|
(1).Rief, H. J., Saedler, H., IS1 is involved in deletion formation in the gal region of E. coli K12, Molecular & General Genetics, 137:17-28, 1975. (2).Cornelis, G., Saedler, H., Deletion and an inversion induced by a resident IS1 of the lactose transposon Tn951, Molecular & General Genetics, 178:367-74, 1980 (3).Galas, D. J., Chandler, M., Structure and stability of Tn9-mediated cointegrates. Evidence for two pathways of transposition, Journal of Molecular Biology, 154:245-72, 1982. (4).Bernardi, F., Bernardi, A., Transcription of the target is required for IS102 mediated deletions, Molecular & General Genetics, 212:265-70, 1988. (5). Mahillon, J., and Chandler, M. 1998. Insertion sequences. Microbiol. Mol. Biol. Rev. 62:725-774. (6). Galas, D. J., Chandler, M., Bacterial insertion sequences. Berg, D. E., Howe, M. M., (eds) Mobile DNA, American Society for Microbiology, Washington DC, pp. 109-162, 1989. (7). Spielmann-Ryser, J., Moser, M., Kast, P., Weber, H., Factors determining the frequency of plasmid cointegrate formation mediated by insertion sequence IS3 from Escherichia coli, Molecular & General Genetics, 226:441-8, 1991. (8).Sekine, Y., Eisaki, N., Ohtsubo, E., Translational control in production of transposase and in transposition of insertion sequence IS3, Journal of Molecular Biology, 235:1406-20, 1994. (9). Fayet, O., Ramond, P., Polard, P., Prere, M. F., Chandler, M., Functional similarities between retroviruses and the IS3 family of bacterial insertion sequences, Molecular Microbiology, 4:1771-7, 1990. (10). Polard, P., Prere, M. F., Chandler, M., and Fayet, O. 1991. Programmed transcriptional frameshifting and inition at an AUU codon in gene expression of bacterial insertion sequence IS911. J.Mol. Biol. 222:465-477. (11). Hu, S. T., Hwang, J. H., Lee, L. C., Lee, C. H., Li, P. L., and Hsieh, Y. C. 1994.Functional analysis of the 14 kDa protein of insertion sequence 2. J. Mol. Biol.236:503-513. (12). Schwartz, E., Kroger, M., and Rak, B. 1988. IS150: distribution, nucleotide sequence and phylogenetic relationships of a new E. coli insertion element. Nucleic Acids Res. 16:6789-6802. (13).Grindley, N. D., Leschziner, A. E., DNA transposition: from a black box to a color monitor, Cell, 83:1063-6, 1995 (14).Kulkosky, J., Jones, K. S., Katz, R. A., Macks, J. P., Skalka, A. M., Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposase, Molecular & Cellular Biology, 12:2331-8, 1992. (15).Polard, P., Chandler, M., Bacterial transposase and retroviral integrases, Molecular Microbiology, 15:13-23, 1995. (16).Fayet, O., Ramond, P., Polard, P., Prere, M. F., Chandler, M., Functional similarities between retroviruses and the IS3 family of bacterial insertion sequences, Molecular Microbiology, 4:1771-7, 1990. (17). Khan, E., Mack, J. P., Katz, R. A., Kulkosky, J., Skalka, A. M., Retroviral integrase domains: DNA binding and the recognition of LTR sequences Nucleic Acids Research, 19: 851, 1991. (18). Engelman, A., Liu, Ying., Chen, H., Farzan, M., and Dyda, F. (1997). Structure-based mutagenesis of the catalytic domain of human immunodeficiency virus type 1 integrase. J. Virol. 71, 3507-14. (19).Polard, P., and Chandler, M. 1995. Bacterial transposase and retroviral integrases Mol. Microbiol. 15:13-23. (20).Jenkins, T. M., Engelman, A., Ghirlando, R., and Craigie, R. (1996). A soluble active mutant of HIV-1 integrase: involvement of both the core and carboxyl-terminal domains in multimerization. J. Biol. Chem. 271, 7712-7718. (21).Leavitt, A. D., Shiue, L., and Varmus, H. E. (1993). Site-directed mutagenesis of HIV-1 integrase demonstrates differential effects on integrase functions in vitro. J. Biol. Chem. 268, 2113-2119. (22).van Gent, D. C., Oude Groeneger, A. A. M., and Plasterk, R. H. A. (1992).Mutational analysis of the integrase protein of Human immunodeficiency virus type 2. Prol. Natl. Acad. Sci. U. S. A. 89, 9598-9602. (23).Fayet, O., Ramond, P., Polard, P., Prere, M. F., and Chandler, M. (1990). Functional similarities between retroviruses and the IS3 family of bacterial insertion sequences? Mol. Microbiol. 4, 1771-1777. (24).Johnson, M. D., McClure, M. A., Feng, D. F., Gray, J., and Doolittle, R. F. (1986). Computer analysis of retroviral pol genes: assignment of enzymatic functions to specific sequences and homologies with nonviral enzymes. Proc. Natl. Acad. Sci. U. S. A. 83, 7648-7652. (25).Kulkosky, J., Jones, K. S., Katz, R. A., Mack, J. P. G., and Skalka, A. M. (1992). Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral / retrotransposon integrases and bacterial insertion sequence transposases. Mol. Cell. Biol. 12, 2331-2338. (26).Engelman, A., and Craigie, R. (1992). Identification of conserved amino acid residues critical for human immunodeficiency virus type 1 integrase function in vitro. J. Virol. 66, 6361-6369. (27).Dyda, F., Hichman, A. B., Jenkins., T. M., Engelman, A. Craigie, R., and Davies, D. R. (1994). Crystal structure of the catalytic domain of HIV-1 integrase:similarity to other polynucleotidyl transferases. Science 266, 1981-1986. (28).Bujacz, G., Jaskolski, M., Alexandratos, J., Wlodawer, A., Merkel, G., Katz, R. A., and Skalka, A. M. (1995). High-resolution structure of the catalytic domain of avian sarcoma virus integrase. J. Mol. Biol. 253, 336-346. (29).Douglas R. Davies, Igor Y. Goryshin, William S. Reznikoff, Ivan Rayment * Three-Dimensional Structure of the Tn5 Synaptic Complex Transposition IntermediateSCIENCE Volume 289, Number 5476, Issue of 7 Jul 2000, pp. 77-85. (30). Mizuuchi, K. (1992). Polynucleotidyl transfer reactions in transpositional DNA recombination. J. Biol. Chem. 267, 21273-21276. (31)Allen, M. P. Tildesley, D. J. Computer Simulation of Liquids, Clarendon Press:Oxford,1987. (32)Ciccotti, G.;Frenkel,D.;McDonald, I. R.(Eds)Simulation of Liquids and Solids, North-Holland:Amsterdam, 1987. (33)Ciccotti, G.;Hoover, W. G. Molecular-Dynamics Simulation of Statistical-Mechanical Systems, North-Holland:Amsterdam, 1986. (34)Goodfellow, J. M.(Ed.)Molecular Dynamics Applications in Molecular Biology, Boca Raton:CRC Press, Inc. , 1990. (35)Van Gunsteren, W. F.;Berensen, H. J. C. Angew. Chem. Int. Ed. Engl., 1990, 29, 992. (36)Binder, K.;Kalos, M. H.(Eds.)Monte Carlo Methods in Statistical Physics, Springer:Berlin, 1979. (37)Landau, D. P.;Mon, K. K.;Schuttler, H.-B. Computer Simulation Studies in Condensed Matter Physics Ⅲ, Springer-Verlag:Berlin, 1991. (38).Alder, B. J.;Wainwright, T. E. J. Chem. Phys. , 1957, 27, 1208. (39).McCammon, J. A.;Gelin, B. R.;Karplus, M. Nature, 1977, 267, 585. (40).Rost B. TOPITS: threading one-dimensional predictions into three-dimensional structures. In: C Rawlings, D Clark, R Altman, L Hunter, T Lengauer, & S Wodak, editors. The third international conference on Intelligent Systems for Molecular Biology (ISMB). Cambridge, U.K.: AAAI Press; 1995. p 314-321. (41).Fischer D, Eisenberg D. Fold recognition using sequence-derived predictions. Protein Science 1996; 5: 947-955. (42).Rice D., Eisenberg D. A 3D-1D substitution matrix for protein fold recognition that includes predicted secondary structure of the sequence. J Mol Biol 1997; 267: 1026-1038. (43).Kelley LA, MacCallum RM, Sternberg MJE. Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol 2000; 299(2): 501-522. (44).Fischer D. Hybrid fold recognition: combining sequence derived properties with evolutionary information. Maun Lani, HI: Pacific Symp Biocomputing, 2000. p 119-130. (45).Jones DT, Taylor WR, Thornton JM. A new approach to protein fold recognition. Nature 1992; 358: 86-89. (46).Jones DT, Miller RT, Thornton JM. Successful protein fold recognition by optimal sequence threading validated by rigorous blind testing. Proteins 1995; 23: 387-397. (47).Karplus K, Barrett C, Hughey R. Hidden Markov Models for detecting remote protein homologies. Bioinformatics 1998; 14(10): 846-856. (48).Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 1997; 18: 2714-2723 (49).Bushman, F. D., and Craigie, R. (1990) Sequence requirements for integration of Moloney murine leukemia virus DNA in vitro. J. Virol. 64, 5645-5648. (50).Ellison, V., Abrams, H., Roe, T., Lifson, J., and Brown, P. O. (1990). Human immunodeficiency virus integration in a cell-free system. J. Virol. 64, 2711-2715. (51).Fitzgerald, M. L., Vora, A. C., Zeh, W. C., and Grandgenett, W. P. (1992). Concerted integration of viral DNA termini by purified Avian myeloblastosis virus integrase. J. Virol. 66, 6257-6263. (52).Grandgenett, D. P., and Mumm, S. R. (1990). Unraveling retrovirus integration. Cell 60, 3-4. (53).Bukrinsky, M. I., Sharova, N., McDonald, T. L., Pushkarskaya, T., Tarpley, W. G., and Stevenson, M. (1993). Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection. Proc. Natl. Acad. Sci. U. S. A. 90, 6125-6129. (54).Farnet, C., and Haseltine, W. A. (1991). Determination of viral proteins present in the Human immunodeficiency virus type 1 preintegration complex. J. Virol. 65, 1910-1915. (55).Gulizia, J., Dempsey, M. P., Sharova, M., Bukrinsky, M. I., Spitz, L., Goldfarb, D., and Stevenson. M. (1994). Reduced nuclear import of HIV-1 preintegration complexes in the presence of a prototypic nuclear targeting signal. J. Virol. 68, 2021-2025. (56).Lapadat-Tapolski, M., De Rocquigny, H., Van Gent, D. C., Rocques, B., Plasterk, R. H. A., and Darlix, J. L. (1993). Interactions between HIV-1 nucleocapsid protein and viral DNA may have important functions in the viral life cycle. Nucleic Acids Res. 21, 831-839. (57).Vink, C., Oude Groeneger, A. A. M., and Plasterk, R. H. A. (1993). Identification of the catalytic and DNA-binding region of human immunodeficiency virus type 1 integrase protein. Nucleic Acids Res. 21, 1419-1425. (58).Bernstein FC, Koetzle TF, Williams GJ, Meyer, Jr., EE, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol 1977; 112: 535-542. (59).Vink, C., Oude Groeneger, A. A. M., and Plasterk, R. H. A. (1993). Identification of the catalytic and DNA-binding region of human immunodeficiency virus type 1 integrase protein. Nucleic Acids Res. 21, 1419-1425. (60).Engelman, A., Liu, Ying., Chen, H., Farzan, M., and Dyda, F. (1997). Structure-based mutagenesis of the catalytic domain of human immunodeficiency virus type 1 integrase. J. Virol. 71, 3507-14. (61).Lovell, S., Goryshin, I. Y., Reznikoff, W. R., Rayment, I.: Two-Metal Active Site Binding of a Tn5 Transposase Synaptic Complex Nat.Struct.Biol. 9 pp. 278 (2002) (62).Lubkowski, J., Dauter, Z., Yang, F., Alexandrator, J., Merkel, G. Skalka, A. M., and Wlodawer, A. (1999). Atomic resolution structures of the core domain of avian sarcoma virus integrase and its D64N mutant. Biochemistry 38, 13512-13522. (63).Freemont, P. S., Friedman, J. M., Beese, L. S., Sanderson, M. R., and Steitz, T. A. (1988). Cocrystal structure of an editing complex of Klenow fragment with DNA. Proc. Natl. Acad. Sci. U. S. A. 85, 8924-8928. (64).Beese, L. S., and Steitz, T. A. (1991). Structural basis for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J. 10, 25-33. 65.van Gent, D.C., Elgersma, Y., Bolk, M. W. J., Vink, C., and Plasterk, R. H. A. (1991). DNA binding properties of the integrase proteins of Human immunodeficiency virus type 1 and 2. Nucleic Acids Res. 19, 3821-3827. (65)L. M. Braam, I. Y. Goryshin, W. S. Reznikoff, J. Biol. Chem. 274, 86 (1999) (66).Vink, C., Oude Groeneger, A. A. M., and Plasterk, R. H. A. (1993). Identification of the catalytic and DNA-binding region of human immunodeficiency virus type 1 integrase protein. Nucleic Acids Res. 21, 1419-1425. (67). Kahn, E., Mack, J. P. G., Katz, R. A., Kulkosky, J., and Skalka, A. M. (1991). Retroviral integrase domains: DNA binding and the recognition of LTR sequences. Nucleic Acids Res. 19, 851-860. 68. Bushman, F. D., Engelman, A., Palmer, L., Wingfieid, P., and Craigie, R. (1993). Domains of the integrase protein of human immunodeficiency virus type 1 responsible for polynucleotidyl transfer and Zinc binding. Proc. Natl. Acad. Sci. U. S. A. 90, 3428-3432. (69).Dyda, F., Hichman, A. B., Jenkins., T. M., Engelman, A. Craigie, R., and Davies, D. R. (1994). Crystal structure of the catalytic domain of HIV-1 integrase:similarity to other polynucleotidyl transferases. Science 266, 1981-1986. (70).Engelman, A., and Craigie, R. (1992). Identification of conserved amino acid residues critical for human immunodeficiency virus type 1 integrase function in vitro. J. Virol. 66, 6361-6369. (71).Kulkosky, J., Jones, K. S., Katz, R. A., Mack, J. P. G., and Skalka, A. M. (1992). Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral / retrotransposon integrases and bacterial insertion sequence transposases. Mol. Cell. Biol. 12, 2331-2338. (72).Leavitt, A. D., Shiue, L., and Varmus, H. E. (1993). Site-directed mutagenesis of HIV-1 integrase demonstrates differential effects on integrase functions in vitro. J. Biol. Chem. 268, 2113-2119. (73).van Gent, D. C., Oude Groeneger, A. A. M., and Plasterk, R. H. A. (1992). Mutational analysis of the integrase protein of Human immunodeficiency virus type 2. Prol. Natl. Acad. Sci. U. S. A. 89, 9598-9602. (74). Vink, C., Oude Groeneger, A. A. M., and Plasterk, R. H. A. (1993). Identification of the catalytic and DNA-binding region of human immunodeficiency virus type 1 integrase protein. Nucleic Acids Res. 21, 1419-1425. (75)Kreyszig, E. Advance Engineering Mathematics, John Wiley & Sons:New York, 1988. (76)Verlet, L. Phys. Rew. , 1967, 159, 98. (77)Allen, M. P.;Tildesley,D. J. Computer Simulation of Liquids, Oxford Sci. Publ.:New York, 1987. (78)Beenman, D. J. J. Comput. Phys. , 1976, 20, 130. (79)Allen, M. P. Tildesley, D. J. Computer Simulation of Liquids, Clarendon Press:Oxford, 1987.
|