79. Ponting, C. P. and Russell, R. B. (2000) Identification of distant homologues of fibroblast growth factors suggests a common ancestor for all b-trefoil proteins. J. Mol. Biol. 302, 1041-1047. 80. Ornitz, D. M., Xu, J., Colvin, J. S., McEwen, D. G., MacArthur, C. A., Coulier, F., Gao, G. and Goldfarb, M. (1996) Receptor specificity of the fibroblast growth factor family. J. Biol. Chem. 271, 15292-15297. 81. Plotnikov, A. N., Hubbard, S. R., Schlessinger, J. and Mohammadi, M. (2000) Crystal structures of two FGF-FGFR complexes reveal the determinants of ligand-receptor specificity. Cell 101, 413-424. 82. Pellegrini, L., Burke, D. F., Delft, F. V., Mulloy, B. and Blundell, T. L. (2000) Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 407, 1029-1034. 83. Romero, A, Pineda-Lucena, A. and Gimenez-Gallego, G. (1996) X-ray structure of native full-length human fibroblast growth factor at 0.25 nm resolution. Eur. J. Biochem. 241, 453-461. 84. Ortega, S., Schaeffer, M. T., Soderman, D., Disalvo, J., Linemeyer, D. L., Gimenez-Gallego, G. and Thomas, K. A. (1991) Conversion of cysteine to serine residues alters the activity, stability and heparin dependence of acidic fibroblast growth factor. J. Biol. Chem. 266, 5842-5846. 85. Zazo, M., Lozano, R. M., Orega, S., Varela, J., Diaz-Orejas, R., Ramirez, J. M. and Gimenez-Gallego, G. (1992) High-level synthesis in Escherichia coli of shortened and full-length human acidic fibroblast growth factor and purification in a form stable in aqueous solutions. Gene (Amst.) 133, 231-238. 86. Gospodarowicz, D. and Cheng, J. (1986) Heparin protects basic and acidic FGF from inactivation. J. Cell Physiol. 128, 475-484. 87. Rosengart, T. K., Johnson, W. V., Friesel, R., Clark, R. and Maciag, T. (1988) Heparin protects heparin-binding growth factor-I from proteolytic inactivation in vitro. Biochem. Biophys. Res. Commun. 152, 432-440. 88. Saksela, O., Moscatelli, D., Sommer, A. and Rifkin, D. B. (1988) Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J. Cell Biol. 107, 743-751. 89. Sommer, A. and Rifkin, D. B. (1989) Interaction of heparin with human basic fibroblast growth factor: protection of the angiogenic protein from proteolytic degradation by a glycosaminoglycan. J. Cell. Physiol. 138, 215-220. 90. Mach, H. and Middaugh, C. R. (1995) Interaction of partially structured states of acidic fibroblast growth factor with phospholipid membranes. Biochemistry 34, 9913-9920. 91. Dabora, J. M., Sanyal, G. and Middaugh, C. R. (1991) Effect of polyanions on the refolding of human acidic fibroblast growth factor. J. Biol. Chem. 256, 23637-23640. 92. Abraham, J. A., Mergia, A., Whang, J. L., Tumolo, A., Friedman, J., Hjerrild, K. A., Gaspodarowicz, D. and Fiddes, J. C. (1986) Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor. Science 233, 545-548. 93. Jaye, M., Jowk, R., Burgess, W., Ricca, G. A., Chiu, I. M. Ravera, M. W., O’Brien, S. J., Modi, A. S., Maciag, T. and Drohan, W. J. (1986) Human endothelial cell growth factor: cloning, nucleotide sequence, and chromosome localization. Science 233, 541-545. 94. Wiedlocha, A., Madshus, I. H., Mach, H., Middaugh, C. R. and Olsnes, S. (1992) Tight folding of acidic fibroblast growth factor prevents its translocation to the cytosol with diphtheria toxin as vector. EMBO. J. 11, 4835-4842. 95. Blaber, S. I., Culajay, J. F., Khurana, A.and Blaber, M. (1999) Reversible thermal denaturation of human FGF-1 induced by low concentrations of guanidine hydrochloride. Biophys. J. 77, 470-477. 96. Santoro, M. M. and Bolen, D. W. (1992) A test of the linear extrapolation of unfolding free energy changes over an extended denaturant concentration range. Biochemistry 31, 4901-4907. 97. Schellman, J. A. (1987) Protein stability curves. Biopolymers 26, 1859-1877. 98. Pace, C. N. and Laurents, D.V. (1989) A new method for determining the heat capacity change for protein folding. Biochemistry 28, 2520-2525. 99. Pace, C. N., Grimsely, G. R., Thomas, S. T., and Makhadatze, G. I. (1999) Heat capacity change for ribonuclease A folding. Protein Sci. 8, 1500-1504. 100. Pace, C. N. and Tanford, C. (1968) Thermodynamics of the unfolding of beta-lactoglobulin A in aqueous urea solutions between 5 and 55 degrees. Biochemistry 7, 198-208. 101. Gomez, J., Hisler, V. J., Xie, D. and Freire, E. (1995) The heat capacity of proteins. Proteins 22, 404-412. 102. Khechinashvili, N. N., Janin, J. and Rodier, F. (1995) Thermodynamics of the temperature-induced unfolding of globular proteins. Protein Sci. 4, 1315-1342. 103. Chen, B. and Schellman, J. A. (1989) Low-temperature unfolding of a mutant of phage T4 lysozyme. 1. Equilibrium studies. Biochemistry 28, 685-691. 104. Nicholson, E. M. and Scholtz, J. M. (1996) Conformational stability of the Escherichia coli HPr protein: test of the linear extrapolation method and a thermodynamic characterization of cold denaturation. Biochemistry 35, 11369-11378. 105. Agashe, V. R. and Udgaonkar, J. B. (1995) Thermodynamics of denaturation of barstar: evidence for cold denaturation and evaluation of the interaction with guanidine hydrochloride. Biochemistry 34, 3286-3299. 106. Huang, G. S. and Oas, T. G. (1996) Heat and cold denatured states of monomeric lambda repressor are thermodynamically and conformationally equivalent. Biochemistry 35, 6173-6180. 107. Logan, T. M., Theriault, Y. and Fesik, S. W. (1994) Structural characterization of the FK506 binding protein unfolded in urea and guanidine hydrochloride. J. Mol. Biol. 236, 637-648. 108. Arcus, V. L., Vuilleumier, S., Freund, S. M. V., Bycroft, M. and Fersht, A. R. (1995) A comparison of the pH, urea, and temperature-denatured states of barnase by heteronuclear NMR: implications for the initiation of protein folding. J. Mol. Biol. 254, 305-321. 109. Zhang, O. and Forman-Kay, J. D. (1995) Structural characterization of folded and unfolded states of an SH3 domain in equilibrium in aqueous buffer. Biochemistry 34, 6784-6794. 110. Kortemme, T., Kelly, M. J. S., Kay, L. E., Forman-Kay, J D. and Serrano, L. (2000) Similarities between the spectrin SH3 domain denatured state and its folding transition state. J. Mol. Biol. 297, 1217-1229. 111. Ye, J., Mayer, K. L. and Stone, M. J. (1999) Backbone dynamics of the human CC-chemokine eotaxin. J. Biomolec. NMR. 15, 115-124. 112. Pascal, S. M., Yamazaki, T., Singer, A. U., Kay, L. E. and Forrman-Kay, J. D (1995) Structural and dynamic characterization of the phosphotyrosine binding region of a Src homology 2 domain-phosphopeptide complex by NMR relaxation, proton exchange, and chemical shift approaches. Biochemistry 34, 11353-11362. 113. Barbato, G., Ikura, M., Kay, L. E., Pastor, R. W. and Bax, A. (1992) Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry 31, 5269-5278. 114. Stone, M. J., Chandrasekhar, K., Holmgren, A., Wright, P. E. and Dyson, H. J. (1993) Comparison of backbone and tryptophan side-chain dynamics of reduced and oxidized Escherichia coli thioredoxin using 15N NMR relaxation measurements. Biochemistry 32, 426-435. 115. Stivers, J. T., Abeygunawardana, C. and Mildvan, A. S. (1996) 15N NMR relaxation studies of free and inhibitor-bound 4-oxalocrotonate tautomerase: backbone dynamics and entropy changes of an enzyme upon inhibitor binding. Biochemistry 35, 16036-16047. 116. Folkman, J., Szabo, S., Stovroff, M., Mcneil, P., Li, W. and Shing, Y. (1991) Duodenal ulcer: Discovery of a new mechanism and development of angiotherapy that accelerates healing. Ann. Surg. 214, 414-425. 117. Spivak-Kroizman, T., Lemmon, M. A., Dikic, I., Ladbury, J. E., Pinchasi, D., Huang, J., Jaye, M., Crumley, G., Schlessinger, J. and Lax, I. (1994) Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation. Cell 79, 1015-1024. 118. Prestrelski, S. J., Fox, G. M. and Arakawa, T. (1992) Binding of heparin to basic fibroblast growth factor induces a conformational change. Arch. Biochem. Biophys. 293, 314-319. 119. Zhu, X., Hsu, B. T. and Rees, D. C. (1993) Structural studies of the binding of the anti-ulcer drug sucrose octasulfate to acidic fibroblast growth factor. Structure 15, 27-34. 120. Farrow, N.A., Muhandiram, R., Singer, A. U., Pascal, S.M., Kay, C.M., Gish, G., Shoelson, S.E., Pawson, T., Forman-Kay, J.D. and Kay. L. E. (1994) Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33, 5894-6003. 121. Palmer, A. G. III, Rance, M. and Wright, P. E. (1991) Intramolecular motions of a zinc finger DNA-binding domain from xfin characterized by proton-detected natural abundance 13C heteronuclear NMR spectroscopy. J. Am. Chem. Soc. 113, 4371-4378. 122. Chi, Y. H., Kumar, T. K. S., Chiu, I. M. and Yu, C. (2000) 15N NMR relaxation studies of free and ligand-bound human acidic fibroblast growth factor. J. Biol. Chem. 275, 39444-39450. 123. Cantor, C. R. and Schimmel, P. R. (1980) Biophysical chemistry, part II: techniques for the study of biological structure and function. Freeman Press, San Francisco, 560-563. 124. Moy, F. J., Chanda, P. K., Cosma, S., Pisano, M. R. Urbano, C., Wihelm, J. and Powers, R. (1998) High-resolution solution structure of the inhibitor-free catalytic fragment of human fibroblast collagenase determined by multidimensional NMR. Biochemistry 37, 1495-1504. 125. Springer, B. A., Pantoliano, M. W., Barbera, FA., Gunyuzhu, P.L., Thompson, L. D., Herbin, W. F., Rosenfield, S. A. and Book, G. W. (1994) Identification and concerted function of two receptor binding surfaces on basic fibroblast growth factor required for mitogenesis. J. Biol. Chem. 269, 26879-26884. 126. Plotnikov, A., Schlessinger, J., Hubbard, S. R. and Mohammadi, M. (1999) Structural basis for FGF receptor dimerization and activation. Cell 98, 641-650. 127. Blaber, M., Disalvo, J. and Thomas, K. A. (1996) X-ray crystal structure of human acidic fibroblast growth factor. Biochemistry 35, 2086-2094. 128. Englander, S. W. and Mayne, L. (1992) Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR. Annu. Rev. Biophys. Biomol. Struct. 21, 243-265. 129. Baldwin, R. L. (1995) The nature of protein folding pathways: the classical versus the new view. J. Biomol. NMR 5, 103-109. 130. Clarke, J. and Itzhaki, L. S. (1998) Hydrogen exchange and protein folding. Curr. Opin. Struct. Biol. 8, 112-118. 131. Li, R. and Woodward, C. (1999) The hydrogen exchange core and protein folding. Protein Sci. 8, 1571-1590. 132. Covington, A. K., Robinson, R. A. and Bates, R. G. (1966) The ionization constant of deuterium oxide from 5 to 50o. J. Phys. Chem. 70, 3820-3824. 133. Schlessinger, J., Plotnikov, A. N., Ibrahami, O. A., Eliseenkova, A. V., Yeh, B. K., Yayon, A., Linhardt, R. J. and Mohammadi, M. (2000) Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol. Cell. 6, 743-750. 134. Baxter, N. J. and Williamson, M. P. (1997) Temperature dependence of 1H chemical shifts in proteins. J. Biomol. NMR 9, 359-369. 135. Baxter, N. J., Hosszu, L. L., Waltho, J. P. and Williamson, M. P. (1998) Characterization of low free-energy excited states of folded proteins. J. Mol. Biol. 284, 1625-1639. 136. Pedersen, T. G., Sigurskjold, B. W., Andersen, K. V., Kjaer, M., Poulsen, C. M., Dobson, C. M. and Redfield, C. (1991) A nuclear magnetic resonance study of the hydrogen-exchange behaviour of lysozyme in crystals and solution. J. Mol. Biol. 218, 413-426. 137. Skalicky, J. J., Selsted, M. E. and Pardi, A. (1994) Structure and dynamics of the neutrophil defensins NP-2, NP-5, and HNP-1: NMR studies of amide hydrogen exchange kinetics. Proteins 20, 52-67. 138. Perrin, C. L., Dwyer, T. J., Rebek, J. and Duff, R. J. (1990) Exchange of amide protons. Effect of intramolecular hydrogen bonding. J. Am. Chem. Soc. 112, 3122-3125. 139. Delepierre, M., Larvor, M. P., Baleux, F. and Goldberg, M. E. (1991) 1H-NMR conformational analysis of a high-affinity antigenic 11-residue peptide from the tryptophan synthase beta 2 subunit. Eur. J. Biochem. 201, 681-693. 140. Andersen, N. H., Chen, C., Marchner, T. M., Krystek, S. R. Jr, and Bassolino, D. A. (1992) Conformational isomerism of endothelin in acidic aqueous media: a quantitative NOESY analysis. Biochemistry 31, 1280-1295. 141. Dyson, H. J., Rance, M., Houghten, R. A., Lerner, R. A. and Wright, P. E. (1988) Folding of immunogenic peptide fragments of proteins in water solution. II. The nascent helix. J. Mol. Biol. 201, 161-200. 142. Chamberlain, A. K., Handel, T. M. and Marqusee, S. (1996) Detection of rare partially folded molecules in equilibrium with the native conformation of RnaseH. Nat. Struct. Biol. 3, 782-787. 143. Schellman, J. A. (1987) The thermodynamic stability of proteins. Annu. Rev. Biophys. Chem. 16, 115-137. 144. Yi, Q. and Baker, D. (1996) Direct evidence for a two-state protein unfolding transition from hydrogen-deuterium exchange, mass spectrometry, and NMR. Protein Sci. 5, 1060-1066. 145. Bai, Y., Karimi, A., Dyson, H. J. and Wright, P. E. (1997) Absence of a stable intermediate on the folding pathway of protein A. Protein Sci. 6, 1449-1457. 146. Llinas, M., Gillespie, B., Dahlquist, F. W. and Marqusee, S. (1999) The energetics of T4 lysozyme reveal a hierarchy of conformation. Nat. Struct. Biol. 6, 1072-1078. 147. Dinner, A. R., Sali, A., Smith, L. J., Dobson, C. M. and Karplus, M. (2000) Understanding protein folding via free-energy surfaces from theory and experiment. Trends Biochem. Sci. 25, 331-339. 148. Mayo, S. L. and Baldwin, R. L. (1993) Guanidinium chloride induction of partial unfolding in amide proton exchange in RNase A. Science 262, 873-876. 149. Yi, Q., Scalley, M. L., Simons, K. T., Gladwin, S. T. and Baker, D. (1997) Characterization of the free energy spectrum of peptostreptococcal protein L. Fod. Des. 2, 271-280. 150. Itzhaki, L. S., Neira, J. L. and Fersht, A. R. (1997) Hydrogen exchange in chymotrypsin inhibitor 2 probed by denaturants and temperature. J. Mol. Biol. 270, 89-98. 151. Chi, Y. H., Kumar, T. K. S., Wang, H. M., Ho. M. C., Chiu, I. M. and Yu, C. (2001) Thermodynamic characterization of the human acidic fibroblast growth factor: evidence for cold denaturation. Biochemistry 40, 7746-7753. 152. Fuentes, E. J. and Wand, A. J. (1998) Local dynamics and stability of Apocytochrome b562 examined by hydrogen exchange. Biochemistry 37, 3687-3698. 153. Radford, S. E., Dobson, C. M. and Evans, P. A. (1992) The folding of hen lysozyme involves partially structured intermediates and multiple pathways. Nature 358, 302-337. 154. Roder, H., Elove, G. A. and Englander, S. W. (1988) Structural characterization of folding intermediates in cytochrome c by H-exchange labelling and proton NMR. Nature 335, 700-704. 155. Mullins, L. S., Pace, C. N. and Raushel, F. M. (1997) Conformational stability of ribonuclease T1 determined by hydrogen-deuterium exchange. Protein Sci. 6, 1387-1395. 156. Sivaraman, T., Kumar, T. K. S., Lin, W. Y., Chang, D. K. and Yu, C. (1998) Events in the kinetic folding pathway of a small, all beta-sheet protein. J. Biol. Chem. 273, 10181-10189. 157. Samuel, D., Kumar, T. K. S., Balamurugam, K., Lin, W. Y., Chin, D. H. and Yu, C. (2001) Structural events during the refolding of an all beta-sheet protein. J. Biol. Chem. 276, 4134-4141. 158. Liu, C., Gaspar, J. A., Wong, H. J. and Meiering, F. M. (2002) Conserved and nonconserved features of the folding pathway of hisactophilin, a beta-trefoil protein. Protein Sci. 11, 669-679. 159. Houliston, R. S., Liu, C., Singh, L. M. R. and Meiering, E. M. (2002) pH and urea dependence of amide hydrogen-deuterium exchange rates in the beta-trefoil protein hisactophilin. Biochemistry 41, 1182-1194. 160. Heidary, D. K., Gross, L. A., Roy, M. and Jennings, P. A. (1997) Evidence for an obligatory intermediate in the folding of interleukin-1 beta. Nat. Struct. Biol. 4, 725-733. 161. Varley, P., Gronenborn, A. M., Christensen, H., Wingfield, P. T., Pain, R. H. and Clore, G. M. (1993) Kinetics of folding of the all-beta sheet protein interleukin-1 beta. Science 260, 1110-1113.
|