( 您好!臺灣時間:2022/08/16 06:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


論文名稱(外文):Biochemical study of the zinc binding proteins of the postsynaptic density fromn porcine brain
中文關鍵詞:後突觸質密區鋅離子結合蛋白Zn-NTA column
外文關鍵詞:postsynaptic densityZinc binding proteinsZn-NTA column
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
後突觸質密區postsynaptic density (PSD)為一功能性活化區域,其參與哺乳類中樞神經系統的興奮性神經傳導功能。經過尿素處理可將PSD裂解成較小結構而且這些較小結構並不會自行重組回原來之PSD。我們以感應耦合電漿質譜分析儀定量方法分析得知PSD中有鋅離子存在而且其濃度為4.1 nmol/mg。
我們也發現大部分經由8M 尿素處理並且加以透析之PSD會與Zn-NTA (Zn-Nitrilotriacetic acid) 樹脂結合。我們便利用不同之試劑(Tris-HCl, urea, imidazole, guanidine hydrochloride, SDS, glycerol, 及Triton)來沖洗Zn-NTA column。經過透析處理移除尿素之PSD在被不同試劑沖洗下來後,藉由外加鋅離子我們觀察到用尿素這步驟沖洗下之PSD蛋白質以及與尿素沖下之PSD蛋白質混合之其他試劑沖下之蛋白質這些小結構都會形成不同緻密程度之聚合物。最後利用電子顯微鏡觀察這些聚合物後得知這些聚合物都與原來PSD結構不同。根據以上這些結果可推測,鋅離子可能與由Zn-NTA沖洗步驟中的尿素沖洗下來之鋅離子結合蛋白結合來引發PSD聚合作用。鋅離子結合蛋白可能在PSD形成以及其結構之維持上扮演重要角色

The postsynaptic density (PSD) is a functionally active zone involved in excitatory synaptic transmission in mammalian central nerve system. Inductively Coupled Plasma-Mass (ICP-MASS) analyses reveal that the isolated PSD proteins contain zinc at a concentration of 4.1 nmol/mg. A treatment of 8M urea leads to the dissociation of the PSDs into small components and depletion of most of the zinc ions bound to the PSD. Removing urea by dialysis, dissociated PSD proteins do not reassemble into aggregates by themselves.
We also find that the majority of the 8M urea treated and dialyzed PSD proteins are bound to a Zn-Nitrilotriacetic acid (Zn-NTA) column. We then elute the column with different reagents (Tris-HCl, urea, imidazole, guanidine hydrochloride, SDS, glycerol, or Triton). After removing urea by dialysis, the PSD proteins eluted from Zn-NTA column with urea can form aggregates in the presence of zinc ions. The mixtures containing the PSD proteins eluted with urea and other reagents from a Zn-NTA column can also form aggregates with different degrees of compactness. Morphological studies indicate that the resultant zinc-induced aggregates are not identical to the original PSD. Our results suggest that the zinc ions bound to certain zinc binding proteins be eluted with urea from Zn-NTA column. The zinc binding proteins may play important roles in the formation and maintenance of the structure of the PSD.

METHOD AND MATERIAL------------------------------------15-25
FIGURES AND FIGURE LEGEND -----------------------------54-77

Allison, D.W., Gelfand, V.I., Spector, I. and Craig, A.M. (1998) Role of actin in anchoring postsynaptic receprors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors. J.Neurosci. 18, 2423-2436.
Aoki, C., Go, C.G., Wu, K. and Siekevitz, P. (1992) Light and electron microscopic localization of alpha subunits of GTP-binding proteins, G(0) and Gi, in the cerebral cortex and hippocampus of rat brain. Brain Res. 596, 189-201.
Apperson, M.L., Moon, I..S. and Kennedy, M.B. (1996) Characterization of densin-180, a new brain—specific synaptic protein of the O-sialoglycoprotein family. J. Neurosci. 16, 6839-6852.
Beavo, J.A. and Reifsnyder, D.H. (1990) Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors. Trends Pharmacol. Sci. 11, 150-155
Beesley, P.W., Mummery, R. and Tibaldi, J. (1995) N-cadherin is a major glycoprotein component of isolated rat forebrain postsynaptic densities. J. Neurochem. 64, 2288-2294.
Böckers, T.M., Kreutz, M.R., Winter, C., Zuschratter, W., Smalla, K.H., Sanmarti-Vila, L., Wex, H., Langnäse, K., Bockmann, J., Garner, C.C. and Gundelfinger, E.D. (1999a) Proline-rich synapse-associated protein-1/cortactin binding protein 1 (ProSAP1/CortBP1) is a PDZ-domain protein highly enriched in the postsynaptic density. J. Neurosci. 19, 6506-6518.
Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
Bredt, D.S. and Snyder, S.H. (1992) Nitric oxide, a novel neuronal messenger. Neuron. 8, 3-11.
Brenman, J.E., Christopherson, K.S., Craven, S.E., McGee, A.W. and Bredt, D.S. (1996b) Cloning and characterization of postsynaptic density 93, a nitric oxide synthase interacting protein. J. Neurosci. 16, 7407-7415.
Browning, J.D. and O’Dell, B.L. (1994) Low zinc status in guinea pigs impairs calcium uptake by brain synaptosomes. J. Nutr. 124, 436-443.
Browning, J. and O’Dell, B. (1995) Zinc deficiency decreases the concen-tration of N-methyl-D-aspartate receptors in guinea pig cortical synaptic membranes. J. Nutr. 125, 2083-2089.
Cancers, A., Payne, M.R., Binder, L.I. and Steward, O. (1983) Immuno-cytochemical localization of actin and microtubule-associated protein MAP2 in dendritic spines. Proc. Natl. Acad. Sci. USA 80, 1738-1742.
Carlin, R.K., Grab, D.J., Cohen, R.S. and Siekevitz, P. (1980) Isolation and characterization of postsynaptic densities form various brain regions: enrichment of different types of postsynaptic densities. J. Cell Biol. 86, 831-843.
Carlin, R.K., Grab, D.J. and Siekevitz, P. (1982) Postmortem accumulation of tubulin in postsynaptic density preparations. J. Neurochem. 38, 94-100.
Carlin, R.K. and Siekevitz, P. (1983) Plasticity in the central nervous system: do synapses divide? Proc. Natl. Acad. Sci. USA 80, 3517-3521.
Carlin, R.K. and Siekevitz, P. (1984) Characterization of Na+-independent of GABA and flunitrazepam binding sites in preparations of synaptic membranes and postsynaptic densities from canine cerebral cortex and cerebellum. J. Neurochem.43, 1011-1017.
Carr, D.W., Stofko, H.R., Fraser, I.D., Cone, R.D. and Scott, J.D. (1992) Localization of the cAMP-dependent protein kinase to the postsynaptic densities by A-kinase anchoring proteins. Characterization of AKAP 79. J. Bio. Chem. 267, 16818-16823.
Chang, H.H., Chen, I.T., Tsai, Y.Y. and Chang, Y.C. (2002) Structure roles of the zinc ions bound to the postsynaptic density. J. Neurochem. In press.
Chetkovich, D.M., Gray, R., Johnston, D. and Sweatt, J.D. (1991) NMDA-receptor activation increases cAMP levels and voltage-gated Ca2+-channel activity in area CA1 of hippocampus. Proc. Nat. Acad. Sci. (USA) 88, 6467-6471.
Cho, K.O., Hunt, C.A. and Kennedy, M.B. (1992) The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron 9, 929-942.
Choi Y.B. and Lipton S.A. (1999) Identification and mechanism of action of two histidine residues underlying high—affinity Zn2+ inhibition of the NMDA receptor. Neuron 3, 171-180.
Coghlan, V.M., Perrino, B.A., Howard, M., Langeberg, L.K., Hicks, J.B., Gallatin, W.M. and Scott, J.D. (1995) Association of protein kinase A and protein phosphatase 2B with a common anchoring protein. Science 267, 108-111.
Cohen, R.S., Blomberg, F.K. and Siekevitz, P. (1977) The structure of postsynaptic densities isolated form dog cerebral cortex I: overall morphology and protein composition. J. Cell Biol. 74, 181-203.
Cohen, R.S. and Siekevitz, P. (1978) From the postsynaptic density: A serial section study. J. Cell Biol. 78, 36-46.
Cotman, C.W. and Tayor, D. (1972) Isolation and structure studies on synaptic complexes from rat brain. J. Cell Biol. 55, 696-711.
Cotman, C.W., Banker, G., Churchill, L. and Taylor, D. (1974) Isolation of postsynaptic densities from rat brain. J. Cell Biol. 63, 441-445.
Desmond, N.L. and Levy, W.B. (1986) Changes in the postsynaptic density with long-term potentiation in the dentate gyrus. J. Comp. Neurol. 253, 476-482.
Dosemeci, A. and Reese, T.S. (1995) Effect of calpain on the composition and structure of postsynaptic density. Synapse 20, 91-97.
Dong, H., O’Brien, R.J., Fung, E.T., Lanahan, A.A., Worley, P.F. and Hugainr, R.L. (1997) GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 386, 279-284.
Dosemeci, A. and Reese, T.S. (1993) Inhibition of endogenous phosphatase in a postsynaptic density fraction allows extensive Phosphorylation of the major postsynaptic density protein, J. Neurochem. 61, 550-555.
Edwards, F. (1991) Neurobiology-LTP is a long term problem. Nature 350, 271-272.
Finkbeiner, S. and Greenberg, M. (1996) Ca2+-dependent routes to Ras: mechanisms for neuronal survival, differentiation, and plasticity?Neuron 16, 233-236.
Fiszer, S. and De Robertis, L. (1967). Action of Triton X-100 on ultrastructure and membrane-bound enzymes of isolated nerve endings from rat brain. Brain Res. 5, 31-44.
Frederickson, C.J., Klitenick, M.A., Manton, W.I. and Kirk J.B. (1983) Cytoarchitectonic distribution of zinc in the hippocampus of and the rat, Brain Res. 273, 355-339.
Frederickson, C.J. (1989) Neurobiology of zinc and zinc-containing neurons. Int. Rev. Neurobiol. 131, 145-238.
Frederickson, C.J., Suh, S.W., Silva, D., Frderickson, C.J. and Thompson, R.B. (2000) Zinc and health: Current status and future directions. J. Nutr. 1471S-1483S.
Furukawa, K., FU, W., Li, Y., Witke, W., Kwaitkowski, D.J. and Mattson, M.P. (1997) The actin-severing protein gelsolin modulates calcium channel and NMDA recepror activities and vulnerability to excitotoxicity in hippocampal neurons. J. Neurosci. 17, 8178-8186.
Furuyashiki, T., Fujisawa, K., Fujita, A., Madaule, P., Uchino, S., Mishina, M., Bito, H. and Narumiya, S. (1999): Citron, a rho-target, interacts with PSD-95/SAP-90 at glutamatergic synapses in the thalamus. J. Neurosci. 19, 109-118.
Gaberc-Porckar, V. and Menavt, V. (2001) Perspective of immobilized-metal affinity chvomatography. J. Biochem. Biophys. Methods 49, 335-360.
Geinisman, Y., De Toledo-Morrell, L. and Morrell, F. (1991) Induction of long-term potentiation is associated with an increase in the number of axospinous synapses with segmented postsynaptic densities. Brain Res. 566, 77-88.
Geinisman, Y., Morrell, F. and De Toledo-Morrell, L. (1987) Synapses on dendritic shafts exhibit a perforated postsynaptic density. Brain Res. 422, 352-356.
Geinisman, Y., Morrell, F. and de-Toledo-Morrell, L. (1992) Increase in the number of axospinous synapses with segmental postsynaptic densities following hippocampal kindling. Brain Res. 569, 341-347.
Goldernring, J.R., McGuire, J.J. and DeLorenzo, R.J. (1984) Identification of the major postsynaptic density protein as homologous with the major calmodulin-binding subunit of a calmodulin-dependent protein kinase. J. Neurochem. 42, 1077-1084.
Grab, D.J., Berzins, K., Cohen. R.S. and Siekecitz, P. (1979) Presence of calmodulin in postsynaptic densities isolated from canine cerebral cortex. J. Biol. Chem. 254, 8690-8696.
Grootjans, J., Zimmermann, P., Reekmans, G., Smets, A., Gegeest, G. and Durr, J. (1997) Syntenin, a PDZ protein that binds syndecan cytoplasmic proteins. Proc. Natl. Acad. Sci. USA 94, 13683-13688.
Gray, E.G. (1959) Axo-somatic and axo-dendritic syanpses of the cetebral cortex: an electron microscope study. J. Anat. 93, 420-433.
Hesketh, J.E. (1983) Zinc binding to tubulin. Int. J. Biochem. 15, 743-746.
Hesse, G.W., Hesse, K.A. and Catalanotto, F.A. (1979) Behavioral characteristics of rats experiencing chronic zinc deficiency. Physiol. Behav. 22, 211-215.
Hsueh, Y.P., Kim, E. and Sheng, M. (1997) Disulfide-linked head-to-head multimerization in the mechanism of ion channel clustering by PSD-95. Neuron 18, 803-814.
Hubbard, S.R., Bishop, W.R., Kirschmeier, P., George, S.J., Cramer, S.P. and Hendrickson, W.A. (1991) Identification and characterization of zinc-binding sites in protein kinase C. Science 254, 1776-1779.
Hu, K.H. and Friede, R.L. (1968) Topographic determination of zinc in human brain by atomic absorption spectrophotometry. J. Neurochem. 15, 677-685.
Hwang, C., Sinskey, A.J. and Lodish, H.F. (1992) Oxidized Redox state of glutathione in the endoplasmic reticulum. Science 257, 1496-1502.
Kelly, P.T. and Cotman, C.W. (1976) Intermolecular disulfide bonds at central nervous system synaptic junctions. Biochem. Biophys. Res. Comm. 73, 858-864.
Kelly, P.T. and Cotman, C.W. (1978) Characterization of tubulin and actin and identification of a distinct postsynaptic density polypeptide. J. Cell Biol. 79, 173-183.
Kelly, P.T., Mcguibbess, T.L. and Greengard, P. (1984) Evidence that the major postsynaptic density protein is a component of a Ca2+/calmodulin-dependent protein kinase. Proc. Natl. Acad. Sci. USA 81, 945-949.
Kennedy, M.B. (1997) The postsynaptic density at glutamatergic synapses. Trends Neurosci. 20, 264-268.
Kennedy, M.B., Bennett, M.K. and Erondu, N.E. (1983) Biochemical and immunochemical evidence that the〝major postsynaptic density protein〞is a subunit of a calmodulin-dependent protein kinase. Proc. Natl. Acad. Sci. USA 80, 7357-7361.
Kim, E., Cho, K.O., Rothdchild, A. and Sheng, M. (1996) Heteromultimerization and NMDA receptor-clustering activity of chapsyn-110, a member of the PSD-95 famliy of proteins. Neuron 17, 103-113.
Kim, E., Niethammer, M., Rothschild, A., Jan, Y.N. and Sheng, M. (1995) Clustering of Shaker-type K+ channel by interaction with a family of membrane-associated guanylate kinase. Nature 378, 85-88.
Kim, J.H. and Huganir, R.L. (1999) Organization and regulation of proteins at synapses. Curr. Opin. In Cell Biol. 11, 248-254.
Kim, T.W., Wu, K., Xu, J.L. and Black, I.B. (1992) Detection of dystrophin in the postsynaptic density of rat brain and deficiency in a mouse model of Duchenne muscular dystrophy. Proc. Natl. Acad. Sci. USA 89, 1 1624-11644.
Kistner, U., Ganmer, C.C. and Linial, M. (1995) Nucleotide binding by the synapse associated protein SAP90. FEBSLett. 359, 159-163.
Klauck, T.M. and Scott, J.D. (1995) The postsynaptic density a subcellular anchor for signal transduction enzymes. Cell Signal 7, 747-757.
Klauck, T.M., Faux, M.C., Labudda, K., Langeberg, L.K., Jaken, S. and Scott, J.D. (1996). Coordination of three signaling enzymes by AKAP79, amammaloan scaffold protein. Science 271, 1589-1592.
Kornau, H.C., Schenker, L.T., Kennedy, M.B. and Seeberg, P.H. (1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269, 1737-1740.
Krupinski, J., Coussen, F., Bakalyar, H.A., Tang, W.J., Feinstein, P.G., Orth, K., Slaughter, C., Reed, R.R. and Gilman, A.G. (1989) Adenylyl cyclase amino acid sequence: Possible channel- or transporter-like structure. Science 244, 1558-1564.
Lai, S.L., Ling, S.C., Kuo, L.H., Shu, Y.C., Chow, W.Y. and Chang, Y.C. (1998) Characterization of granular particles isolated from postsynaptic density. J. Neurochem. 71, 1694-1701.
Lai, S.L., Chiang, S.F., Chen, I.T., Chow, W.Y. and Chang, Y.C. (1999) Interprotein disulfide bonds formed during isolation process tighten the structure of the postsynaptic density. J. Neurochem. 73, 2130-2138.
Leung, T., Manser, E., Tank, L. and Lim, L. (1995) A novel serine/threonine kinase binding the ras-related rhoA GTPase which translocates the kinase to peripheral membranes. J. Biol. Chem. 270, 27-34.
Levi, S., Vannier, C. and Triller, A. (1998) Strychnine-sensitive stabilization of postsynaptic glycine receptor clusters. J. Cell Science 111, 335-345.
Lidov, H.G., Byers, T.J., Watkins, S.C. and Kunkel, L.M. (1990) Localization of dystrophin to postsynaptic regions of central nervous system cortical neurons. Nature 384, 725-728.
Lin, C.T., Dedman, J.R., Brinkley, B.R. and Means, A.R. (1980) Localization of calmodulin in rat cerebellum by immunoelectron microscopy. J. Cell Biol. 85, 473-480.
Lin, D.D., Conen, A.S. and Coulter, D.A. (2001) Zinc-induced Augmentation of excitatory synaptic currents and Glutamate Receptor Response in Hippocample CA3 Neurons. J. Neurophysi. 85(3), 1185-1196
Lue, R.A., Marfatia, S.M., Branton, D. and Chishti, A.H. (1994). Cloning and characterization of hdlg: the human homolog of the Drosophila discs large tumor suppressor binds to protein 4.1. Proc. Natl. Acad. Sci. USA 91, 9818-9822.
Matus, A. (1981) The postsynaptic density. Trends Neurosci. 4, 51-53.
Matus, A., Pehling, G., Ackermann, M. and Maeder, J. (1980) Brain postsynaptic densities: their relationship to glial and neuronal filaments. J. Cell Biol. 87, 346-359.
Matus, A.I. and Taff-Jones, D.H. (1978) Morphology and molecular composition of isolated postsynaptic junctional structure. Proc. R. Soc. Lond. B. 203, 135-151.
Matus, A.I., Ackermann, M., Pehling., G., Byers, H.R. and Fujiwara, K. (1982) High actin concentrations in brain dendritic spines and postsynaptic densities. Proc. Natl. Acad. Sci. USA 79, 7580-7594.
Műller, B.M., Kistner, U., Kindler, S., Chung, W.J., Kuhlendahl, S., Fenster, S.D., Lau, L.F., Veh, R.W., Huganir, R.L., Gundelfinger, E.D. and Garner, C.C. (1996) SAP102, a novel postsynaptic protein that interacts with NMDA receptor complexes in vivo. Neuron 17, 255-265.
Mummery, R., Sessay, A., Lai, F.A. and Beesley, P.W. (1996) Beta-dystroglycan: subcellular localization in rat brain and detection of a novel immunologically related, postsynaptic density-enriched protein. J. Neurochem. 66, 2455-2459.
Naisbitt, S., Kim, E., Tu, J.C., Xiao, B., Sala, C., Valtschanoff, J., Weinberg, R.J., Worley, P.F. and Sheng, M. (1999) Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23, 569-582.
Nieto-Sampedro, M., Hoff, S.F. and Cotman, C.W. (1982) Perforated postsynaptic densities: probable intermediates in synapse turnover. Proc. Natl. Acad. Sci. USA 79, 5718-5722.
Nishizuka, Y. (1992) Intracellular signaling by hydrolysis phospholipids and activation of protein kinase C. Science 258, 607-614
Nusser, D., Mulvihill, E., Streit, P. and somogyi, P. (1994). Subsynaptic segregation of metabotropic and ionotropic glutamate receptor as revealed by immunogold localization. Neuroscience 61, 421-427.
Palmiter, R.D., Cole, T.B. and Findley, S.D. (1996a) ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestraion. EMBO J. 15, 1784-1791.
Palmiter, R.D., Cole, T.B., Qualfe, C.J. and Findley, S.D. (1996b) ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc. Natl. Acad. Sci. U.S.A. 93, 14934-14939.
Palmiter, R.D. and Findley, S.D. (1995) Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J. 14, 639-649.
Perez-Clausell, J. and Danscher, G. (1985) Intravascular localization of zinc in rat telencephalic boutons. A histochemical study. Brain Res. 337, 91-98.
Rich, D.P., Colbran, R.J., Schworer, C.M. and Soderling, T.R. (1989) Regulatory properties of calcium/calmodulin-dependent protein kinase II in rat brain postsynaptic densities. J. Neurochem.53, 807-816.
Sheng, M. and Kim, E. (2000) The shank family of scaffold proteins. J. Cell Sci. 113, 1851-1856.
Seidel, B., Zuschratter, W., Wex, H., Garner, C.C. and Gundelfinger, E.D. (1995) Spatial and subcellular localization of the membrane cytoskeleton-associated protein alpha-adducin in the rat brain. Brain Res. 700, 13-24.
Seidenbecher, C.I., Langnäse, K., Sanmarti-Vila, L., Böckers, T.M., Smalla, K.H., Sabel, B.A., Garner, C.C., Gundelfinger, E.D. and Kreutz, M.R. (1998) Caldendrin, a novel neuronal calcium-binding protein confined to the somato-dendritic compartment. J. Biol. Chem. 273, 21324-21331.
Sharma R.K. and Wang J.H. (1986) Purification and characterization of bovine lung calmodulin-dependent cyclic nucleotide phosphodiesterase. An enzyme containing calmodulin as a subunit. J. Biol. Chem. 261, 14160-14166.
Stevens, C.F., Tonegawa, S. and Wang Y. (1994) The role of calcium/calmodulin kinase II in 3 forms of synaptic plasticity. Curr. Biol. 4, 687-693.
Strader, C.D., Pickel, V.M., Joh, T.H., Strohsacker, M.W., Shorr, R.G., Lefkowitz, R.J. and Caron, M.G. (1983) Antibodies to the β-adrenergic receptor: Attenuation of catecholamide-sensitive adenylate cyclase and demonstration of postsynaptic receptor localization in brain. Proc. Natl. Acad. Sci. USA.80, 1840-1844.
Suzuki, T., Okumura, N.K., Tanaka, R., Ogura, A., Nakamura, K., Kudo, Y. and Tada, T. (1993) Characterization of protein kinase C activities in postsynaptic density fractions prepared from cerebral cortex, hippocampus and cerebellum. Brain Res. 619, 69-75.
Suzuki, T., Okumura, N.K. and .Nishida, E. (1995). ERK2-type mitogen-activated protein kinase (MAPK) and its substrates in postsynaptic density fractions from the rat brain. Neurosci. Res. 22, 277-285.
Toni, N., Buchs, P.A., Nikonenko, I., Povilaitite, P. and Muller, D. (2001) Remodeling to Synaptic Membranes after induction of Long-term Potentiation. J. Neurosci. 21(16), 6245-6251
Tu, J.C., Xiao, B., Naisbitt, S., Yuan, J.P., Petralia, R.S., Brakeman, P., Doan, A., Askalu, V.K., Lanahan, A.A., Sheng, M. and Worley, P.F. (1999) Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 23, 583-592.
Walsh, M. J. and Kurue, N. (1992) The postsynaptic density: constituent and associated proteins characterized by elestrophoresis, immunoblotting and peptide sequencing. J. Neurochem. 59, 667-678.
Westenbroek, R.E., Ahlijanian, M.K. and Catteral, W.A. (1990) Clustering of type Ca2+ channel at the best of major densities in hippocampal pyramidal neurons. Nature 347, 281-284.
Wolf, M., Burgess, S., Misra, U.K. and Sahyuorn, N. (1986). Postsynaptic densities contain a subtype of protein kinase C. Biochem. Biophys. Res. Comm. 140, 691-698.
Wu, K., Carlin, R., Sachs, L. and Siekevitz, P. (1985) Existence of a Ca2+-dependent K+ channel in synaptic membrane and postsynaptic density fractions isolated from cain cerebral cortex and cerebellum, as determined by apamin binding. Brain Res. 360, 183-194.
Wu. K., Huang, Y., Adler, J. and Black, I.B. (1992a). On the identity of the major postsynaptic density protein. Proc. Natl. Acad. Sci. USA 89, 3015-3019.
Wu, K., Nigam, S.K., Ledoux, M., Huang, Y., Aoki, C. and Siekevitz, P. (1992) Occurrence of the α subunits of G proteins in cerebral cortex synaptic membrane and postsynaptic density fractions: Modulation of ADP-ribosylation by Ca2+/calmodulin. Proc. Natl. Acad. Sci. USA. 89, 8686-8690.
Wyszynski, M., Lin, J., Rao, A., Nigh, E., Beggs, A.H., Craig, A.M. and Sheng, M. (1997) Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature 385, 439-442.
Ziff, E.B. (1997) Enlightening the postsynaptic density. Neuron 19, 1163-1174.
姜淑芬 (1997) 豬腦中後突觸質密區雙硫鍵結蛋白之研究,國立清華大學生命科學研究所碩士論文.
賴森林 (1998) 後突觸質密區結構之研究-蛋白質間雙硫鍵的形成與影響,國立清華大學生命科學研究所碩士論文.
陳一統 (1999) 豬腦中後突觸質密區之裂解與重組,國立清華大學生命科學研究所碩士論文.
鄭惠萱 (2001) 鋅離子參與豬腦後突觸質密區之生成,國立清華大學生命科學研究所碩士論文..

第一頁 上一頁 下一頁 最後一頁 top