|
參考文獻 Ambler, R. P. The structure of beta-lactamases. Philos. Trans. R. Soc. Lond. B. Bio. Sci. 289, 321-331 (1980). Ambler, R. P. and Coulson, A. F. W. A standard numbering scheme for the Class A β-lactamases. Biochem. J. 276, 269-272 (1991). Arlet, G., Brami, G., Décrè, D., Flippo, A., Gaillot, O., Lagrange, P. H. and Philippon, A. Molecular characterization by PCR-restriction fragment length polymorphism of TEM β-lactamases. FEMS Microbiol. Lett. 134, 203-208 (1995). Arlet, G. and Philippon, A. Construction by polymerase chain reaction and intragenic DNA probes for three main types of transferable β-lactamases (TEM, SHV, CARB). FEMS Microbiol. Lett. 82, 19-26 (1991). Babini, G. S. and Livermore, D. M. Are SHV-beta-lactamase universal in Klebsiella pneumoniae? Antimicrob. Agents Chemother. 44, 2230 (2000). Bauernfeind, A. and Horl, G. Novel R-factor borne beta-lactamase of Escherichia coli confering resistance to cephalosporins. Infection 15, 257-259 (1987). Bauernfeind, A., Stemplinger, I., Jungwirth, R., Wilhelm, R. and Giamarellou, H. Characterization of the plasmidic β-lactamase CMY-2, which is responsible for cephamycin resistance. Antimicrob. Agents Chemother. 40, 221-224 (1996a). Bauernfeind, A., Stemplinger, I., Jungwirth, R., Wilhelm, R. and Chong, Y. Comparative characterization of the cephalosporinase blaCMY-1 gene and its relationship with other β-lactamase genes. Antimicrob. Agents Chemother. 40, 1926-1930 (1996b). Bush, K. Characterization of beta-lactamases. Antimicrob. Agents Chemother. 33, 259-263 (1989). Bush, K., Jacoby, G. A. and Mederios, A. A. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 39, 1211-1233 (1995). Bush, K. and Jacoby, G. Nomenclature of TEM β-lactamase. Antimicrob. Agents Chemother. 39, 1-3 (1997). Canica, M. M., Barthelemy, M., Gilly, L., Labia, R., Krishnamoorthy, R. and Paul, G. Properties of IRT-14 (TEM-45), a newly characterized mutant of TEM-type β-lactamase. Antimicrob. Agents Chemother. 41, 374-378 (1997). Chang, F. Y., Siu, L. K., Fung, C. P., Huang, M. H. and Ho, M. Diversity of SHV and TEM β-lactamases in klebsiella pneumoniae: gene evolution in northern Taiwan and two novel β-lactamases, SHV-25 and SHV-26. Antimicrob. Agents Chemother. Sept., 2407-2413 (2001). Chaves, J., Ladona, M. G., Segura, C., Coira, A., Reig, R. and Ampurdanés, C. SHV-1 β-lactamase is mainly a chromosomally encoded species-specific enzyme in klebsiella pneumoniae. Antimicrob. Agents Chemother. 45, 2856- 2861 (2001). Cuzin, M. DNA chip: a new tool for genetic analysis and diagnostics. Transfus. Clin. Biol. 8, 291-6 (2001). Fiett, J., Palucha, A., Miacynska, B., Stankiewicz, M., Mordarska, H. P., Hryniewicz, W. and Gniadkowski, M. A novel complex mutant β-lactamase, TEM-68, identified in a Klebsiella pneumoniae isolate from an outbreak of extended-spectrum β-lactamase-producing Klebsiella. Antimicrob. Agents Chemother. 44, 1499-1505 (2000). Fluit, A. C., Visser, M. R. and Schmitz, F. J. Molecular detection of antimicrobial resistance. Clin. Microbiol. Review. 14, 836-871 (2001). Fodor, S. P., Read, J. L., Pirrung, M. C., Stryer, L., Lu, A. T. and Solas, D. Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767-773 (1991). Guo, Z., Liu, Q. and Smith, L. M. Enhanced discrimination of single nucleotide polymorphisms by artificial mismatch hybridization. Nat. Biotechnol. 15, 331-335 (1997). Horii, T., Arakawa, Y., Ohta, M., Sugiyama, T., Wacharotayankun, R., Ito, H. and Kato, N. Characterization of a plasmid-borne and constisutively expressed blaMOX-1 gene encoding AmpC-type β-lactamase. Gene 139, 93-98 (1994). Imtiaz, U., Manavathu, E. K., Mobashery, S. and Lerner, S. A. Reversal of clavulanate resistance conferred by a Ser-244 mutant of TEM-1 β-lactamase as a result of a second mutation (Arg to Ser at position 164) that enhances activity against ceftazidime. Antimicrob. Agents Chemother. 38, 1134-1139 (1994). Jacoby, G. A. and Carreras, I. Activities of β-lactam antibiotics against Escherichia coli strains producing extended-spectrum β-lactamases. Antimicrob. Agents Chemother. 34, 858-862 (1990). Jelsch, C., Mourey, L., Masson, J. M. and Samama, J. P. Crystal structure of E. coli TEM-1 β-lactamase at 1.8 Å resolution. Protein: Struct. Funct. Genet. 16, 364-383 (1993). Katsanis, G. P., Spargo, J. M., Ferraro, J., Sutton, L. and Jacoby, G. A. Detection of Klebsiella pneumoniae and Escherichia coli strains producing extended-spectrum β-lactamases. J. Clin. Microbiol. 32, 691-696 (1994). Kim, J. and Lee, H. J. Rapid discriminatory detection of genes coding for SHV β-lactamases by ligase chain reaction. Antimicrob. Agents Chemother. 44, 1860-1864 (2000). Kim, J., Kwon, Y., Pai, H., Kim, J. W. and Cho, D. T. Survey of Klebsiella pneumoniae strains producing extended-spectrum β-lactamase: prevalence of SHV-12 and SHV-2a in Korea. J. Clin. Microbiol. 36, 1446-1449 (1998). Knox, J. R. Extended-spectrum and inhibitor-resistant TEM-type β-lactamases: mutation, specificity, and three-dimensional structure. Antimicrob. Agents Chemother. 39, 2593-2601 (1995). Korfmann, G. and Wiedemann, B. Genetic control of β-lactamase production in Enterobacter cloacae. Ref. Infect. Dis. 10, 793-799 (1998). Kuzin, A. P., Nukaga, M., Nukaga, Y., Hujer, A. M., Bonomo, R. A. and Knox, J. R. Structure of the SHV-1 β-lactamase. Biochemistry 38, 5720-5727 (1999). Leonidas, S. T. and Robert, B. A. SHV-type β-lactamases. Curr. Pharm. Des. 5, 847-864 (1999). Livermore, D.M., Moosdeen, F., Lindridge, M. A., Kho, P. and Williams, J. D. Behaviour of TEM-1 β-lactamases as a resistence mechanism to mezlocillin, ampicillin and azlocillin in Escherichia coli. J. Antimicrob. Chemother. 17, 139-146 (1986). Livermore, D.M. and Seetulsingh, P. Susceptibility of Escherichia coli isolates with TEM-1 β-Lactamase to combinations of BRL42715, tazobactam or clavulanate with piperacillin or amoxycillin. J. Antimicrob. Chemother. 27, 761-767 (1991). Livermore, D.M. Activity of sulbactam combinations against Escherichia coli isolates with known amounts of TEM-1 β-Lactamase. J. Antimicrob. Chemother. 29, 219-232 (1992). Livermore, D.M. Determinants of the activity of β-Lactamases inhibitor combinations. J. Antimicrob. Chemother. 31 (Suppl. A), 9-21 (1993). Livermore, D.M. β-Lactamases in laboratory and clinical resistance. Clin. Microbiol. Reviews Oct., 557-584 (1995). Liu, P. Y. F., Tung, J. C., Ke, S. C. and Chen, S. L. Molecular epidemiology of extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates in a district hospital in Taiwan. J. Clin. Microbiol. 36, 2759-2762 (1998). Mabilat, C. and Courvalin, P. Development of “oligotyping” for characterization and molecular epidemiology of TEM β-lactamases in members of the family Enterobacteriaceae. Antimicrob. Agents Chemother. 34, 2210-2216 (1991). Medeiros, A. A. Evolution and dissemination of β-lactamases accelerated by generations of β-lactam antibiotics. Clin. Infect. Dis. 24 (Suppl. 1), S19-S45 (1997). M’Zali, F.-H., Gascoyne-Binzi, D. M., Heritage, J. and Hawkey, P. M. Detection of mutations conferring extended-spectrum activity on SHV β-lactamases using polymerase chain reaction single strand conformational polymorphism (PCR-SSCP). J. Antimicrob. Chemother. 37, 797-802 (1996). National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial susceptibility testing. Ninth informational supplement, M100-S9. National Committee for Clinical Laboratory Standards. Wayne, Pa. (1999). Nester, E. W., Roberts, C. E. and Nester, M. T. Microbiology. Wm. C. Brown Publishers. Oxford, England (1995). Nicolas-Chanoine, M. H. Inhibitor-resistant β-lactamases. J. Antimicrob. Chemother. 40, 1-3 (1997). Pease, A. C., Solas, D. E., Sullivan, J. M., Cronin, T., Holmes, C. P. and Fodor, S. P. A. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl. Acad. Sci. USA 91, 5022-5026 (1994). Philippon, A., Arlet, G. and Lagrange, P. H. Origin and impact of plasmid- mediated extended-spectrum beta-lactamases. Eur. J. Clin. Microbiol. Infect. Dis. 13 (suppl. 1), 17-29 (1994). Pozhitkov, A. E. Identifikazia miskroorganismos s pomoschtschju oligo- nukleotidni mikrochipow. Diploma thesis, Moscow. (in Russian) (1998). Prinarakis, E. E., Tzelepi, V. E., Gazouli, M. and Tzouvelekis, L. S. Emergence of an inhibitor-resistant β-lactamase (SHV-10) derived from an SHV-5 variant. Antimicrob. Agents Chemother. 41, 838-840 (1997). Reig, R., Roy, C., Hermida, M., Teruel, D. and Coira, A. A survey of β-Lactamases from 618 isolates of Klebsiella spp. J. Antimicrob. Chemother. 31, 29-35 (1993). Richmond, M. H. and Sykes, R. B. The β-Lactamases of Gram-negative bacteria and their possible physiological role. Adv. Microb. Physiol. 9, 31-88 (1973). Schena, M., Shalon, D., Davis, R. W. and Brown, P. O. Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray. Science 270, 467-470 (1995). Sirot, D., Recule, C., Chaibi, E. B., Bret, L., Croize, J., Chanal-Claris, C., Labia, R. and Sirot, J. A complex mutant of TEM-1 β-lactamase with mutations encountered in both IRT-4 and extended-spectrum TEM-15, produced by an Escherichia coli clinical isolate. Antimicrob. Agents Chemother. 41, 1322-1325 (1997). Siu, L. K., Lu, P. L., Hsueh, P. R., Lin, F. M., Chang, S. C., Luh, K. T., Ho, M. and Lee, C. Y. Bacteremia due to extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a pediatric oncology ward: clinical features and identification of different plasmids carrying both SHV-5 and TEM-1 genes. J. Clin. Microbiol. 37, 4020-4027 (1999). Speldooren, V., Heym, B., Labia, R. and Nicolas-Chanoine, M.-H. Discriminatory detection of inhibitor-resistant β-lactamases in Escherichia coli by single-strand conformation polymorphism-PCR. Antimicrob. Agents Chemother. 42, 879-884 (1998). Spratt, B. G. and Cromie, K. D. Penicillin-binding proteins of gram-negative bacteria. Rev. Infect. Dis. 10, 699-711 (1988). Tenover, F. C., Mohammed, M. J., Gorton, T. S. and Dember, Z. F. Detection and reporting of organisms producing extended-spectrum β-lactamases: survey of laboratories in Connecticut. J. Clin. Microbiol. 37, 4065-4070 (1999). Tham, T. N., Mabilat, C., Courvalin, P. and Guesdon, J.-L. Biotylated oligonucleotide probes for the detection and the characterization of TEM-type extended broad spectrum β-lactamases in Enterobacteriaceae. FEMS Microbiol. Lett. 69, 109-116 (1990). Vercauteren, E., Descheemaeker, P., Ieven, M., Sanders, C. C. and Goossens, H. Comparison of screening methods for detection of extended-spectrum β-lactamases and their prevalence among blood isolates of Escherichia coli and Klebsiella spp. in a Belgian teaching hospital. J. Clin. Microbiol. 35, 2191-2197 (1997). Waley, S. G. β-Lactamase: mechanism of action, p.198-228. In M. I. Page(ed.), The chemistry of β-lactams. A. and P. Blackie, London (1992). Walsh, C. Molecular mechanisms that confer antibacterial resistance. Nature 406, 775-781 (2000). Yagi, T., Kueokawa, H., Shibata, N., Shibayama, K. and Arakawa, Y. A preliminary survey of extended-spectrum β-lactamases (ESBLs) in clinical isolates of Klebsiella pneumoniae and Escherichia coli in Japan. FEMS Microbiol. Lett. 184, 53-56 (2000). Yan, J. J., Wu, S. M., Tsai, S. H., Wu, J. J. and Su, I. J. Prevalence of SHV-12 among clinical isolates of Klebsiella pneumoniae producing extended-spectrum β-lactamases and identification of a novel AmpC enzyme (CMY-8) in southern Taiwan. Antimicrob. Agents Chemother. 44, 1438-1442 (2000). Yan, J. J., Ko, W. C. and Wu, J. J. Identification of a plasmid encoding SHV-12, TEM-1, and a variant of IMP-2 metallo-β-lactamase, IMP-8, from a clinical isolate of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 45, 2368-2371 (2001). 蔡文城. 微生物學. 藝軒圖書出版社 台北市 (1996).
|