1. Lee, C.Y., and Lee, S.Y. (1979) Cardiovascular effect of snake venoms In:Snake Venoms. Handbook of Experimental Pharmacology, Vol. 52, pp. 546-590 (Lee, C.Y. Ed) Berlin: Springer-Verlag.
2. Chang, C.C. (1979) The action of snake venoms on nerve and muscle In: Snake Venoms. Handbook of Experimental Pharmacology, Vol. 52, pp. 309-375 (Lee, C.Y. Ed) Berlin: Springer-Verlag.
3. Wu, W. (1997) Diversity of Cobra Cardiotoxin. J. Toxincol-Toxin Review, 16(3),115-134.
4. Harvey, A.L. Cardiotoxins from cobra venoms. In: Reptile Venoms and Toxins. pp.85-106 (Tu, A.T., Ed) 1991 New York: Marcel Dekker.
5. Dufton, M.J., and Hider, R.C. The structure and pharmacology of Elapid cytotoxins, In: Snake Toxins, pp.259-302 (Harvey, A.L., Ed ) 1991 New York: Pergamon Press.
6. Fletcher, J.E., and Jiang, M-S. (1993) Possible mechanism of action of cobra snake venom cardiotoxins and bee venom mellitin. Toxincon 31, 669-695.
7. Hseu, Y., and Wu, W. (1995) Interaction between Cardiotoxin and Phosphlipase A2 in membranes as revealed by the synergistic effect of their in vitro activity. FASEB J., A 1371.
8. Chien, K.-Y., Huang, W.-N., Jean, J.-H., and Wu, W. (1991) Fusion of sphingomyelin vesicles induced by proteins from Taiwan cobra ( Naja naja atra ) venom. J. Biol. Chem. 266, 3252-3259.
9. Rees, B., and Bilwes, A. (1993) Three dimensional structures of nurotoxin and cardiotoxins. Chem. Res. Toxicol. 6, 385-406.
10. Dufton, M.J., and Hider, R.C. (1991) Snake Toxins ( Harvey, A.L., Ed. ) pp259-302, Pergamon Press, New york.
11. Chien, K.-Y., Chiang, C.-M., Hseu, Y.-C., Vyas, A.A. Rule, G.S., and Wu, W. (1994) Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with 2 witterionic phospholipid dispersions. J.Biol. Chem. 69, 14473-14483.
12. Dufton, M.J., and Hider, R.C. (1983) Conformational properties of the neurotoxins and cytotoxins isolated from Elapid snake venoms. Crit. Rev. Biochem. 14, 113-171.
13. Dufton, M.J., and Hider, R.C. (1988) Structure and pharmacology of elapid cytotoxins. Pharmacol. Ther. 36, 1-40.
14. Harvey, A.L.(1985) J.Toxical.,Toxin Rev. 4, 41-69.
15. Ho, C.L., Lee, C.Y., and Lu, H.H. (1975) Electrophysiological effects of cobra cardiotoxin on rabbit heart cells. Toxicon 3, 437-446.
16. Jiang, M-S., Fletcher, J.E., and Smith, L.A. (1989) Factor influencing the hemolysis of human erythrocytes by cardiotoxin from Naja naja kaouthia and Naja naja atra Venoms and a phospholipase A2 with cardiotoxin-like activities from Bungarus fasciatus venom. Toxicon 27, 247-257.
17. Ismail, M., Al-Bekairi, A.M., and Abd-Elsalam, M.A. (1993) The ocular effects of spitting cobras: II. Evidence that cardiotoxins are responsible for the corneal opacification syndrome. J. Toxicol., Clin. Toxicol. 31, 45-62.
18. Fletcher, J.E., and Jiang, M-S. (1993) Possible mechanisms of action of cobra snake venom cardiotoxins and bee venom melittin. Toxicon 31, 669-695.
19. Huang, J.L., and Trumble, W.R. (1991) Cardiotoxin from cobra venom affects the Ca-Mg-ATPase of cardiac sarcolemmal membrane vesicles. Toxicon 29, 31-41.
20. Chen, C.C., and Lin-Shiau, S.Y. (1985) Mode of inhibitory action of melittin on Na+-K+-ATPase activity of the rat synaptic membrane. Biochem.Pharmacol. 34, 2335-2341.
21. Huang, W., Vernon, L.P., and Bell, J.D. (1994) Enhancement of adenylate cyclase activity in S49 lymphoma cell membranes by the toxin thionin from Pyrularia pubera. Toxicon 32, 789-797.
22. Batenburg, A.M., Bougis, P.E., Rochat, H., Verkleij, A.J., and de kruijff, B. (1985) Penetration of a cardiotoxin into cardiolipin model membranes and its implications on lipid organization. Biochemstry 24, 7101-7110.
23. Chiang, C.M., Chien, K.-Y., Lin, J.-F., Yeh, H.-C., Ho, P.-I., and Wu, W. (1996) The role of acidic amino acid residues in the structural stability of snake cardiotoxins. Biochemstry 35, 9167-9176.
24. Ou, Yi-Jun, Leung, Yuk-Man, Huang, Shou-Jian, and Kwan, Chiu -Yin (1997) Dual effects of extracellular Ca2+ on cardiotoxin-induced cytotoxicity and cytosolic Ca2+ changes in cultured single cells of rabbit aortic endothelium. Biochem. Biophys. Acta. 1330, 29-38.
25. Kerr, JF, Wyllie, AH, and Currie, AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239-257.
26. Renvoizé, C., Biola, A., Pallardy, M., and Bréard, J. (1998) Apoptosis: identification of dying cells. Cell Biol. Toxicol. 14, 111- 120.
27. Yu, S.P., and Choi, D.W. (2000) Ions, cell volume, and apoptosis. Proc. Natl. Acad. Sci. U S A 97, 9360-9362.
28. Yu, S.P., Yeh C.H., Sensi S.L., Gwag B.J., Canzoniero L.M., Farhangrazi Z.S., Ying H.S., Tian M., Dugan L.L., and Choi D.W. (1997) Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278, 114-117.
29. Wang, L., Xu, D., Dai, W., and Lu, L. (1999) An ultraviolet-activated K+ channel mediates apoptosis of myeloblastic leukemia cells. J. Biol. Chem. 274, 3678-3685.
30. Colom, L.V., Diaz, M.E., Beers, D.R., Neely, A., Xie, W.J., and Appel, S.H. (1998) Role of potassium channels in amyloid-induced cell death. J. Neurochem. 70, 1925-1934.
31. Szabo, I., Lepple-Wienhues, A., Kaba, K.N., Zoratti, M., Gulbins, E., and Lang, F. (1998) Tyrosine kinase-dependent activation of a chloride channel in CD95-induced apoptosis in T lymphocytes. Proc. Natl. Acad. Sci. U S A. 95, 6169-6174.
32. Maeno, E., Ishizaki, Y., Kanaseki, T., Hazama, A., and Okada, Y. (2000) Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc. Natl. Acad. Sci. U S A. 97, 9483-9492.
33. Lang, F., Ritter, M., Gamper, N., Huber, S., Fillon, S., Tanneur, V., Lepple-Wienhues, A., Szabo, I.,and Bulbins, E. (2000) Cell volume in the regulation of cell proliferation and apoptotic cell death. Cell Physiol. Biochem. (10 ), 417-428.
34. Richter, C., Schweizer, M., Cossarizza, A.,and Franceschi, C. (1996) Control of apoptosis by the cellular ATP level. FEBS Lett. 378, 107-110.
35. Leist, M., Single, B., Castoldi, A.F., Kuhnle, S., and Nicotera, P. (1997) Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J. Exp. Med. 185, 1481-1486.
36. Eguchi, Y., Shimizu, S.,and Tsujimoto, Y. (1997) Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer. Res. 57, 1835-1840.
37. Lemasters, J.J., Qian, T., Bradham, C.A., Brenner, D.A., Cascio, W.E., Trost, L.C., Nishimura, Y., Nieminen, A.L.,and Herman B. (1999) Mitochondrial dysfunction in the pathogenesis of necrotic and apoptotic cell death. J. Bioenerg. Biomembr. 31, 305-319.
38. Liu, X., Kim, C.N., Yang, J., Jemmerson, R., and Wang, X. (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157.
39. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., and Wang, X. (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489.
40. Fadok, V.A., Voelker, D.R., Campbell, P.A., Cohen, J.J., Bratton, D.L., and Henson, P.M. (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol.148, 2207-2216.
41. Verhoven, B., Schlegel, R.A., and Williamson, P. (1995) Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J. Exp. Med..182, 1597-1601.
42. Bratton, D.L., Fadok, V.A., Richter, D.A., Kailey, J.M., Guthrie, L.A., and Henson, P.M. (1997) Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase. J. Biol. Chem. 272, 26159-26165.
43. Martin, S.J., Reutelingsperger, C.P., McGahon, A.J., Rader, J.A., van Schie, R.C., LaFace, D.M., and Green, D.R. (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J. Exp. Med. 182, 1545-1556.
44. Koopman, G., Reutelingsperger, C.P., Kuijten, G.A., Keehnen, R.M., Pals, S.T., and van Oers, M.H. (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84, 1415-1420.
45. Yuan, J., Shaham, S., Ledoux, S., Ellis, H.M., and Horvitz, H.R. (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75, 641-652.
46. Thornberry, N.A., Bull, H.G., Calaycay, J.R., Chapman, K.T., Howard, A.D., Kostura, M.J., Miller, D.K., Molineaux, S.M., Weidner, J.R., and Aunins, J., et al. (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356, 768-774.
47. Thornberry, N.A., and Lazebnik, Y. (1998) Caspases: enemies within. Science 281, 1312-1316.
48. Saraste, A., and Pulkki, K. (2000) Morphologic and biochemical hallmarks of apoptosis. Cardiovasc. Res. 45, 528-537.
49. Woo, M., Hakem, R., Soengas, M.S., Duncan, G.S., Shahinian, A., Kagi, D., Hakem, A., McCurrach, M., Khoo, W., Kaufman, S.A., Senaldi, G., Howard, T., Lowe, S.W., and Mak, T.W. (1998 ) Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes. Dev. 12, 806-819.
50. Wang, S., Miura, M., Jung, Y.K., Zhu, H., Li, E., and Yuan, J. (1998) Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92, 501-509.
51. Humke, E.W., Ni, J., and Dixit, V.M. (1998) ERICE, a novel FLICE-activatable caspase. J. Biol. Chem. 273, 15702-15707.
52. Hu, S., Snipas, S.J., Vincenz, C., Salvesen, G., and Dixit, V.M. (1998) Caspase-14 is a novel developmentally regulated protease. J. Biol. Chem. 273, 29648-29653.
53. Nicholson, D.W., and Thornberry, N.A. (1997) Caspases: killer proteases. Trends. Biochem. Sci. 22, 229-306.
54. Villa, P., Kaufmann, S.H., and Earnshaw, W.C. (1997) Caspases and caspase inhibitors. Trends. Biochem. Sci. 22, 388-393.
55. Cohen, G.M. (1997) Caspases: the executioners of apoptosis. Biochem. J. 326, 1-16.
56. Petit, P.X., Susin, S.A., Zamzami, N., Mignotte, B., and Kroemer, G. (1996) Mitochondria and programmed cell death: back to the future. FEBS Lett. 396, 7-13.
57. Susin, S.A., Zamzami, N., and Kroemer, G. (1998) Mitochondria as regulators of apoptosis: doubt no more. Biochim. Biophys. Acta. 1366, 151-165.
58. Bernardi, P., Broekemeier, K.M., and Pfeiffer, D.R. (1994) Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane. J. Bioenerg. Biomembr. 26, 509-517.
59. Zamzami, N., Marchetti, P., Castedo, M., Hirsch, T., Susin, S.A., Masse, B., and Kroemer, G. (1996) Inhibitors of permeability transition interfere with the disruption of the mitochondrial transmembrane potential during apoptosis. FEBS Lett. 384, 53-57.
60. Susin, S.A., Zamzami, N., Castedo, M., Daugas, E., Wang, H.G., Geley, S., Fassy, F., Reed, J.C., and Kroemer, G. (1996) The central executioner of apoptosis: multiple connections between protease activation and mitochondria in Fas/APO-1/CD95- and ceramide- induced apoptosis. J. Exp. Med. 186, 25-37.
61. Xiang, J., Chao, D.T., and Korsmeyer, S.J. (1996) BAX-induced cell death may not require interleukin 1 beta-converting enzyme-like proteases. Proc. Natl. Acad. Sci. U.S.A 93, 14559-14563.
62. Mehmet H. (2000) Caspases find a new place to hide. Nature 403, 29-30.
63. He, L., Poblenz, A.T., Medrano, C.J., and Fox, D.A. (2000) Lead and calcium produce rod photoreceptor cell apoptosis by opening the mitochondrial permeability transition pore. J. Biol. Chem. 275, 12175-12184.
64. Green, D.R., and Reed, J.C. (1998) Mitochondria and apoptosis. Science 281, 1309-1312.
65. Srinivasula, S.M., Ahmad, M., Fernandes-Alnemri, T., and Alnemri E.S. (1998) Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol. Cell. 1, 949-957.
66. Sun, X.M., MacFarlane, M., Zhuang, J., Wolf, B.B., Green, D.R., and Cohen, G.M. (1999) Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis. J. Biol. Chem. 274, 5053-5060.
67. Joza, N., Susin, S.A., Daugas, E., Stanford, W.L., Cho, S.K., Li, C.Y., Sasaki, T., Elia, A.J., Cheng, H.Y., Ravagnan, L., Ferri, K.F., Zamzami, N., Wakeham, A., Hakem, R., Yoshida, H., Kong, Y.Y., Mak, T.W., Zuniga-Pflucker, J.C., Kroemer, G., and Penninger, J.M. (2001) Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410, 549-554.
68. Tartaglia, L.A., Ayres, T.M., Wong, G.H., and Goeddel, D.V. (1994) A novel domain within the 55 kd TNF receptor signals cell death. Cell 74, 845-853.
69. Nagata, S. (1997) Apoptosis by death factor. Cell 88, 355-365.
70. Ashkenazi, A., and Dixit, V.M. (1998) Death receptors: signaling and modulation. Science 281, 1305-0308.
71. Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B.A., and Yuan, J. (2000) Caspase-12 mediates endoplasmic-reticulum -specific apoptosis and cytotoxicity by amyloid-beta. Nature 403, 98-103.
72. Sakahiral, H., Enari, M., and Nagata, S. (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 43-50.
73. Hescheler, J., Meyer, R., Plant, S., Krautwurst, D., Rosenthal, W., and Schultz, G. (1991) Morphological, biochemical, and electrophysi- ological characterization of a clonal cell (H9c2) line from rat heart. Circ. Res. 69, 1476-1486.
74. Kong, J.Y., and Rabkin, S.W. (2000) Palmitate-induced apotosis in cardiomyocytes is mediated through alterations in mitochondria: prevention by cyclosproin A. Biochim. Biophys. Acta. 1485, 45-55.
75. Rabkin, S.W., and Kong, J.Y. (2000) Nifedipine does not induce but rather prevents apotosis in cardiomyocytes. Eur. J. Pharmacol. 388, 209-217.
76. Iwakura, T., Fujimoto, S., Kagimoto, S., Inada, A., Kubota, A., Someya, Y., Ihara, Y., Yamada, Y., and Seino, Y. (2000) Sustained enhancement of Ca(2+) influx by glibenclamide induces apoptosis in RINm5F cells. Biochem. Biophys. Res. Commun. 271, 422-428.
77. Lobner, D. (2000) Comparison of the LDH and MTT assays for quantifying cell death: validity for neuronal apotosis? J. Neurosci.Methods 96, 147-152.
78. Torii, S., Naito, M., and Tsuruo, T. (1997) Apoxin I, a novel apoptosis-inducing factor with L-amino acid oxidase activity purified from Western diamondback rattlesnake venom. J. Biol. Chem. 272, 9539-9542.
79. Bortner, C.D., and Cidlowski, J.A. (1999) Caspase independent/ dependent regulation of K(+), cell shrinkage, and mitochondrial membrane potential during lymphocyte apoptosis. J. Biol. Chem. 274, 21953-21962.
80. Cobo, J.M., Garcia-Canero, R., Valdez, J.G., Barrasso, A.M., Sailer, B.L., and Crissman, H.A. (1998) Attenuation of apoptotic DNA fragmentation by amiloride. J. Cell. Physiol. 175, 59-67.
81. Scoltock, A.B., Bortner, C.D., Bird, St. J.G., Putney, J.W., Cidlowski, J.A. (2000) A selective requirement for elevated calcium in DNA degradation, but not early events in anti-Fas-induced apoptosis. J. Biol. Chem. 275, 30586-30596.
82. Quillet-Mary, A., Jaffrezou, J.P., Mansat, V., Bordier, C., Naval, J., and Laurent G. (1997) Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis. J. Biol. Chem. 272, 21388-21395.
83. Li, P.F., Dietz, R., and von Harsdorf, R. (1999) p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. EMBO J. 18, 6027-6036.
84. Ye, J., Wang, S., Leonard, S.S., Sun, Y., Butterworth, L., Antonini, J., Ding, M., Rojanasakul, Y., Vallyathan, V., Castranova, V., and Shi, X. (1999) Role of reactive oxygen species and p53 in chromium(VI)-induced apoptosis. J. Biol. Chem. 274, 34974-34980.
85. Mathur, A., Hong, Y., Kemp, B.K., Barrientos, A.A., and Erusalimsky, J.D. (2000) Evaluation of fluorescent dyes for the detection of mitochondrial membrane potential changes in cultured cardiomyocytes. Cardiovasc. Res. 46, 126-138.
86. Koh, J.Y., Choi, D.W. (1987) Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J. Neurosci. Methods 20, 83-90.
87. Condrea, E. (1974) Membrane-active polypeptides from snake venom: cardiotoxins and haemocytotoxins. Experientia 30, 121-129.
88. Amoroso, S., Gioielli, A., Cataldi, M., Di Renzo, G., and Annunziato, L. (1999) In the neuronal cell line SH-SY5Y, oxidative stress-induced free radical overproduction causes cell death without any partici- pation of intracellular Ca(2+) increase. Biochim. Biophys. Acta. 1452, 151-160.
89. 施夙玲(1991)心臟毒蛋白致死心肌細胞之生化研究引發粒腺體活性的下降 Snake-venom Cardiotoxin-induced Deactivation of Cardiomyocyte Mitochondria. 碩士論文, 台灣大學。90. 李怡 (2000) 細胞表面醣胺素與蛇毒之作用機制 Role of Cell Surface Heparan Sulfate Proteoglycans in the Cytotoxicity Effect of Cardiotoxin by Cultured Cells. 碩士論文, 清華大學。