跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/23 00:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉馨瑜
論文名稱:以probasin作為老鼠攝護腺癌DNA疫苗的效果評估
論文名稱(外文):Evaluation of the efficacy of probasin as DNA vaccine for mouse prostate caner
指導教授:葉世榮葉世榮引用關係江啟勳
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:73
中文關鍵詞:攝護腺癌DNA疫苗
外文關鍵詞:prostate cancerprobasinDNA vaccine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文在建立DNA疫苗治療老鼠攝護腺癌的動物模型,以模擬利用DNA疫苗治療人類攝護腺癌的情形。在人類攝護腺治療中,通常以攝護腺特殊抗原(prostate-specific antigen, PSA)為基因療法之標的物,於是本論文在動物模型的抗原的選擇上,以正常老鼠攝護腺體表現的probasin蛋白質作為DNA疫苗基因療法的目標物。本實驗主題在利用基因重組技術,由老鼠攝護腺體取得probasin基因,與質體接合後,構築出可製造probasin的質體DNA (pIRESpuro-probasin)。再以此質體DNA做為DNA疫苗,用肌肉注射方式(i.m.)打入不同品系正常老鼠體內,觀察不同宿主引發的免疫反應,並且以組織切片觀察是否因為打入能產生大量自身抗原的質體,而使攝護腺組織產生發炎現象。對於未來動物模型的建構,利用轉染法(transfection) 將建構好的pIRESpuro-probasin質體植入失去表現probasin能力的老鼠攝護腺癌細胞株(TrampC-1)中,以模擬人類的攝護腺癌細胞分泌PSA的情形。
本論文成功建構出pIRESpuro-probasin質體DNA作為DNA疫苗,證明施打於動物體內並無副作用發生,並且構築了能分泌probasin的老鼠攝護腺癌細胞株(TrampC-1- pIRESp-probasin),模擬人類攝護腺腫瘤,亦初步證實其腫瘤生成能力與原細胞株(TrampC-1)相同。未來實驗方向應朝結合probasin與細胞激素的DNA疫苗,輔助以建立anti-probasin monoclonal antibody,觀察細胞內或體內probasin蛋白質表現,以期能夠有效的建立以DNA疫苗治療老鼠攝護腺癌的模型。
目錄
1. 以probasin作為老鼠攝護腺癌DNA疫苗的效果評估
英文摘要………………………………………………………………. I
中文摘要……………………………………………………………….III
誌謝……………………………………………………………………..V
目錄…………………………………………………………………… VI
第一章 緒論
第一節 傳統癌症治療與攝護腺癌基因療法…………………….....1
第二節 免疫基因療法(Immuno-gene therapy)與DNA疫苗(DNA vaccine)對攝護腺癌治療之應用……………………….....5
第三節 小鼠攝護腺抗原probsain介紹………………………….....9
第四節 研究目的與內容……………………………………………11
第二章 材料與方法
第一節 構築pIRESpuro-probasin質體DNA………………………13
第二節 製作pIRESpuro-probasin質體DNA為DNA疫苗(vaccine)
……………………………………………………………..19
第三節 將pIRESpuro-probasin質體DNA送入細胞中……………23
第四節 以靜脈注入細胞至老鼠體內,觀察肺部轉移腫瘤細胞數..26
第三章 實驗結果
第一節 構築pIRESpuro-probasin質體DNA……………………...28
第二節 以pIRESpuro - probasin質體DNA為DNA疫苗(vaccine),在C3H/HeN及C57BL/6J品系老鼠中的免疫反應………30
第三節 將pIRESpuro - probasin質體DNA送入細胞中………….32
第四節 比較TrampC-1-pIRESp-probasin及TrampC-1細胞以靜脈注射方式打入C57BL/6J老鼠後,肺部腫瘤細胞轉移之情形
…………………………………………..…………………..35
第四章 討論……………………………………………………………36
圖表……………………………………………………………………..43
附錄……………………………………………………………………..56
1. Chang, C.Y., P.J. Walther, and D.P. McDonnell, Glucocorticoids manifest androgenic activity in a cell line derived from a metastatic prostate cancer. Cancer Res, 2001. 61(24): p. 8712-7.
2. Harrington, K.J., et al., Gene therapy for prostate cancer: current status and future prospects. J Urol, 2001. 166(4): p. 1220-33.
3. McDevitt, M.R., et al., An alpha-particle emitting antibody ([213Bi]J591) for radioimmunotherapy of prostate cancer. Cancer Res, 2000. 60(21): p. 6095-100.
4. Bander, N.H., et al., MHC class I and II expression in prostate carcinoma and modulation by interferon-alpha and -gamma. Prostate, 1997. 33(4): p. 233-9.
5. Kwon, E.D., et al., Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc Natl Acad Sci U S A, 1997. 94(15): p. 8099-103.
6. Ochsenbein, A.F., et al., Immune surveillance against a solid tumor fails because of immunological ignorance. Proc Natl Acad Sci U S A, 1999. 96(5): p. 2233-8.
7. Wolff, J.A., et al., Direct gene transfer into mouse muscle in vivo. Science, 1990. 247(4949 Pt 1): p. 1465-8.
8. Ulmer, J.B., et al., Heterologous protection against influenza by injection of DNA encoding a viral protein. Science, 1993. 259(5102): p. 1745-9.
9. Iwasaki, A., et al., Enhanced CTL responses mediated by plasmid DNA immunogens encoding costimulatory molecules and cytokines. J Immunol, 1997. 158(10): p. 4591-601.
10. Ulmer, J.B., et al., Generation of MHC class I-restricted cytotoxic T lymphocytes by expression of a viral protein in muscle cells: antigen presentation by non-muscle cells. Immunology, 1996. 89(1): p. 59-67.
11. Pertmer, T.M., T.R. Roberts, and J.R. Haynes, Influenza virus nucleoprotein-specific immunoglobulin G subclass and cytokine responses elicited by DNA vaccination are dependent on the route of vector DNA delivery. J Virol, 1996. 70(9): p. 6119-25.
12. Boyle, J.S., C. Koniaras, and A.M. Lew, Influence of cellular location of expressed antigen on the efficacy of DNA vaccination: cytotoxic T lymphocyte and antibody responses are suboptimal when antigen is cytoplasmic after intramuscular DNA immunization. Int Immunol, 1997. 9(12): p. 1897-906.
13. Thomson, A.A., B.A. Foster, and G.R. Cunha, Analysis of growth factor and receptor mRNA levels during development of the rat seminal vesicle and prostate. Development, 1997. 124(12): p. 2431-9.
14. Polascik, T.J., J.E. Oesterling, and A.W. Partin, Prostate specific antigen: a decade of discovery--what we have learned and where we are going. J Urol, 1999. 162(2): p. 293-306.
15. Murphy, G.P., et al., Current evaluation of the tissue localization and diagnostic utility of prostate specific membrane antigen. Cancer, 1998. 83(11): p. 2259-69.
16. Reiter, R.E., et al., Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc Natl Acad Sci U S A, 1998. 95(4): p. 1735-40.
17. Matuo, Y., et al., Isolation and characterization of androgen-dependent non-histone chromosomal protein from dorsolateral prostate of rats. Biochem Biophys Res Commun, 1982. 109(2): p. 334-40.
18. Greenberg, N.M., et al., Prostate cancer in a transgenic mouse. Proc Natl Acad Sci U S A, 1995. 92(8): p. 3439-43.
19. Johnson, M.A., et al., Isolation and characterization of mouse probasin: An androgen-regulated protein specifically expressed in the differentiated prostate. Prostate, 2000. 43(4): p. 255-62.
20. Spence, A.M., et al., Regulation of a bifunctional mRNA results in synthesis of secreted and nuclear probasin. Proc Natl Acad Sci U S A, 1989. 86(20): p. 7843-7.
21. Pevsner, J., et al., Molecular cloning of odorant-binding protein: member of a ligand carrier family. Science, 1988. 241(4863): p. 336-9.
22. Wei, C., et al., Tissue-specific expression of the human prostate-specific antigen gene in transgenic mice: implications for tolerance and immunotherapy. Proc Natl Acad Sci U S A, 1997. 94(12): p. 6369-74.
23. Small, E.J., et al., Therapy of advanced prostate cancer with granulocyte macrophage colony- stimulating factor. Clin Cancer Res, 1999. 5(7): p. 1738-44.
24. Eder, J.P., et al., A phase I trial of a recombinant vaccinia virus expressing prostate- specific antigen in advanced prostate cancer. Clin Cancer Res, 2000. 6(5): p. 1632-8.
25. Heiser, A., et al., Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest, 2002. 109(3): p. 409-17.
26. Naftzger, C., et al., Immune response to a differentiation antigen induced by altered antigen: a study of tumor rejection and autoimmunity. Proc Natl Acad Sci U S A, 1996. 93(25): p. 14809-14.
27. Overwijk, W.W., et al., Vaccination with a recombinant vaccinia virus encoding a "self" antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4(+) T lymphocytes. Proc Natl Acad Sci U S A, 1999. 96(6): p. 2982-7.
28. Mor, G., et al., Do DNA vaccines induce autoimmune disease? Hum Gene Ther, 1997. 8(3): p. 293-300.
29. MacColl, G., et al., Intramuscular plasmid DNA injection can accelerate autoimmune responses. Gene Ther, 2001. 8(17): p. 1354-6.
30. Ellerhorst, J.A., et al., Effects of galectin-3 expression on growth and tumorigenicity of the prostate cancer cell line LNCaP. Prostate, 2002. 50(1): p. 64-70.
31. Mahmoud, M.S., et al., Enforced CD19 expression leads to growth inhibition and reduced tumorigenicity. Blood, 1999. 94(10): p. 3551-8.
32. Kelly, W.K., et al., Paclitaxel, estramustine phosphate, and carboplatin in patients with advanced prostate cancer. J Clin Oncol, 2001. 19(1): p. 44-53.
33. Song, S., et al., Nontoxic doses of suramin enhance activity of paclitaxel against lung metastases. Cancer Res, 2001. 61(16): p. 6145-50.
34. Leung, S., et al., Synergistic chemosensitization and inhibition of progression to androgen independence by antisense Bcl-2 oligodeoxynucleotide and paclitaxel in the LNCaP prostate tumor model. Int J Cancer, 2001. 91(6): p. 846-50.
35. Gleave, M.E., et al., Use of antisense oligonucleotides targeting the antiapoptotic gene, clusterin/testosterone-repressed prostate message 2, to enhance androgen sensitivity and chemosensitivity in prostate cancer. Urology, 2001. 58(2 Suppl 1): p. 39-49.
36. Li, Y., et al., Enhanced transgene expression in androgen independent prostate cancer gene therapy by taxane chemotherapeutic agents. J Urol, 2002. 167(1): p. 339-46.
37. Yu, D.C., et al., Antitumor synergy of CV787, a prostate cancer-specific adenovirus, and paclitaxel and docetaxel. Cancer Res, 2001. 61(2): p. 517-25.
38. 張家鳴:細胞激素IL-3植入癌細胞對紫杉醇(taxol)敏感性的影響, 國立清華大學碩士論文, 2000
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top