跳到主要內容

臺灣博碩士論文加值系統

(3.239.4.127) 您好!臺灣時間:2022/08/16 04:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳煥源
研究生(外文):Huan Yuan Chen
論文名稱:以標的B細胞上的mIgE調控IgE
論文名稱(外文):Controlling IgE production by targeting membrane-bound IgE on B cells
指導教授:張子文張子文引用關係
指導教授(外文):Tse Wen Chang
學位類別:博士
校院名稱:國立清華大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:71
中文關鍵詞:免疫球蛋白E膜結合免疫球蛋白E表現免疫球蛋白E B細胞過敏單株抗體基因轉殖小鼠融合蛋白
外文關鍵詞:IgEmembrane-bound IgEIgE-expressing B cellsallergyCemX domainmonoclonal antibodyKM mousefusion protein
相關次數:
  • 被引用被引用:0
  • 點閱點閱:357
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
IgE 是一種可引致急性過敏的免疫球蛋白,它是由plasma細胞所分泌,而此種細胞則由含膜IgE(mIgE+)的B細胞分化成。位於人類B細胞表面上的mIgE與分泌型IgE的不同在於C端的部分,其含有細胞膜上,細胞質內片段以及在細胞膜上與CH4區域之間含有一段52氨基酸的片段叫CemX。這段專一於整個已知人類序列的片段可作為指示mIgE+ B細胞之標的。本研究即為開發針對CemX的專一性抗體並評估是否可藉由標的mIgE+ B細胞進而調降IgE的產生。首先我們構建並於動物細胞CHO生產一種含CemX的IgG1.Fc重組蛋白,以此蛋白免疫小鼠並進行細胞融合後得到五株可產生針對CemX單株抗體的融合瘤。ELISA、免疫沈澱法及西方墨點法顯示這些抗體可以鍵結天然的或變性的CemX。競爭性實驗顯示這些抗體會互相抑制彼此對mIgE的鍵結。利用合成的生太篩選發現這五種單株抗體鍵結於同一抗原決定位(epitope),亦即位於CemX C端的RADWPGPP。螢光標示法顯示此種單株抗體可鍵結於一種表現mIgE的B細胞株,SKO-007,並引致細胞表面之斑點狀(patching)以及蓋狀(capping)。我們選定其中一種命名為a20的單株抗體進行功能性分析。生體外的試驗顯示a20可以引致一種表現mIgE.Fc的重組細胞的補體細胞毒殺反應(complement-mediated cytotoxicity, CDC)。生體內的功能性研究則利用一種叫”KM”的基因轉殖小鼠進行,這種小鼠具有包含人類免疫球蛋白基因的染色體片段。這是第一次針對此種小鼠研究其是否可產生抗原專一性IgE及總量IgE,並研究免疫標的mIgE+ B細胞的效應。以ovalbumin (OVA) 免疫此種小鼠發現其血液中含有各種濃度的人類IgE以及針對OVA的專一性IgE。KM小鼠的me鍊含有CemX片段且a20單株抗體可鍵結小鼠內mIgE+ B細胞。生體內試驗顯示當以OVA免疫KM小鼠時a20抗體可抑制小鼠產生針對OVA專一性的人類IgE。由此可知KM小鼠可作為標的mIgE+ B細胞的研究材料。因此我們已製備了針對CemX及標的mIgE+ B細胞的單株抗體,CDC 分析證明此單株抗體具有調降mIgE+ B細胞的潛力,而以KM小鼠進行的生體內分析則證明此單株抗體可抑制對OVA專一性IgE之產生。

IgE is a minute class of immunoglobulin that mediates immediate-type hypersensitivity reactions responsible for various allergic symptoms. IgE is secreted by IgE-producing plasma cells, which differentiate from B cells expressing membrane-bound IgE (mIgE) on the surface. The e chain of human mIgE contains a membrane-anchoring peptide and an extra 52 a.a.-long domain (referred to as CemX) between the membrane anchor and the CH4 domain. CemX is uniquely present in the me chain of human membrane-bound IgE (mIgE) and provides an attractive site for immunological targeting of mIgE-expressing B cells in order to down-regulate IgE level.
This study was designed to evaluate the effects of monoclonal antibodies (mAbs) specific for CemX to target IgE-expressing B cells and decrease IgE production. A CemX-containing IgG1.Fc fusion protein was produced in CHO cells and used to immunize mice; five hybridoma clones secreting mAbs specific for CemX were obtained. Characterization of the mAbs using ELISA, immunoprecipitation, and immunoblotting methods showed that they could bind to both native and denatured forms of CemX. The mAbs exhibited mutual inhibition of binding to mIgE. Epitope mapping using synthetic peptides revealed that all five mAbs recognize the same epitope, RADWPGPP, located near the C-terminus of CemX. Binding of one of the mAbs to mIgE on SKO-007 cells induced the cross-linking of mIgE molecules on the cell surface, resulting in their patching and capping. One of the anti-CemX mAbs, designated a20, was employed for functional analysis. In vitro analysis revealed that the mAb can cause complement-mediated cytotoxicity on mIgE.Fc-expressing transfectants.
In vivo effects were explored with “KM” transgenic mice, which harbor human immunoglobulin miniloci. These mice were first investigated for the profiles of antigen-specific IgE and total IgE production and their suitability for studying the effects of immuno-targeting of IgE-expressing B cells. Human IgE was found to be present over a large range in the blood of KM mice. The mice could produce human ovalbumin-specific IgE when they were immunized with the ovalbumin. The me chain of KM mice contains CemX and mAb a20 could bind to mIgE-expressing B cells. The treatment with a20 inhibited the production of ovalbumin-specific human IgE. The results indicate that KM mice can be employed for studying the immunological targeting of mIgE-expressing B cells. We conclude that anti-CemX mAbs that are specific to human mIgE on B cells have been prepared. The potential of the mAbs for targeting mIgE+ B cells and hence down-regulating IgE was demonstrated by showing that the anti-CemX mAb can inhibit the production of antigen-specific IgE in KM transgenic mice.

Chapter I Background and Significances…………………….…..……………1
Chapter II Monoclonal Antibodies Against The CemX Domain Of Human Membrane-bound IgE And Their Potential Use For Targeting IgE-expressing B Cells……………………………………………...9
Abstract………………………………………………………………10
Introduction…………………………………………..………………12
Materials and methods…………….…………………………………14
Results………………………………………………………………..19
Discussion……………………………………………………………23
Chapter III Inhibition of Antigen-specific human IgE responses in KM transgenic mice by a monoclonal antibody specific for human membrane-bound IgE………………………………………………36
Abstract………………………………………………………………37
Introduction…………………………………………..………………38
Materials and methods…………….…………………………………40
Results……………………………………………………………..…43
Discussion……………………………………………………………45
Chapter IV Discussion and future studies………………………………………54
References…………………………………………………………………...………62

1. Lundback, B. Epidemiology of rhinitis and asthma. Clin Exp Allergy 28 Suppl 2, 3-10. (1998).
2. Janeway, C.A., Travers, P., Walport, M. Immunobiology: the immune system in health and diease, Edn. 4. (Elsevier Science Ltd.,, London; 1999).
3. Crater, S.E. & Platts-Mills, T.A. Searching for the cause of the increase in asthma. Curr Opin Pediatr 10, 594-599. (1998).
4. Hou, J. et al. An interleukin-4-induced transcription factor: IL-4 Stat. Science 265, 1701-1706 (1994).
5. Shapira, S.K., Vercelli, D., Jabara, H.H., Fu, S.M. & Geha, R.S. Molecular analysis of the induction of immunoglobulin E synthesis in human B cells by interleukin 4 and engagement of CD40 antigen. J Exp Med 175, 289-292 (1992).
6. Arpin, C. et al. Generation of memory B cells and plasma cells in vitro. Science 268, 720-722 (1995).
7. Conrad, D.H., Kilmon, M.A., Studer, E.J. & Cho, S. The low-affinity receptor for IgE (Fc epsilon RII or CD23) as a therapeutic target. Biochem Soc Trans 25, 393-397 (1997).
8. Mayer, R.J. et al. Inhibition of CD23 processing correlates with inhibition of IL-4- stimulated IgE production in human PBL and hu-PBL-reconstituted SCID mice. Clin Exp Allergy 30, 719-727. (2000).
9. Tsicopoulos, A. & Joseph, M. The role of CD23 in allergic disease. Clin Exp Allergy 30, 602-605 (2000).
10. Vanhove, B. & Bazin, H. Differentiation of membrane IgE+ rat B cells into IgE-secreting cells. Immunology 79, 580-586 (1993).
11. Takahama, H., Ovary, Z. & Furusawa, S. Murine IgG1 and IgE memory B cells. Cell Immunol 157, 369-380 (1994).
12. Choe, J., Kim, H.S., Armitage, R.J. & Choi, Y.S. The functional role of B cell antigen receptor stimulation and IL-4 in the generation of human memory B cells from germinal center B cells. J Immunol 159, 3757-3766 (1997).
13. Achatz, G., Nitschke, L. & Lamers, M.C. Effect of Transmembrane and Cytoplasmic Domains of IgE on the IgE Response. Science 276, 409-411 (1997).
14. Coffman, R.L., Lebman, D.A. & Rothman, P. Mechanism and regulation of immunoglobulin isotype switching. Adv Immunol 54, 229-270 (1993).
15. Matsumoto, M. et al. Affinity maturation without germinal centres in lymphotoxin-alpha-deficient mice. Nature 382, 462-466 (1996).
16. Berek, C., Berger, A. & Apel, M. Maturation of the immune response in germinal centers. Cell 67, 1121-1129 (1991).
17. Vitetta, E.S. et al. Memory B and T cells. Annu Rev Immunol 9, 193-217 (1991).
18. Kouskoff, V., Lacaud, G., Pape, K., Retter, M. & Nemazee, D. B cell receptor expression level determines the fate of developing B lymphocytes: receptor editing versus selection. Proc Natl Acad Sci U S A 97, 7435-7439. (2000).
19. Hasbold, J. & Klaus, G.G. Anti-immunoglobulin antibodies induce apoptosis in immature B cell lymphomas. Eur J Immunol 20, 1685-1690 (1990).
20. Billian, G., Mondiere, P., Berard, M., Bella, C. & Defrance, T. Antigen receptor-induced apoptosis of human germinal center B cells is targeted to a centrocytic subset. Eur J Immunol 27, 405-414 (1997).
21. Watanabe, N. et al. Antigen receptor cross-linking by anti-immunoglobulin antibodies coupled to cell surface membrane induces rapid apoptosis of normal spleen B cells. Scand J Immunol 47, 541-547 (1998).
22. Peng, C. et al. A new isoform of human membrane-bound IgE. J Immunol 148, 129-136 (1992).
23. Saxon, A., Max, E.E., Diaz-Sanchez, D. & Zhang, K. Alternative RNA of epsilon transcripts produces mRNAs encoding two membrane and four secreted IgE isoforms. Int Arch Allergy Immunol 107, 45-47. (1995).
24. Diaz-Sanchez, D., Zhang, K., Nutman, T.B. & Saxon, A. Differential regulation of alternative 3' splicing of epsilon messenger RNA variants. J Immunol 155, 1930-1941 (1995).
25. Anand, S., Batista, F.D., Tkach, T., Efremov, D.G. & Burrone, O.R. Multiple transcripts of the murine immunoglobulin epsilon membrane locus are generated by alternative splicing and differential usage of two polyadenylation sites. Mol Immunol 34, 175-183. (1997).
26. Batista, F.D., Efremov, D.G. & Burrone, O.R. Characterization and expression of alternatively spliced IgE heavy chain transcripts produced by peripheral blood lymphocytes. J Immunol 154, 209-218. (1995).
27. Batista, F.D., Efremov, D.G., Tkach, T. & Burrone, O.R. Characterization of the human immunoglobulin epsilon mRNAs and their polyadenylation sites. Nucleic Acids Res 23, 4805-4811. (1995).
28. Ishida, N., Ueda, S., Hayashida, H., Miyata, T. & Honjo, T. The nucleotide sequence of the mouse immunoglobulin epsilon gene: comparison with the human epsilon gene sequence. EMBO J 1, 1117-1123 (1982).
29. Davis, F.M., Gossett, L.A. & Chang, T.W. An epitope on membrane-bound but not secreted IgE: implications in isotype-specific regulation. Biotechnology (N Y) 9, 53-56 (1991).
30. Saxon, A., Zhang, K. & Max, E.E. Human epsilon mRNAs using membrane sequence encode for two membrane forms of IgE and a novel second secreted IgE. Trans Assoc Am Physicians 105, 93-99 (1992).
31. Walker, C. & Zuany_Amorim, C. New trends in immunotherapy to prevent atopic diseases. Trends Pharmacol Sci 22, 84-90 (2001).
32. Pelaia, G., Vatrella, A., Calabrese, C., Mazzarella, G. & Marsico, S.A. New perspectives in asthma treatment. Allergy 55, 60-66. (2000).
33. Durham, S.R. et al. Long-term clinical efficacy of grass-pollen immunotherapy. New England Journal of Medicine 341, 468-475 (1999).
34. Bousquet, J., Lockey, R. & Malling, H.J. Allergen immunotherapy: therapeutic vaccines for allergic diseases. A WHO position paper. J Allergy Clin Immunol 102, 558-562 (1998).
35. Tanaka, H., Nagai, H. & Maeda, Y. Effect of anti-IL-4 and anti-IL-5 antibodies on allergic airway hyperresponsiveness in mice. Life Sci 62, PL169-174 (1998).
36. Mauser, P.J. et al. Inhibitory effect of the TRFK-5 anti-IL-5 antibody in a guinea pig model of asthma. Am Rev Respir Dis 148, 1623-1627 (1993).
37. Shardonofsky, F.R., Venzor, J., Barrios, R., Leong, K.P. & Huston, D.P. Therapeutic efficacy of an anti-IL-5 monoclonal antibody delivered into the respiratory tract in a murine model of asthma. J Allergy Clin Immunol 104, 215-221 (1999).
38. Lotvall, J. & Pullerits, T. Treating asthma with anti-IgE or anti-IL5. Curr Pharm Des 5, 757-770 (1999).
39. Davis, F.M. et al. Can anti-IgE be used to treat allergy? Springer Semin Immunopathol 15, 51-73 (1993).
40. Chang, T.W. The pharmacological basis of anti-IgE therapy. Nat Biotechnol 18, 157-162 (2000).
41. Flores-Romo, L. et al. Inhibition of an in vivo antigen-specific IgE response by antibodies to CD23. Science 261, 1038-1041 (1993).
42. Yabuuchi, S., Nakamura, T., Kloetzer, W.S. & Reff, M.E. Anti-CD23 monoclonal antibody inhibits germline Cepsilon transcription in B cells. Int Immunopharmacol 2, 453-461 (2002).
43. Nechansky, A., Robertson, M.W., Albrecht, B.A., Apgar, J.R. & Kricek, F. Inhibition of antigen-induced mediator release from IgE-sensitized cells by a monoclonal anti-Fc epsilon RI alpha-chain receptor antibody: implications for the involvement of the membrane-proximal alpha-chain region in Fc epsilon RI-mediated cell activation. J Immunol 166, 5979-5990 (2001).
44. Grunewald, S.M. et al. An antagonistic IL-4 mutant prevents type I allergy in the mouse: inhibition of the IL-4/IL-13 receptor system completely abrogates humoral immune response to allergen and development of allergic symptoms in vivo. J Immunol 160, 4004-4009 (1998).
45. Borish, L.C. et al. Efficacy of soluble IL-4 receptor for the treatment of adults with asthma. J Allergy Clin Immunol 107, 963-970. (2001).
46. Briner, T.J., Kuo, M.C., Keating, K.M., Rogers, B.L. & Greenstein, J.L. Peripheral T-cell tolerance induced in naive and primed mice by subcutaneous injection of peptides from the major cat allergen Fel d I. Proc Natl Acad Sci U S A 90, 7608-7612 (1993).
47. Norman, P.S. et al. Treatment of cat allergy with T-cell reactive peptides. Am J Respir Crit Care Med 154, 1623-1628 (1996).
48. Dittel, B.N., Sant'Angelo, D.B. & Janeway, C.A., Jr. Peptide antagonists inhibit proliferation and the production of IL-4 and/or IFN-gamma in T helper 1, T helper 2, and T helper 0 clones bearing the same TCR. J Immunol 158, 4065-4073 (1997).
49. Helm, B. et al. Blocking of passive sensitization of human mast cells and basophil granulocytes with IgE antibodies by a recombinant human epsilon-chain fragment of 76 amino acids. Proc Natl Acad Sci U S A 86, 9465-9469 (1989).
50. Wang, Y. et al. Peptides derived from IgE heavy chain constant region induce profound IgE isotype-specific tolerance. Eur J Immunol 26, 1043-1049 (1996).
51. Rudolf, M.P. et al. Epitope-Specific Antibody Response to IgE by Mimotope Immunization. J Immunol 160, 3315-3321 (1998).
52. McDonnell, J.M. et al. Structure based design and characterization of peptides that inhibit IgE binding to its high-affinity receptor. Nat Struct Biol 3, 419-426. (1996).
53. Kowalczyk, D.W. & Ertl, H.C. Immune responses to DNA vaccines. Cell Mol Life Sci 55, 751-770 (1999).
54. Spiegelberg, H.L. & Raz, E. DNA-based approaches to the treatment of allergies. Curr Opin Mol Ther 4, 64-71. (2002).
55. Shirakawa, T., Enomoto, T., Shimazu, S. & Hopkin, J.M. The inverse association between tuberculin responses and atopic disorder. Science 275, 77-79 (1997).
56. Herz, U. et al. BCG infection suppresses allergic sensitization and development of increased airway reactivity in an animal model. J Allergy Clin Immunol 102, 867-874 (1998).
57. Kolbinger, F., Saldanha, J., Hardman, N. & Bendig, M.M. Humanization of a mouse anti-human IgE antibody: a potential therapeutic for IgE-mediated allergies. Protein Eng 6, 971-980 (1993).
58. Wright, J.D. & Lim, C. Prediction of an anti-IgE binding site on IgE. Protein Eng 11, 421-427 (1998).
59. Presta, L.G. et al. Humanization of an antibody directed against IgE. J Immunol 151, 2623-2632 (1993).
60. Demoly, P. & Bousquet, J. Anti-IgE therapy for asthma. Am J Respir Crit Care Med 155, 1825-1827 (1997).
61. Milgrom, H. et al. Treatment of allergic asthma with monoclonal anti-IgE antibody. rhuMAb-E25 Study Group. N Engl J Med 341, 1966-1973 (1999).
62. Barnes, P.J. Anti-IgE antibody therapy for asthma. N Engl J Med 341, 2006-2008. (1999).
63. Fahy, J.V. Reducing IgE levels as a strategy for the treatment of asthma. Clin Exp Allergy 30 Suppl 1, 16-21 (2000).
64. Adelroth, E. et al. Recombinant humanized mAb-E25, an anti-IgE mAb, in birch pollen-induced seasonal allergic rhinitis. J Allergy Clin Immunol 106, 253-259 (2000).
65. Babu, K.S., Arshad, S.H. & Holgate, S.T. Omalizumab, a novel anti-IgE therapy in allergic disorders. Expert Opin Biol Ther 1, 1049-1058. (2001).
66. Kuehr, J. et al. Efficacy of combination treatment with anti-IgE plus specific immunotherapy in polysensitized children and adolescents with seasonal allergic rhinitis. J Allergy Clin Immunol 109, 274-280. (2002).
67. MacGlashan, D., Jr. Anti-IgE antibody therapy. Clin Allergy Immunol 16, 519-532 (2002).
68. MacGlashan, D.W. et al. Down-regulation of Fc(epsilon)RI expression on human basophils during in vivo treatment of atopic patients with anti-IgE antibody. J Immunol 158, 1438-1445 (1997).
69. Yamaguchi, M. et al. IgE enhances Fc epsilon receptor I expression and IgE-dependent release of histamine and lipid mediators from human umbilical cord blood-derived mast cells: synergistic effect of IL-4 and IgE on human mast cell Fc epsilon receptor I expression and mediator release. J Immunol 162, 5455-5465 (1999).
70. Lonberg, N. et al. Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature 368, 856-859 (1994).
71. Fishwild, D.M. et al. High-avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice. Nat Biotechnol 14, 845-851 (1996).
72. Tomizuka, K. et al. Functional expression and germline transmission of a human chromosome fragment in chimaeric mice. Nat Genet 16, 133-143 (1997).
73. Tomizuka, K. et al. Double trans-chromosomic mice: maintenance of two individual human chromosome fragments containing Ig heavy and kappa loci and expression of fully human antibodies. Proc Natl Acad Sci U S A 97, 722-727 (2000).
74. Lam, K.P., Kuhn, R. & Rajewsky, K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 90, 1073-1083 (1997).
75. Kaisho, T., Schwenk, F. & Rajewsky, K. The roles of gamma 1 heavy chain membrane expression and cytoplasmic tail in IgG1 responses. Science 276, 412-415 (1997).
76. Tarlinton, D. Antigen presentation by memory B cells: the sting is in the tail. Science 276, 374-375 (1997).
77. Chang, T.W. et al. Monoclonal antibodies specific for human IgE-producing B cells: a potential therapeutic for IgE-mediated allergic diseases. Biotechnology (N Y) 8, 122-126. (1990).
78. Ishizaka, K. Regulation of the IgE antibody response. Int Arch Allergy Appl Immunol 88, 8-13 (1989).
79. Nilsson, K., Bennich, H., Johansson, S.G. & Ponten, J. Established immunoglobulin producing myeloma (IgE) and lymphoblastoid (IgG) cell lines from an IgE myeloma patient. Clin Exp Immunol 7, 477-489 (1970).
80. Gefter, M.L., Margulies, D.H. & Scharff, M.D. A simple method for polyethylene glycol-promoted hybridization of mouse myeloma cells. Somatic Cell Genet 3, 231-236 (1977).
81. Liu, F.T. et al. Monoclonal dinitrophenyl-specific murine IgE antibody: preparation, isolation, and characterization. J Immunol 124, 2728-2737 (1980).
82. Huang, J., Sheu, J.J., Wu, S.C. & Chang, T.W. Down regulation of B cells by immunization with a fusion protein of a self CD20 peptide and a foreign IgG.Fc fragment. Immunol Lett 81, 49-58. (2002).
83. Sheu, J.J., Huang, J. & Chang, T.W. Inducing specific reactivity against B cells in mice by immunizing with an Fc fusion protein containing self-Igbeta. Cancer Immunol Immunother 51, 145-152. (2002).
84. Yanagihara, Y. et al. Recombinant soluble form of the human high-affinity immunoglobulin E (IgE) receptor inhibits IgE production through its specific binding to IgE-bearing B cells. J Clin Invest 94, 2162-2165 (1994).
85. Kelly, A.E., Chen, B.H., Woodward, E.C. & Conrad, D.H. Production of a chimeric form of CD23 that is oligomeric and blocks IgE binding to the Fc epsilonRI. J Immunol 161, 6696-6704. (1998).
86. Nakamura, G.R., Starovasnik, M.A., Reynolds, M.E. & Lowman, H.B. A novel family of hairpin peptides that inhibit IgE activity by binding to the high-affinity IgE receptor. Biochemistry 40, 9828-9835. (2001).
87. Borish, L.C. et al. Interleukin-4 receptor in moderate atopic asthma. A phase I/II randomized, placebo-controlled trial. Am J Respir Crit Care Med 160, 1816-1823 (1999).
88. Corne, J. et al. The effect of intravenous administration of a chimeric anti-IgE antibody on serum IgE levels in atopic subjects: efficacy, safety, and pharmacokinetics. J Clin Invest 99, 879-887 (1997).
89. Racine-Poon, A. et al. Efficacy, pharmacodynamics, and pharmacokinetics of CGP 51901, an anti- immunoglobulin E chimeric monoclonal antibody, in patients with seasonal allergic rhinitis. Clin Pharmacol Ther 62, 675-690. (1997).
90. Malveaux, F.J., Conroy, M.C., Adkinson, N.F., Jr. & Lichtenstein, L.M. IgE receptors on human basophils. Relationship to serum IgE concentration. J Clin Invest 62, 176-181. (1978).
91. Lantz, C.S. et al. IgE regulates mouse basophil Fc epsilon RI expression in vivo. J Immunol 158, 2517-2521 (1997).
92. Haba, S. & Nisonoff, A. Effects of syngeneic anti-IgE antibodies on the development of IgE memory and on the secondary IgE response. J Immunol 152, 51-57 (1994).
93. Bialy, H. Quietly rationalizing drug discovery. Biotechnology (N Y) 11, 1356 (1993).
94. Chen, H.Y. et al. Monoclonal Antibodies Against The CemX Domain Of Human Membrane-bound IgE And Their Potential Use For Targeting IgE-expressing B Cells. International Archives of Allergy and Immunology, In press (2002).
95. Ohanian, S.H. & Schlager, S.I. Humoral immune killing of nucleated cells: mechanisms of complement-mediated attack and target cell defense. Crit Rev Immunol 1, 165-209 (1981).
96. Harjunpaa, A., Junnikkala, S. & Meri, S. Rituximab (anti-CD20) therapy of B-cell lymphomas: direct complement killing is superior to cellular effector mechanisms. Scand J Immunol 51, 634-641 (2000).
97. Lovchik, J.C. & Hong, R. Antibody-dependent cell-mediated cytolysis (ADCC): analyses and projections. Prog Allergy 22, 1-44 (1977).
98. Flieger, D., Renoth, S., Beier, I., Sauerbruch, T. & Schmidt-Wolf, I. Mechanism of cytotoxicity induced by chimeric mouse human monoclonal antibody IDEC-C2B8 in CD20-expressing lymphoma cell lines. Cell Immunol 204, 55-63. (2000).
99. Tsubata, T., Wu, J. & Honjo, T. B-cell apoptosis induced by antigen receptor crosslinking is blocked by a T-cell signal through CD40. Nature 364, 645-648 (1993).
100. Peeters, S.H. & Carter, B.G. Regulation of the IgE antibody response in mice. I. Long-term production of IgE Anti-ovalbumin antibody in irradiated recipients. J Immunol 121, 1596-1602 (1978).
101. Leung, D.Y. Role of IgE in atopic dermatitis. Curr Opin Immunol 5, 956-962 (1993).
102. Bestagno, M. et al. Membrane immunoglobulins are stabilized by interchain disulfide bonds occurring within the extracellular membrane-proximal domain. Biochemistry 40, 10686-10692. (2001).
103. Sudowe, S., Arps, V., Vogel, T. & Kolsch, E. The role of interleukin-4 in the regulation of sequential isotype switch from immunoglobulin G1 to immunoglobulin E antibody production. Scand J Immunol 51, 461-471. (2000).
104. Oettgen, H.C. Regulation of the IgE isotype switch: new insights on cytokine signals and the functions of epsilon germline transcripts. Curr Opin Immunol 12, 618-623. (2000).
105. Weinblatt, M.E. et al. A trial of etanercept, a recombinant tumor necrosis factor receptor:Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N Engl J Med 340, 253-259. (1999).
106. Penichet, M.L., Harvill, E.T. & Morrison, S.L. Antibody-IL-2 fusion proteins: a novel strategy for immune protection. Hum Antibodies 8, 106-118 (1997).
107. Zheng, X.X. et al. IL-2 receptor-targeted cytolytic IL-2/Fc fusion protein treatment blocks diabetogenic autoimmunity in nonobese diabetic mice. J Immunol 163, 4041-4048. (1999).
108. Monfardini, C. et al. Construction and binding kinetics of a soluble granulocyte-macrophage colony-stimulating factor receptor alpha-chain-Fc fusion protein. J Biol Chem 273, 7657-7667. (1998).
109. Reisfeld, R.A. & Gillies, S.D. Recombinant antibody fusion proteins for cancer immunotherapy. Curr Top Microbiol Immunol 213, 27-53. (1996).
110. Vangelista, L., Cesco-Gaspere, M., Lorenzi, R. & Burrone, O. A minimal receptor-Ig chimera of human FcepsilonRI alpha-chain efficiently binds secretory and membrane IgE. Protein Eng 15, 51-57. (2002).
111. van Dijk, M.A. & van de Winkel, J.G. Human antibodies as next generation therapeutics. Curr Opin Chem Biol 5, 368-374 (2001).
112. Morrow, K.J., Jr in Genetic Engineering News, Vol. 22. 1 (2002).
113. Rader, C. & Barbas, C.F., 3rd Phage display of combinatorial antibody libraries. Curr Opin Biotechnol 8, 503-508 (1997).
114. Hoogenboom, H.R. & Chames, P. Natural and designer binding sites made by phage display technology. Immunol Today 21, 371-378. (2000).
115. Griffiths, A.D. & Duncan, A.R. Strategies for selection of antibodies by phage display. Curr Opin Biotechnol 9, 102-108 (1998).
116. Hanes, J., Jermutus, L., Weber-Bornhauser, S., Bosshard, H.R. & Pluckthun, A. Ribosome display efficiently selects and evolves high-affinity antibodies in vitro from immune libraries. Proc Natl Acad Sci U S A 95, 14130-14135 (1998).
117. Dall'Acqua, W. & Carter, P. Antibody engineering. Curr Opin Struct Biol 8, 443-450 (1998).
118. Mendez, M.J. et al. Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat Genet 15, 146-156 (1997).
119. Green, L.L. et al. Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nat Genet 7, 13-21 (1994).
120. Bruggemann, M. & Neuberger, M.S. Strategies for expressing human antibody repertoires in transgenic mice. Immunol Today 17, 391-397. (1996).
121. Nicholson, I.C. et al. Antibody repertoires of four- and five-feature translocus mice carrying human immunoglobulin heavy chain and kappa and lambda light chain yeast artificial chromosomes. J Immunol 163, 6898-6906 (1999).
122. van Spriel, A.B., van Ojik, H.H. & van De Winkel, J.G. Immunotherapeutic perspective for bispecific antibodies. Immunol Today 21, 391-397. (2000).
123. Reisner, Y. & Dagan, S. The Trimera mouse: generating human monoclonal antibodies and an animal model for human diseases. Trends Biotechnol 16, 242-246 (1998).
124. Maini, R. et al. Infliximab (chimeric anti-tumour necrosis factor alpha monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. ATTRACT Study Group. Lancet 354, 1932-1939 (1999).
125. Goldenberg, M.M. Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin Ther 21, 309-318 (1999).
126. Chung, J.B., Baumeister, M.A. & Monroe, J.G. Cutting edge: differential sequestration of plasma membrane-associated B cell antigen receptor in mature and immature B cells into glycosphingolipid-enriched domains. J Immunol 166, 736-740 (2001).
127. Tsubata, T. Molecular mechanisms for apoptosis induced by signaling through the B cell antigen receptor. Int Rev Immunol 20, 791-803 (2001).
128. Berard, M. et al. Activation sensitizes human memory B cells to B-cell receptor-induced apoptosis. Immunology 98, 47-54 (1999).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top