跳到主要內容

臺灣博碩士論文加值系統

(3.235.140.84) 您好!臺灣時間:2022/08/13 06:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馮志維
研究生(外文):Chih-Wei Feng
論文名稱:台灣眼鏡蛇心臟毒素對細胞產生細胞死亡的研究
論文名稱(外文):The study of Taiwan cobra cardiotoxin induced cell death
指導教授:吳文桂
指導教授(外文):Wen-guey Wu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:62
中文關鍵詞:心臟毒素細胞凋亡細胞壞死醣胺素西方點墨法
相關次數:
  • 被引用被引用:0
  • 點閱點閱:284
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
蛇毒是一種混合物,其內容物也許各司其職也許會互相合作。台灣眼鏡蛇所分泌的毒液中主要包含有神經毒(neurotoxin或cobratoxin),心臟毒素(cardiotoxin)以及磷脂質水解酵素phospholipase A2(PLA2)等。其中心臟毒素含量最大卻不是最致命;作用的目標細胞也不只限於心肌細胞而可涵蓋各種細胞,所以十分有趣卻也十分不清楚其對於細胞的毒殺機制。以前的研究幾乎都認為心臟毒素造成細胞的死因是壞死(necrosis),但心臟毒素會使得胞內鈣離子濃度增加確有可能讓細胞走向另一條死亡之路---細胞凋亡(apoptosis)。本實驗是以心臟毒素A3為藥物處理中國倉鼠卵巢細胞(Chinese Hamster Ovary cell,CHO-K1),發現蛇毒心臟毒素A3處理CHO-K1後造成細胞有sub-G1現象,細胞膜表面醣胺素種類對於心臟毒素A3產生的sub-G1並無影響,心臟毒素A3處理CHO-K1後沒有觀察到DNA ladder發生,也沒有細胞核斷裂現象,只有細胞核似乎有縮小的現象且caspase抑制劑及細胞蛋白合成抑制劑似乎對心臟毒素A3產生的sub-G1現象抑制作用不大。另外以西方點墨法觀察細胞蛋白質量的變化時,發現似乎高濃度A3處理下,非活化態的caspase 3及α-tubulin似乎會分解或流失而量減少;人類淋巴母細胞(Human lymphoblast,TK6)細胞之AIF(apoptosis inducing factor)受到A3影響有量上升的趨勢。但心臟毒素A3對CHO-K1造成的細胞死亡為兼具壞死及凋亡的混合型,也還需要更進一步探討。

Snake venom is a mixture of versatile proteins, they could act independently or cooperatively. The major components of snake venom of Naja naja atra are neurotoxins (cobratoxins), cardiotoxins(CTXs) and PLA2. Among these, the most abundant are CTXs, but they are not the most lethal ones, and the targeting cells can be all kinds of cells in addition to cardiomyocytes. Hence, this phenomenon attracts our attention, but we still do not know the exact mechanism of cellular toxicity of CTXs. According the previous research, the reason for cell death action of CTXs is necrosis, but the intracellular calcium concentration increasing by CTXs treatment might lead cells to another destine — apoptosis.
This thesis is based on the experiment about treatment of Chinese Hamster Ovary (CHO-K1) with CTX A3, we found that after the treatment, cells will go to sub-G1 phase, the types of glycosaminoglycans (GAGs) on the cell surface have no effects on this treatment, no DNA ladder phenomenon and chromatin fragmentation had been observed, we only observed the shrieking of nuclei, but caspase inhibitors and protein synthesis inhibitors had little effects on the sub-G1 phase cells. Besides, when we using Western blotting method to observe the variation of protein quantity, we found in the treatment of high concentration of CTX A3, the amount of pro-caspase 3 andα-tubulin will decrease. And the amount of apoptosis inducing factor (AIF) of Human lymphoblast TK6 cells will increase after treatment of CTX A3. After all these observations, if the effects of CTX A3 on CHO-K1 are mixing type of necrosis and apoptosis still to be studied further.

中文摘要………………………………………………………………..1
英文摘要……………………………………………………………….2
緒論
一、 總論……………………………………………………………….3
二、心臟毒素(cardiotoxin)結構…………………………………..4
三、心臟毒素 (cardiotoxin) 的生理功能現象…………………..4
四、Apoptosis (細胞凋亡)……………………………………….…5
四之一、總論……………………………………………………….5
四之二、細胞壞死與細胞凋亡…………………………………….6
四之三、細胞凋亡之型態改變…………………………………….7
五、 細胞凋亡途徑……………………………………………………..9
五之一、簡介…………………………………………………….…9
五之二、Caspase 分類………………………………………….…10
五之三、Caspase 作用…………………………………………….10
五之四、細胞凋亡的途徑………………………………………….10
六、材料與方法……………………………………………………….13
六之一、細胞株………………………………………………….…13
六之二、化學藥品 ………………………………………………..13
六之三、細胞培養…………..………………………………………14
六之四、藥物處理………………………………………………….15
六之五、細胞DNA含量分析……………………………………….16
(Hypodiploid DNA content analysis)
六之六、細胞群落存活率分析…………………………………….17
(Clonogenic survival assay)
六之七、小片段DNA萃取………………………………………….17
六之八、Trypan blue染色………………………………………..18
六之九、Giemsa 染色…………………………………………….…18
六之十、Hoechst 33258染色………….…………………………..18
六之十一、 西方點墨法分析…………………………….………….19
(Western blotting analysis)
七、實驗結果…………………………………………….………….…21
七之一、醣胺素(Glycosaminoglycan,GAG)
對於細胞凋亡的影響…………………………….……….21
七之二、對於蛇毒產生的細胞毒性分析…………………………..21
七之三、細胞存活率分析…………………………………………..22
七之四、DNA斷裂電泳分析………………………….…………….23
七之五、細胞核濃縮及染色質破裂的分析…………………………23
七之六、Caspase的抑制劑處理分析………………………………24
七之七、細胞蛋白合成抑制劑對於細胞毒殺的影響分析……….24
七之八、以西方點墨法觀察蛋白質變化………………………….25
八、討論…………………………………………………………….…26
九、附圖表…………………………………………………………….30
十、參考文獻………………………………………………………..…49

1. Chris Mattison. Snake. Dorling Kindersley. 8-9 (1999)
2. Dufton, M. J and Hider, R. C.Conformational properties of the neurotoxins and cytotoxins isolated from elapid snake venom. CRC Crit. Rev. Biochem. 14, 113-171 (1983).
3. Sarker, N.K. Isolation of cardiotoxin from Cobra venom (Naja tripudians, monocelate variety). J. Indian Chem. Soc.24, 227-232(1947)
4. Hseu, Y. C., Wu, W. G. Interaction between cardiotoxins and phospholipase A2 in membranes as releasled by the synergistic effect of their in vitro activity. FASEB J.A1371 (1995).
5. Yang, C. C Purification of toxic proteins from cobra venom. J. Formosa Med. Assoc. 63, 325-331 (1964).
6. Chen, Y. H., Lai, M. Z., and Kao, L. S Destruction of liposome vesicles by Taiwan cobra cardiotoxin. Biochem. Int.3, 385-390 (1981)
7. Gould, R. J., Polokoff, M. A., Friedman, P. A., Huang, T. F., Holt, J. C., Cook, J. J and Niewiarowksi, S. Disintegrins: A family of integrin inhibitor protein from viper venom. P.S.E.B.M. 195, 168-171 (1990)
8. Gasanov, S. E., Gasanov, N. E. and Rael, E. D Phospholipase A2 and cobra venom cytotoxin Vc5 interactions and membrane-structure.Gen. Physiol. Biophys 14, 107-123 (1995)
9. Lin, S. R., Chang, K. L., and Chang, C.C. Chemical modification of amino groups in cardiotoxin Ⅲ from Taiwan Cobra (Naja naja atra) venom. Biochemistry and molecular biology international. 31, 175-184. (1993)
10. Gilquin, B., Roumestand, C., Zinn-Justin, S., Menez, A., and Toma, F. Refined three-dimensional solution structure of snake cardiotoxin : analysis the side-chain organization suggests the existence of a possible phospholipid binding site. Biopolymers. 33,1659-1675 (1993)
11. Sarker, N.K. Isolation of cardiotoxin from Cobra venom (Naja tripudians, monocelate variety). J. Indian Chem. Soc.24, 227-232(1947)
12. Fletcher J. E., Jiang M. S., Gong Q. H., Yudkowsky M. L., and Wieland S. J. Effects of a cardiotoxin from Naja naja Kaouthia venom on skeletal muscle: involvement of calcium-induced calcium release, sodium ion currents and phospholipase A2 and C. Toxicon 29 (12), 1489-1500 (1991)
13. Chen, Y. H., Lai, M. Z., and Kao, L. S. Destruction of liposome vesicles by Taiwan cobra cardiotoxin. Biochem. Int. 3, 385-390 (1981).
14. Chien, K.-Y., Huang, W.-N., Jean, J.-H., and Wu, W. Fusion of sphingomyelin vesicles induced by proteins from Taiwan cobra ( Naja naja atra ) venom. J. Biol. Chem. 266, 3252-3259. (1991)
15. Chien, K.-Y., Chiang, C.-M., Hseu, Y.-C., Vyas, A.A. Rule, G.S., and Wu, W. Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with 2 witterionic phospholipid dispersions. J.Biol. Chem. 69, 14473-14483. (1994)
16. Batenburg, A.M., Bougis, P.E., Rochat, H., Verkleij, A.J., and de kruijff, B. Penetration of a cardiotoxin into cardiolipin model membranes and its implications on lipid organization. Biochemstry 24, 7101-7110 (1985)
17. Kerr, J. F., Wyllie, A. H. and Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239-257 (1972).
18. Mark P. Mattson apoptosis in neurodegenerative disorders, Nature review molecular cell biology 1, 120-129 (2000)
19. Richard C. Duke, David M. Ojcius and John Ding-E Young. Cell Suicide in Health and Disease. Scientific American 48-55 (1996)
20. Renvoizé, C., Biola, A., Pallardy, M., and Bréard, J. Apoptosis: identification of dying cells. Cell Biol. Toxicol. 14, 111-120. (1998)
21. Richter, C., Schweizer, M., Cossarizza, A.,and Franceschi, C. Control of apoptosis by the cellular ATP level. FEBS Lett. 378, 107-110 (1996)
22. Leist, M., Single, B., Castoldi, A.F., Kuhnle, S., and Nicotera, P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J. Exp. Med. 185, 1481-1486 (1997)
23. Eguchi, Y., Shimizu, S.,and Tsujimoto, Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer. Res. 57, 1835-1840 (1997)
24. Nishimura, Y., Nieminen, A.L.,and Herman B. Mitochondrial dysfunction in the pathogenesis of necrotic and apoptotic cell death. J. Bioenerg. Biomembr. 31, 305-319. (1999)
25. Wyllie, A. H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284, 555-556 (1980).
26. John Savill and Valerie Fadok. Corpse clearance defines the meaning of cell death. Nature 407, 784-788 (2000)
27. Wallace, Douglas C. Mitochondrial diseases in man and mouse. Science. 283, 1482-1488 (1999)
28. Fadok, V. A., Bratton, D. L., Frasch, S. C., Warner, M. L. and Henson, P. M. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ. 5, 557-563 (1998)
29. Verhoven, B., Schlegel, R.A., and Williamson, P. Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J. Exp. Med.182, 1597-1601 (1995)
30. Moffatt, O. D., Devitt, A., Bell, E. D., Simmons, D. L. and Gregory, C. D. Macrophage recognition of ICAM-3 on apoptotic leukocytes. J. Immunol. 162, 6800—6810 (1999)
31. Savill, John. Apoptosis: phagocytic docking without shocking. Nature 392, 442-443 (1998).
32. Marina Botto, Chiara Dell'Agnola, Anne E. Bygrave, E. Mary Thompson, H. Terence Cook, Franz Petry, Michael Loos, Pier Paolo Pandolfi and Mark J. Walport. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nature Genet. 19, 56-59 (1998).
33. Naoufal Zamzami and Guido Kroemer. Condensed matter in cell death. Nature 401, 127-128 (1999)
34. Masato Enari, Hideki Sakahira, Hideki Yokoyama, Katsuya Okawa, Akihiro Iwamatsu, Shigekazu Nagata. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43-50 (1998).
35. Sakahira, H., Enari, M. and Nagata, S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 96-99 (1998).
36. Setsuko Sahara, Mamoru Aoto, Yutaka Eguchi, Naoko Imamoto,Yoshihiro Yoneda and Yoshihide Tsujimoto. Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation. Nature 401. 168-173 (1999)
37. Vancompernolle K, Van Herreweghe F, Pynaert G, Van de Craen M, De Vos K, Totty N, Sterling A, Fiers W, Vandenabeele P, Grooten J.. Atractyloside-induced release of cathepsin B, a protease with caspase-processing activity. FEBS Lett 438(3), 150—158 (1998).
38. Rao, L., Perez, D. and White, E. Lamin proteolysis facilitates nuclear events during apoptosis. J. Cell Biol. 135, 1441-1455 (1996).
39. Buendia, B., Santa-Maria, A. and Courvalin, J. C. Caspase-dependent proteolysis of integral and peripheral proteins of nuclear membranes and nuclear pore complex proteins during apoptosis. J. Cell Sci. 112, 1743-1753 (1999).
40. Savill, John. Apoptosis: phagocytic docking without shocking. Nature 392, 442-443 (1998).
41. Platt, Nick; da Silva, Rosangela P.; Gordon, Siamon. Recognising death: the phagocytosis of apoptotic cells. Trends Cell Biol. 8, 365-372 (1998).
42. Emad S. Alnemri, David J. Livingston, Donald W. Nicholson, Guy Salvesen, Nancy A. Thornberry, Winnie W. Wong, and Junying Yuan. Human ICE/CED-3 protease nomenclature. Cell 87, 171 (1996).
43. J. Yuan, S. Shaham, S. Ledoux, H. M. Ellis, and H. R. Horvitz
The C. Elegans Cell Death Gene ced-3 Encodes a Protein Similar to Mammalian interleukin-1 -converting Enzyme. Cell 75, 641 (1993)
44. Nancy A. Thornberry, Thomas A. Rano, Erin P. Peterson, Dita M. Rasper, Tracy Timkey, Margarita Garcia-Calvo, Vicky M. Houtzager, Penny A. Nordstrom, Sophie Roy, John P. Vaillancourt, Kevin T. Chapman, and Donald W. Nicholson. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem. 272, 17907-17911 (1997).
45. Budihardjo, I., Oliver, H., Lutter, M., Luo, X. and Wang, X. Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol. 15, 269-290 (1999)
46. Cikala, M., Wilm, B., Hobmayer, E., Bottger, A. and David, C. N. Identification of caspases and apoptosis in the simple metazoan Hydra. Curr. Biol. 9, 959-962 (1999)
47. Earnshaw, W. C., Martins, L. M. and Kaufmann, S. H. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68, 383-424 (1999).
48. Earnshaw, W. C., Martins, L. M. and Kaufmann, S. H. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68, 383-424 (1999).
49. Thornberry, N. A. and Lazebnik, Y. Caspases: enemies within. Science 281, 1312-1316 (1998).
50. Beni B. Wolf and Douglas R. Green. Suicidal tendencies: apoptotic cell death by caspases family proteinases. J. Biol. Chem 274, 20049-20052 (1999)
51. Earnshaw, W. C., Martins, L. M. and Kaufmann, S. H. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68, 383-424 (1999).
52. Nicholson, D. W. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 6, 1028-1042 (1999).
53. Nancy A. Thornberry, Thomas A. Rano, Erin P. Peterson, Dita M. Rasper, Tracy Timkey, Margarita Garcia-Calvo, Vicky M. Houtzager, Penny A. Nordstrom, Sophie Roy, John P. Vaillancourt, Kevin T. Chapman, and Donald W. Nicholson. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem. 272, 17907-17911 (1997).
54. Liu, X., Zou, H., Slaughter, C. and Wang, X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89, 175-184 (1997).
55. Masato Enari, Hideki Sakahira, Hideki Yokoyama, Katsuya Okawa, Akihiro Iwamatsu, Shigekazu Nagata. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43-50 (1998).
56. Sakahira, H., Enari, M. and Nagata, S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 96-99 (1998).
57. Masato Enari, Hideki Sakahira, Hideki Yokoyama, Katsuya Okawa, Akihiro Iwamatsu, Shigekazu Nagata. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43-50 (1998).
58. Sakahira, H., Enari, M. and Nagata, S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 96-99 (1998).
59. Srinivas Kothakota, Toshifumi Azuma, Christoph Reinhard, Anke Klippel, Jay Tang, Keting Chu, Thomas J. McGarry, Marc W. Kirschner, Kirston Koths, David J. Kwiatkowski, and Lewis T. Williams. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278, 294-298 (1997).
60. Rudel, T. and Bokoch, G. M. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 276, 1571-1574 (1997).
61. Michael O. Hengartmer. The biochemistry of apoptosis. Nature 407, 770-776 (2000)
62. Carsten Scaffidi, Simone Fulda, Anu Srinivasan, Claudia Friesen, Feng Li, Kevin J. Tomaselli, Klaus-Michael Debatin, Peter H. Krammer, and Marcus E. Peter. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17, 1675-1687 (1998).
63. Van Antwerp DJ, Martin SJ, Verma IM, Green DR. Inhibition of TNF-induced apoptosis by NF-kappa B. Trends Cell Biol.107-11 (1998)
64. Muzio, M., Stockwell, B. R., Stennicke, H. R., Salvesen, G. S. and Dixit, V. M. An induced proximity model for caspase-8 activation. J. Biol. Chem. 273, 2926-2930 (1998).
65. Antonsson, B. and Martinou, J. C. The Bcl-2 protein family. Exp. Cell Res. 256, 50-57 (2000).
66. Li, H., Zhu, H., Xu, C. J. and Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491-501 (1998).
67. Atan Gross, Xiao-Ming Yin, Kun Wang, Michael C. Wei, Jennifer Jockel, Curt Milliman, Hediye Erdjument-Bromage, Paul Tempst, and Stanley J. Korsmeyer. Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J. Biol. Chem. 274, 1156-1163 (1999).
68. Sionov, R. V. and Haupt, Y. The cellular response to p53: the decision between life and death. Oncogene 18, 6145-6157 (1999).
69. MacCallum, D. E. et al. The p53 response to ionising radiation in adult and developing murine tissues. Oncogene 13, 2575-2587 (1996).
70. Kowaltowski AJ, Castilho RF, Vercesi AE. Mitochondrial permeability transition and oxidative stress. FEBS Lett 495(1-2) 12-5 (2001)
71. Pinton P, Ferrari D, Rapizzi E, Virgilio FD, Pozzan T, Rizzuto R The Ca(2+) concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J. 20, 2690-2701 (2001)
72. Paris F, Grassme H, Cremesti A, Zager J, Fong Y, Haimovitz-Friedman A, Fuks Z, Gulbins E, Kolesnick R. Natural ceramide reverses fas resistance of acid sphingomyelinase-/- hepatocytes. J Biol Chem.276. 8297-305 (2001)
73. Loeffler, M. and Kroemer, G. The mitochondrion in cell death control: certainties and incognita. Exp. Cell Res. 256, 19-26 (2000).
74. Lorenzo, H. K., Susin, S. A., Penninger, J. and Kroemer, G. Apoptosis inducing factor (AIF): a phylogenetically old, caspase- independent effector of cell death. Cell Death Differ. 6, 516-524 (1999).
75. Du, C., Fang, M., Li, Y., Li, L. and Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33-42 (2000)
76. Anne M. Verhagen, Paul G. Ekert, Miha Pakusch, John Silke, Lisa M. Connolly, Gavin E. Reid, Robert L. Moritz, Richard J. Simpson, and David L. Vaux. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43-53 (2000).
77. Douglas R.Green and John C. Reed. Mitochondria and Apoptosis Science 281, 1309-1312 (1998).
78. Peng Li, Deepak Nijhawan, Imawati Budihardjo, Srinivasa M. Srinivasula, Manzoor Ahmad, Emad S. Alnemri, and Xiaodong Wang. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489 (1997).
79. Zou, H., Henzel, W. J., Liu, X., Lutschg, A. and Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405-413 (1997).
80. Budihardjo, I., Oliver, H., Lutter, M., Luo, X. and Wang, X. Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol. 15, 269-290 (1999).
81. Toshiyuki Nakagawa, Hong Zhu, Nobuhiro Morishima, En Li, Jin Xu, Bruce A. Yankner, Junying Yuan. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403, 98-103 (2000)
82. Ownby CL, Fletcher JE, Colberg TR. Cardiotoxin 1 from cobra (Naja naja atra) venom causes necrosis of skeletal muscle in vivo. Toxicon. 31(6), 697-709 (1993)
83. Esko, J.D, Rostand, K. S, and Weinke, J. L. Tumor formation dependent on proteoglycan biosynthesis. Science 241, 1092-1096 (1988)
84. Bame, K. J Esko, J.D. Undersulfated heparan sulfate in a Chinese hamster ovary cell mutant defective in heparan sulfate N-sulfotransferase. J.Biol.Chem 264, 8059-8065 (1989)
85. Esko, J.D, Weinke, J. L Taylor, W. H, Ekborg, G, Roden, L. Anantharamaiah, G., and Gawish, A. Inhibition of chondroitin and heparan sulfate biosynthesis in Chinese hamster ovary cell mutants defective in galactosyltransferase I. J.Biol.Chem 262, 12189-12195 (1987)
86. Shinichi Torii, Mikihiko Naito, and Takashi Tsuruo. Apoxin I, a Novel Apoptosis-inducing Factor with L-Amino Acid Oxidase Activity Purified from Western Diamondback Rattlesnake Venom. J. Biol. Chem. 272: 9539-9542(1997)
87. Ou YJ, Leung YM, Huang SJ, Kwan CY. Dual effects of extracellular Ca2+ on cardiotoxin-induced cytotoxicity and cytosolic Ca2+ changes in cultured single cells of rabbit aortic endothelium. Biochim Biophys Acta.1330(1) 29-38 (1997)
88. 李怡嫻,細胞表面醣胺素與蛇毒作用的機制(Role of Cell Surface Heparan Sulfate Proteoglycans in the Cytotoxicity Effect of Cardiotoxin by Cultured Cells),清華大學碩士論文(2000)
89. Sabina Sperandio, Ian de Belle, and Dale E. Bredesen. An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci 97,14376—14381 (2000)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top