|
1. Chris Mattison. Snake. Dorling Kindersley. 8-9 (1999) 2. Dufton, M. J and Hider, R. C.Conformational properties of the neurotoxins and cytotoxins isolated from elapid snake venom. CRC Crit. Rev. Biochem. 14, 113-171 (1983). 3. Sarker, N.K. Isolation of cardiotoxin from Cobra venom (Naja tripudians, monocelate variety). J. Indian Chem. Soc.24, 227-232(1947) 4. Hseu, Y. C., Wu, W. G. Interaction between cardiotoxins and phospholipase A2 in membranes as releasled by the synergistic effect of their in vitro activity. FASEB J.A1371 (1995). 5. Yang, C. C Purification of toxic proteins from cobra venom. J. Formosa Med. Assoc. 63, 325-331 (1964). 6. Chen, Y. H., Lai, M. Z., and Kao, L. S Destruction of liposome vesicles by Taiwan cobra cardiotoxin. Biochem. Int.3, 385-390 (1981) 7. Gould, R. J., Polokoff, M. A., Friedman, P. A., Huang, T. F., Holt, J. C., Cook, J. J and Niewiarowksi, S. Disintegrins: A family of integrin inhibitor protein from viper venom. P.S.E.B.M. 195, 168-171 (1990) 8. Gasanov, S. E., Gasanov, N. E. and Rael, E. D Phospholipase A2 and cobra venom cytotoxin Vc5 interactions and membrane-structure.Gen. Physiol. Biophys 14, 107-123 (1995) 9. Lin, S. R., Chang, K. L., and Chang, C.C. Chemical modification of amino groups in cardiotoxin Ⅲ from Taiwan Cobra (Naja naja atra) venom. Biochemistry and molecular biology international. 31, 175-184. (1993) 10. Gilquin, B., Roumestand, C., Zinn-Justin, S., Menez, A., and Toma, F. Refined three-dimensional solution structure of snake cardiotoxin : analysis the side-chain organization suggests the existence of a possible phospholipid binding site. Biopolymers. 33,1659-1675 (1993) 11. Sarker, N.K. Isolation of cardiotoxin from Cobra venom (Naja tripudians, monocelate variety). J. Indian Chem. Soc.24, 227-232(1947) 12. Fletcher J. E., Jiang M. S., Gong Q. H., Yudkowsky M. L., and Wieland S. J. Effects of a cardiotoxin from Naja naja Kaouthia venom on skeletal muscle: involvement of calcium-induced calcium release, sodium ion currents and phospholipase A2 and C. Toxicon 29 (12), 1489-1500 (1991) 13. Chen, Y. H., Lai, M. Z., and Kao, L. S. Destruction of liposome vesicles by Taiwan cobra cardiotoxin. Biochem. Int. 3, 385-390 (1981). 14. Chien, K.-Y., Huang, W.-N., Jean, J.-H., and Wu, W. Fusion of sphingomyelin vesicles induced by proteins from Taiwan cobra ( Naja naja atra ) venom. J. Biol. Chem. 266, 3252-3259. (1991) 15. Chien, K.-Y., Chiang, C.-M., Hseu, Y.-C., Vyas, A.A. Rule, G.S., and Wu, W. Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with 2 witterionic phospholipid dispersions. J.Biol. Chem. 69, 14473-14483. (1994) 16. Batenburg, A.M., Bougis, P.E., Rochat, H., Verkleij, A.J., and de kruijff, B. Penetration of a cardiotoxin into cardiolipin model membranes and its implications on lipid organization. Biochemstry 24, 7101-7110 (1985) 17. Kerr, J. F., Wyllie, A. H. and Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239-257 (1972). 18. Mark P. Mattson apoptosis in neurodegenerative disorders, Nature review molecular cell biology 1, 120-129 (2000) 19. Richard C. Duke, David M. Ojcius and John Ding-E Young. Cell Suicide in Health and Disease. Scientific American 48-55 (1996) 20. Renvoizé, C., Biola, A., Pallardy, M., and Bréard, J. Apoptosis: identification of dying cells. Cell Biol. Toxicol. 14, 111-120. (1998) 21. Richter, C., Schweizer, M., Cossarizza, A.,and Franceschi, C. Control of apoptosis by the cellular ATP level. FEBS Lett. 378, 107-110 (1996) 22. Leist, M., Single, B., Castoldi, A.F., Kuhnle, S., and Nicotera, P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J. Exp. Med. 185, 1481-1486 (1997) 23. Eguchi, Y., Shimizu, S.,and Tsujimoto, Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer. Res. 57, 1835-1840 (1997) 24. Nishimura, Y., Nieminen, A.L.,and Herman B. Mitochondrial dysfunction in the pathogenesis of necrotic and apoptotic cell death. J. Bioenerg. Biomembr. 31, 305-319. (1999) 25. Wyllie, A. H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284, 555-556 (1980). 26. John Savill and Valerie Fadok. Corpse clearance defines the meaning of cell death. Nature 407, 784-788 (2000) 27. Wallace, Douglas C. Mitochondrial diseases in man and mouse. Science. 283, 1482-1488 (1999) 28. Fadok, V. A., Bratton, D. L., Frasch, S. C., Warner, M. L. and Henson, P. M. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ. 5, 557-563 (1998) 29. Verhoven, B., Schlegel, R.A., and Williamson, P. Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J. Exp. Med.182, 1597-1601 (1995) 30. Moffatt, O. D., Devitt, A., Bell, E. D., Simmons, D. L. and Gregory, C. D. Macrophage recognition of ICAM-3 on apoptotic leukocytes. J. Immunol. 162, 6800—6810 (1999) 31. Savill, John. Apoptosis: phagocytic docking without shocking. Nature 392, 442-443 (1998). 32. Marina Botto, Chiara Dell'Agnola, Anne E. Bygrave, E. Mary Thompson, H. Terence Cook, Franz Petry, Michael Loos, Pier Paolo Pandolfi and Mark J. Walport. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nature Genet. 19, 56-59 (1998). 33. Naoufal Zamzami and Guido Kroemer. Condensed matter in cell death. Nature 401, 127-128 (1999) 34. Masato Enari, Hideki Sakahira, Hideki Yokoyama, Katsuya Okawa, Akihiro Iwamatsu, Shigekazu Nagata. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43-50 (1998). 35. Sakahira, H., Enari, M. and Nagata, S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 96-99 (1998). 36. Setsuko Sahara, Mamoru Aoto, Yutaka Eguchi, Naoko Imamoto,Yoshihiro Yoneda and Yoshihide Tsujimoto. Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation. Nature 401. 168-173 (1999) 37. Vancompernolle K, Van Herreweghe F, Pynaert G, Van de Craen M, De Vos K, Totty N, Sterling A, Fiers W, Vandenabeele P, Grooten J.. Atractyloside-induced release of cathepsin B, a protease with caspase-processing activity. FEBS Lett 438(3), 150—158 (1998). 38. Rao, L., Perez, D. and White, E. Lamin proteolysis facilitates nuclear events during apoptosis. J. Cell Biol. 135, 1441-1455 (1996). 39. Buendia, B., Santa-Maria, A. and Courvalin, J. C. Caspase-dependent proteolysis of integral and peripheral proteins of nuclear membranes and nuclear pore complex proteins during apoptosis. J. Cell Sci. 112, 1743-1753 (1999). 40. Savill, John. Apoptosis: phagocytic docking without shocking. Nature 392, 442-443 (1998). 41. Platt, Nick; da Silva, Rosangela P.; Gordon, Siamon. Recognising death: the phagocytosis of apoptotic cells. Trends Cell Biol. 8, 365-372 (1998). 42. Emad S. Alnemri, David J. Livingston, Donald W. Nicholson, Guy Salvesen, Nancy A. Thornberry, Winnie W. Wong, and Junying Yuan. Human ICE/CED-3 protease nomenclature. Cell 87, 171 (1996). 43. J. Yuan, S. Shaham, S. Ledoux, H. M. Ellis, and H. R. Horvitz The C. Elegans Cell Death Gene ced-3 Encodes a Protein Similar to Mammalian interleukin-1 -converting Enzyme. Cell 75, 641 (1993) 44. Nancy A. Thornberry, Thomas A. Rano, Erin P. Peterson, Dita M. Rasper, Tracy Timkey, Margarita Garcia-Calvo, Vicky M. Houtzager, Penny A. Nordstrom, Sophie Roy, John P. Vaillancourt, Kevin T. Chapman, and Donald W. Nicholson. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem. 272, 17907-17911 (1997). 45. Budihardjo, I., Oliver, H., Lutter, M., Luo, X. and Wang, X. Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol. 15, 269-290 (1999) 46. Cikala, M., Wilm, B., Hobmayer, E., Bottger, A. and David, C. N. Identification of caspases and apoptosis in the simple metazoan Hydra. Curr. Biol. 9, 959-962 (1999) 47. Earnshaw, W. C., Martins, L. M. and Kaufmann, S. H. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68, 383-424 (1999). 48. Earnshaw, W. C., Martins, L. M. and Kaufmann, S. H. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68, 383-424 (1999). 49. Thornberry, N. A. and Lazebnik, Y. Caspases: enemies within. Science 281, 1312-1316 (1998). 50. Beni B. Wolf and Douglas R. Green. Suicidal tendencies: apoptotic cell death by caspases family proteinases. J. Biol. Chem 274, 20049-20052 (1999) 51. Earnshaw, W. C., Martins, L. M. and Kaufmann, S. H. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68, 383-424 (1999). 52. Nicholson, D. W. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 6, 1028-1042 (1999). 53. Nancy A. Thornberry, Thomas A. Rano, Erin P. Peterson, Dita M. Rasper, Tracy Timkey, Margarita Garcia-Calvo, Vicky M. Houtzager, Penny A. Nordstrom, Sophie Roy, John P. Vaillancourt, Kevin T. Chapman, and Donald W. Nicholson. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem. 272, 17907-17911 (1997). 54. Liu, X., Zou, H., Slaughter, C. and Wang, X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89, 175-184 (1997). 55. Masato Enari, Hideki Sakahira, Hideki Yokoyama, Katsuya Okawa, Akihiro Iwamatsu, Shigekazu Nagata. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43-50 (1998). 56. Sakahira, H., Enari, M. and Nagata, S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 96-99 (1998). 57. Masato Enari, Hideki Sakahira, Hideki Yokoyama, Katsuya Okawa, Akihiro Iwamatsu, Shigekazu Nagata. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43-50 (1998). 58. Sakahira, H., Enari, M. and Nagata, S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 96-99 (1998). 59. Srinivas Kothakota, Toshifumi Azuma, Christoph Reinhard, Anke Klippel, Jay Tang, Keting Chu, Thomas J. McGarry, Marc W. Kirschner, Kirston Koths, David J. Kwiatkowski, and Lewis T. Williams. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278, 294-298 (1997). 60. Rudel, T. and Bokoch, G. M. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 276, 1571-1574 (1997). 61. Michael O. Hengartmer. The biochemistry of apoptosis. Nature 407, 770-776 (2000) 62. Carsten Scaffidi, Simone Fulda, Anu Srinivasan, Claudia Friesen, Feng Li, Kevin J. Tomaselli, Klaus-Michael Debatin, Peter H. Krammer, and Marcus E. Peter. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17, 1675-1687 (1998). 63. Van Antwerp DJ, Martin SJ, Verma IM, Green DR. Inhibition of TNF-induced apoptosis by NF-kappa B. Trends Cell Biol.107-11 (1998) 64. Muzio, M., Stockwell, B. R., Stennicke, H. R., Salvesen, G. S. and Dixit, V. M. An induced proximity model for caspase-8 activation. J. Biol. Chem. 273, 2926-2930 (1998). 65. Antonsson, B. and Martinou, J. C. The Bcl-2 protein family. Exp. Cell Res. 256, 50-57 (2000). 66. Li, H., Zhu, H., Xu, C. J. and Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491-501 (1998). 67. Atan Gross, Xiao-Ming Yin, Kun Wang, Michael C. Wei, Jennifer Jockel, Curt Milliman, Hediye Erdjument-Bromage, Paul Tempst, and Stanley J. Korsmeyer. Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J. Biol. Chem. 274, 1156-1163 (1999). 68. Sionov, R. V. and Haupt, Y. The cellular response to p53: the decision between life and death. Oncogene 18, 6145-6157 (1999). 69. MacCallum, D. E. et al. The p53 response to ionising radiation in adult and developing murine tissues. Oncogene 13, 2575-2587 (1996). 70. Kowaltowski AJ, Castilho RF, Vercesi AE. Mitochondrial permeability transition and oxidative stress. FEBS Lett 495(1-2) 12-5 (2001) 71. Pinton P, Ferrari D, Rapizzi E, Virgilio FD, Pozzan T, Rizzuto R The Ca(2+) concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J. 20, 2690-2701 (2001) 72. Paris F, Grassme H, Cremesti A, Zager J, Fong Y, Haimovitz-Friedman A, Fuks Z, Gulbins E, Kolesnick R. Natural ceramide reverses fas resistance of acid sphingomyelinase-/- hepatocytes. J Biol Chem.276. 8297-305 (2001) 73. Loeffler, M. and Kroemer, G. The mitochondrion in cell death control: certainties and incognita. Exp. Cell Res. 256, 19-26 (2000). 74. Lorenzo, H. K., Susin, S. A., Penninger, J. and Kroemer, G. Apoptosis inducing factor (AIF): a phylogenetically old, caspase- independent effector of cell death. Cell Death Differ. 6, 516-524 (1999). 75. Du, C., Fang, M., Li, Y., Li, L. and Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33-42 (2000) 76. Anne M. Verhagen, Paul G. Ekert, Miha Pakusch, John Silke, Lisa M. Connolly, Gavin E. Reid, Robert L. Moritz, Richard J. Simpson, and David L. Vaux. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43-53 (2000). 77. Douglas R.Green and John C. Reed. Mitochondria and Apoptosis Science 281, 1309-1312 (1998). 78. Peng Li, Deepak Nijhawan, Imawati Budihardjo, Srinivasa M. Srinivasula, Manzoor Ahmad, Emad S. Alnemri, and Xiaodong Wang. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489 (1997). 79. Zou, H., Henzel, W. J., Liu, X., Lutschg, A. and Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405-413 (1997). 80. Budihardjo, I., Oliver, H., Lutter, M., Luo, X. and Wang, X. Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol. 15, 269-290 (1999). 81. Toshiyuki Nakagawa, Hong Zhu, Nobuhiro Morishima, En Li, Jin Xu, Bruce A. Yankner, Junying Yuan. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403, 98-103 (2000) 82. Ownby CL, Fletcher JE, Colberg TR. Cardiotoxin 1 from cobra (Naja naja atra) venom causes necrosis of skeletal muscle in vivo. Toxicon. 31(6), 697-709 (1993) 83. Esko, J.D, Rostand, K. S, and Weinke, J. L. Tumor formation dependent on proteoglycan biosynthesis. Science 241, 1092-1096 (1988) 84. Bame, K. J Esko, J.D. Undersulfated heparan sulfate in a Chinese hamster ovary cell mutant defective in heparan sulfate N-sulfotransferase. J.Biol.Chem 264, 8059-8065 (1989) 85. Esko, J.D, Weinke, J. L Taylor, W. H, Ekborg, G, Roden, L. Anantharamaiah, G., and Gawish, A. Inhibition of chondroitin and heparan sulfate biosynthesis in Chinese hamster ovary cell mutants defective in galactosyltransferase I. J.Biol.Chem 262, 12189-12195 (1987) 86. Shinichi Torii, Mikihiko Naito, and Takashi Tsuruo. Apoxin I, a Novel Apoptosis-inducing Factor with L-Amino Acid Oxidase Activity Purified from Western Diamondback Rattlesnake Venom. J. Biol. Chem. 272: 9539-9542(1997) 87. Ou YJ, Leung YM, Huang SJ, Kwan CY. Dual effects of extracellular Ca2+ on cardiotoxin-induced cytotoxicity and cytosolic Ca2+ changes in cultured single cells of rabbit aortic endothelium. Biochim Biophys Acta.1330(1) 29-38 (1997) 88. 李怡嫻,細胞表面醣胺素與蛇毒作用的機制(Role of Cell Surface Heparan Sulfate Proteoglycans in the Cytotoxicity Effect of Cardiotoxin by Cultured Cells),清華大學碩士論文(2000) 89. Sabina Sperandio, Ian de Belle, and Dale E. Bredesen. An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci 97,14376—14381 (2000)
|