跳到主要內容

臺灣博碩士論文加值系統

(3.238.98.39) 您好!臺灣時間:2022/09/26 11:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施惠美
研究生(外文):Huei-Mei Shih
論文名稱:螯蝦逃跑神經迴路的STP及LTP現象
論文名稱(外文):Short-Term Potentiation and Long-Term Potentiation Mediated by Voltage-Sensitive Gap Junctions in the Crayfish Escape Circuit
指導教授:葉世榮葉世榮引用關係
指導教授(外文):Shih-Rung Yeh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:37
中文關鍵詞:STPLTP電壓感應接合器Hebbian增強同時偵測PKAPKC超閾值強伏特數強直刺激
外文關鍵詞:Short-Term PotentiationLong-Term PotentiationVoltage-Sensitive Gap JunctionHebbian Potentiationcoincidence detectionprotein kinase Aprotein kinase Csuprathreshold high-votage tetanus
相關次數:
  • 被引用被引用:0
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
神經突觸連結增強的現象,普遍被認為是形成記憶的細胞機制,有short- term potentiation (STP)及long-term potentiation (LTP)兩種。在海馬回(hippocampus)的CA1區域可以利用高頻率刺激引起STP及LTP現象。研究顯示雖然STP與LTP有很多不同形式及形成機制,但都是在化學性突觸(chemical synapses)發生。在海馬回引發的STP及LTP,與短暫記憶及長期記憶有很密切的關聯。
我利用螯蝦逃跑神經迴路(crayfish escape circuit)當作實驗材料,在這個迴路含有膽鹼性突觸(cholinergic synapses)以及電壓感應接合器(voltage-sensitive gap-junction)兩種訊息傳遞方式。這種非線性電壓感應的整流(rectifying)接合器使LG(lateral giant )有同時偵測者(coincidence detector)的功用,可以偵測突觸前細胞傳入的訊息是否同時傳入。但系統中並沒有NMDA receptor的存在。本實驗室也發現在這個迴路使用弱伏特數強直刺激(low-voltage tetanus),可以誘出LTP。
我使用強伏特數強直刺激(suprathreshold high-voltage tetanus),可以引起較短暫的STP及較長效的LTP。抑制神經迴路中的膽鹼突觸仍可引出STP及LTP,可知STP及LTP是經由電壓感應接合器(voltage-sensitive gap-junction)產生。STP及LTP雖然都需要突觸後細胞發生強烈去極化(depolarization),促使鈣離子從細胞外流入突觸後細胞內,但這兩種連結增強的後續機制並不同。強伏特數(supHV)強直刺激所引起的STP及LTP不同,而且強伏特數(supHV)與弱伏特數(LV)所引發之LTP機制也不同。
利用低伏特數高頻率刺激可以使突觸前細胞發生變化而引起LTP,但刺激的次數太少或頻率太低就無法誘出LTP。意味著在自然環境下,螯蝦對於普通而偶然發生的擾動,不會產生增強的反應變化;若普通的擾動密集多次的在某一方向出現,則使螯蝦對於此方向的擾對反應漸漸增強。然而強伏特數的刺激,在很少的刺激次數或低頻率刺激,卻可以跟多次的高頻率刺激一樣,使突觸前細胞發生改變而成功誘出STP,以及突觸後細胞發生變化產生LTP。表示強烈的擾動不論是密集或偶然地在某一方向發生,都會讓螯蝦對於此方向傳入的擾動訊息的反應立刻增強而隨時間慢慢減弱,接著對於各種方向傳入的擾動訊息反應則漸漸地增大。

Short-term potentiation (STP) and long-term potentiation (LTP) are two forms of synaptic facilitation. Much of the experimental work concerns the possible roles of STP and LTP in memory formation. Both STP and LTP can be induced by high-frequency stimulation in hippocampal area CA1 that are the phases of population excitatory postsynaptic potential. Many studies of conditioned that they are the activity-dependent increase in synaptic efficacy and through chemical synapses. STP and LTP are considered to contribute to short-term memory and long-term memory storage.
Both cholinergic synapses and voltage-sensitive gap junctions but no NMDA receptors exist in the crayfish escape circuit. Coincidence detection mediated by voltage-sensitive gap junction has been reported in the LG escape circuit of crayfish. Both voltage-sensitive gap junction and NMDA receptor are the coincidence detectors. Previous work from our laboratory showed that low-voltage tetanus induced LTP can be mediated by this voltage-sensitive gap junction in the crayfish escape circuit.
Here I report that both STP and LTP can be induced by suprathreshold high-voltage tetanus. In the absence of cholinergic synapses, these two forms of potentiation can be induced suggest that these potentiation are mediated by electrical synapse. I propose that STP and LTP were expressed via independent mechanisms, although the calcium of extracellular and the depolarization of postsynaptic neuron played a important role in these two forms of synaptic facilitation. My results suggest that low-voltage tetanus and high-voltage tetanus involve two similar but different mechanism in LTP induction.
The low-frequency tetanus induced LTP result from presynaptic processes. Low frequency of weak repeated stimulation cannot induced LTP, indicate that crayfish will not change the sensitivity of response when weak stimulate is commonly happened. However, strong stimulation even with low frequency or with fewer number of stimulate still induce STP and LTP indicating increase the overall sensitivity of escape circuit not confined at active synapses.

目錄:
Abstract…………………………………………………………………….. 1
摘要………………………………………………………………………… 2
前言………………………………………………………………………… 3
材料與方法……………………………………………………………..… 6
結果………………………………………………………………………… 9
一、螯蝦逃跑神經迴路的STP及LTP現象……………………………. 9
二、在螯蝦逃跑神經迴路引發STP及LTP的條件…………………… 11
三、不一定要在chemical synapse才能引發STP及LTP……………... 13
四、GABAergic neurons沒有參與STP及LTP的控……………..…… 16
五、STP及LTP是Hebbian式增強…………………………………….. 18
六、突觸後細胞內鈣離子參與STP及LTP的調控………………...…. 20
七、細胞內PKA及PKC在STP及LTP現象中所扮演的角色……… 22
八、只能在active synapse誘出STP……………………………………. 24
九、高伏特數強直刺激與低伏特數強直刺激引發的LTP機制不同.… 25
討論………………………………………………………………………… 27
參考資料………………………………………………………………..… 33
致謝………………………………………………………………………... 38

高文彬 (2001) Long-term potentiation induced by voltage-sensitive gap junction in the crayfish escape circuit. Unpublished.
Alkadhi KA, Al-Hijailan RS, Malik K and Hogan YH (2001) Retrograde carbon monoxide is required for induction of long-term potentiation in rat superior cervical ganglion. J Neurosci 21(10):3515-20
Alle H, Jonas P and Geiger JR (2001) PTP and LTP at a hippocampal mossy fiber-interneuron synapse. PNAS 98(25):14708-13.
Anwyl R, Mulkeen D and Rowan MJ (1989) The role of N-methyl-D-aspartate receptors in the generation of short-term potentiation in the rat hippocampus. Brain Res 503:148-151.
Asztely F, Hanse E and Gustafsson B (1990) The early decay of long-term potentiation in the hippocampal CA1 region in vitro is reduced by activators of protein kinase C. Brain Res 521:355-358.
Bailey CH, Montarolo P G, Chen M, Kandel ER, and Schacher S (1992) Neuron 9, 749-758.
Bailey CH, Giustetto M, Zhu H, Chen M, and Kandel ER (2000) A novel function for serotonin-mediated short-term facilitation in Aplysia:Conversion of a transient, cell-wide homosynaptic Hebbian plasticity into a persistent, protein synthesis-independent synapse-specific enhancement. PNAS 97(21):11581-11586.
Bao JX, Kandel ER, Hawkins RD (1997) Involvement of pre- and postsynaptic mechanisms in posttetanic potentiation at Aplysia synapses. Science 275:969-973.
Barrionuevo G, Kelso S, Johnston D and Brown TH (1986) Conductance mechanism responsible for long-term potentiation in monosynaptic and isolated excitatory synaptic inputs to the hippocampus. J Neurophysiol. 55:540-550.
Bekker JM and Stevens CF (1990) Presynaptic mechanism for long-term potentiation in the hippocampus. Nature 346:724-729
Bliss TVP, Collingridge GL (1993) A synaptic model of memory:long-term potentiation in the hippocampus. Nature 361:31-39.
Brown TH, Chapman PF, Kairiss EW and Keenan CL (1988) Long-term synaptic potentiation. Science Wash DC 242:724-728.
Buonomano DV (2000) Decoding temporal information:a model based on short-term synaptic plasticity. J Neurosci 20:129-141.
Casadio A, Martin KC, Giustetto M, Zhu H, Chen M, Bartsch D, Bailey CH, and Kandel ER (1999) cell 99,221-237.
Clark KA and Collingridge GL (1995) Synaptic potentiation of dual-component excitatory postsynaptic currents in the rat hippocampus. J Physiol 482(Pt1):39-52.
Cui M,and Walters ET (1994) Homosynaptic LTP and PTP of sensorimotor synapses mediating the tail withdrawal reflex in Aplysia are reduced by postsynaptic hyperpolarization. Soc Neurosci Abstr 20:1071.
Delaney KR, Tank DW (1994) A quantitative measurement of the dependence of short-term synaptic enhancement of presynaptic residual calcium. J Neurosci 14:5885-5902.
Edwards DH, Yeh S-R and Krasne FB (1998) Neuronal coincidence detection by voltage-sensitive electrical synapses. PNAS 95:7145-7150.
Edwards DH, Heitler WJ and Krasne FB (1999) Fifty years of a comman neuron:the neurobiology of escape behavior in the crayfish. TINS 22(4):153-161
Fisher TM, Carew TJ (1995) Activity-dependent recurrent inhibition:a mechanism for dynamic gain control in the siphon withdrawal reflex of Aplysia. J Neurosci 13:1302-1314.
Fortune ES and Rose GJ (2001) Short-term synaptic plasticity as a temporal filter. TRENDS in Neurosci. 24(7)381-385.
Gerstner W and Abbott LF (1997) Learning navigational maps through potentiation and modulation of hippocampal place cells. J Comp Neurosci 1:79-94
Giaume C, Kado RT and Korn H (1987) J. Physiol. 386:91-112
Glanzman DL, Kandel ER, and Schacher S (1990) Science 249,799-802.
Hebb DO (1949) Organization of behavior:a neuropsycological theory. New York: John Wiley and Sons.
Heitler WJ and Edwards DH (1998) J Exp Biol 201:503-513.
Hidaka H, et al (1984)Biochemistry 23:5036
Hoffman DA, Sprengel R and Sakmann B (2002) Molecular dissection of hippocampal theta-burst pairing potentiation. PNAS 99(11):7740-5
Holmes WR and Levy WB (1990) Insights into associative long-term potentiation from computational models of NMDA receptor-mediated calcium influx and intracellular calcium changes. J Neurophysiol 63:1148-1168.
Huang Y-Y, Li X-C, and Kandel ER (1994) cAMP contributes to mossy fiber LTP by initiating both a covalently-mediated early phase and a macro-molecular synthesis dependent late phase. Cell 79:69-79.
Jaslove SW and Brink PR (1986) Nature 323:63-65.
Kamiya HZ. Zucker RS (1994) Residual Ca2+ and short-term synaptic plasticity. Nature 371:603-606.
Kauer JA, Malenka RC and Nicoll RA (1988) NMDA application potentiates synaptic transmission in hippocampus. Nature Lond 334:249-252.
Kelso SR, Ganong AH, and Brown TH (1986) Hebbian synapses in hippocampus.Pooc. Natl. Acad. Sci. U.S.A. 83:5326-5330.
Krasne FB (1969) Excitation and habituation of the crayfish escape reflex:The depolarizing response in later giant fibers of the isolated abdomen. J Exp Biol 50:29-46.
Larkman A. Hannay T, Stratfosel K and Jack T (1992) Presynaptic release probability influences the locus of long-term potentiation. Nature 360:70-73.
Lee SC and Krasne FB (1993) Ultrastructure of the circuit providing input to the crayfish lateral giant neurons. J Comp Neurol 327(2):271-88.
Lee HK, Barbarosie M, Kameyama K, Bear MF and Huganir RL (2000) Regulation of distinct AMPA receptor phosphorylation sites during bi-directional synaptic plasticity. Nature 405(6789)955-9.
Lin XY, and Glanzman DL (1994) Long-term potentiation of Aplysia sensorimotor synapse in cell culture:regulation by postsynaptic voltage. Proc R Soc Lond B Biol Sci 255:113-118.
Lovinger DM and Routtenberg A (1988) Synapse-specific protein kinase C activation enhances maintenance of long-term potentiation in rat hippocampus. J Physiol Lond 400:321-333.
Lynch G, Larson J, Kelso S, Barrionuevo G and Schottler F (1983) Intracellular injection of EGTA block induction of hippocampal long-term potentiation. Nature 305:719-721.
Madison DV, Malenka RC and Nicoll RA (1991) Mechanisms underlying long-term potentiation of synaptic transmission. Annu Rev Neurosci 14:379-398.
Magali R-H, Ruth E, Barry VLP, Antony G and Patric KS (1999) Evidence of a role for cyclic ADP-ribose in long-term synaptic depression in hippocampus. PNAS 96:4061-4066.
Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275(5279):209-13.
Malenka RC, Kauer JA, Zucker RS and Nicoll RA (1988) Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science Wash DC 242:81-84.
Malenka RC (1991) Postsynaptic factors control the duration of synaptic enhancement in area CA1 of the hippocampus. Neuron 6:53-60.
Malenka RC and Nicoll RA (1999) LTP:a decade of progress? Science 285:1870-1874.
Mark WM, Sunhee CL and Franklin BK (1987) Cooperativity-dependent long-term potentiation in the crayfish lateral giant escape reaction circuit. J Neurosci 7(4):1081-1092.
Martin KC, Casadio A, Zhu H, Yaping E, Rose J, Bailey CH, Chen M, and Kandel ER (1997) cell 91,927-938.
Matthies H and Reymann KG (1993) Protein kinase A inhibitors prevent the maintenance of hippocampal long-term potentiation. Neuroreport 4(6):712-4
McGuinness N, Anwyl R and Rowan M (1991a) The effects of external calcium on the N-methyl-D-aspartate induced short-term potentiation in the rat hippocampal slice. Neurosci Lett 131:13-16.
McGuinness N, Anwyl R and Rowan M (1991b) Inhibition of an N-methyl-D-aspartate induced short-term potentiation in the rat hippocampal slice. Brain Res 562:335-338.
Miller MW, Vu ET and Krasne FB (1992) Cholinergic transmission at the first synapse of the circuit mediating the crayfish later giant escape reaction. J Neurophysiol 68:2174-2184.
Montarolo PG, Goelet P, Castellucci VF, Morgan J, Kandel ER, and Schacher S (1986) Science 234,1249-1254.
Mulkey RM and Zucker RS (1992) Posttetanic potentiation at the crayfish neuromuscular junction is dependent on both intracellular calcium and sodium ion accumulation. J Neurosci 12(11):4327-4336.
Munoz G and Marshall SH (1990) ibid. 190,233.
Nicoll RA and Malenka RC (1995) Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377:115-118.
Regehr WG, Delaney KR, Tank DW (1994) The role of presynaptic calcium in short-term enhancement at the hippocampal mossy fiber synapse. J Neurosci 14:523-537.
Sacchetti B, Lorenzini CA, Baldi E, Bucherelli C, Roberto M, Tassoni G, Brunelli M (2002) Time-dependent inhibition of hippocampal LTP in vitro following contextual fear conditioning in the rat. Eur J Neurosci. 15(1):143-50.
Sanna PP, Cammalleri M, Berton F, Simpson C, Lutjens R, Bloom FE, Francesconi W. (2002) Phosphatidylinositol 3-Kinase Is Required for the Expression But Not for the Induction or the Maintenance of Long-Term Potentiation in the Hippocampal CA1 Region. J Neurosci 22(9):3359-3365.
Schaffhausen JH, Fischer TM, and Carew TJ (2001) Contirbution of postsynaptic Ca2+ to the induction of posttetanic potentiation in the neural circuit for siphon withdrawal in Aplysia. J Neurosci 21(5):1739-1749.
Scott TR, Bennett MR (1993) The effect of ions and second messengers on long-term potentiation of chemical transmission in avian ciliary ganglia. Br J Pharmacol 110(1):461-9.
Svendsen F, Tjolsen A, Rygh LJ and Hole K (1999) Expression of long-term potentiation in single wide dynamic range neurons in the rat is sensitive to blockade of glutamate receptors. Neurosci Lett 259(1):25-8.
Teyler TJ and DiScenna P (1984) Long-term potentiation as a candidate mnemonic device. Brain Res Rev 7:15-28.
Van Harreveld (1936) A physiological solution for freshwater crustaceans. Proc Soc Exp Biol Med 34:428-432.
Vu ET and Krasne FB (1993) Crayfish tonic inhibition:prolonged modulation of behavioral excitability by classical GABAergic inhibition. J Neurosci 13(10)4394-402.
Wan J-J and Poo M-M (1999) Activity-induced potentiation of developing neuromuscular synapses. Science 285:1725-1728.
Wang JH and Kelly PT (1995) Postsynaptic injection of CA2+/CaM induces synaptic potentiation requiring CaMKII and PKC activity. Neuron 15(2):443-52.
Wine JJ and Franklin BK (1982) The cellular organization of crayfish escape behavior. The Biology of Crustacea, vol 4, D. C. Sandemean and H. L. Atwood, eds. pp.241-292, Academic Press, New York.
Xie X, Barrionuevo G and Berger TW (1996) Differential expression of short-term potentiation by AMPA and NMDA receptors in dentate gyrus. Learn Mem 3(2-3):115-23.
Xie X, Liaw JS, Baudry M and Berger TW (1997) Novel expression mechanism for synaptic potentiation:alignment of presynaptic release site and postsynaptic receptor. PNAS 94(13):6983-8
Zador A, Koch C and Brown TH (1990)Biophysical model of a Hebbian synapse. PNAS 87(16):6718-6722.
Zucker RS (1972) Crayfish escape behavior and central synapses. Ⅰ. Neural circuit exciting lateral giant fiber. J Neurophysiol 35:599-620.
Zucker RS (1989) Short-term synaptic plasticity. Annu Rev Neurosci 12:13-31.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊