|
1. Edwards, M. J. (1998) Apoptosis, the heat shock response, hyperthermia, birth defects, disease and cancer. Where are the common links? Cell Stress Chaperones. 3, 213-220 2. Hendrick, J. P., and Hartl, F. U. (1993) Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem. 62, 349-384 3. Mager, W. H., and De Kruijff, A. J. (1995) Stress-induced transcriptional activation. Microbiol Rev. 59, 506-531 4. Snoeckx, L. H., Cornelussen, R. N., Van Nieuwenhoven, F. A., Reneman, R. S., and Van Der Vusse, G. J. (2001) Heat shock proteins and cardiovascular pathophysiology. Physiol Rev. 81, 1461-1497 5. Morimoto, R. I. (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12, 3788-3796 6. Morimoto, R. I., Sarge, K. D., and Abravaya, K. (1992) Transcriptional regulation of heat shock genes. A paradigm for inducible genomic responses. J Biol Chem. 267, 21987-21990 7. Sarge, K. D., Murphy, S. P., and Morimoto, R. I. (1993) Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol. 13, 1392-1407 8. Baler, R., Dahl, G., and Voellmy, R. (1993) Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol Cell Biol. 13, 2486-2496 9. Chu, B., Soncin, F., Price, B. D., Stevenson, M. A., and Calderwood, S. K. (1996) Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J Biol Chem. 271, 30847-30857 10. Kim, J., Nueda, A., Meng, Y. H., Dynan, W. S., and Mivechi, N. F. (1997) Analysis of the phosphorylation of human heat shock transcription factor-1 by MAP kinase family members. J Cell Biochem. 67, 43-54 11. Kline, M. P., and Morimoto, R. I. (1997) Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol Cell Biol. 17, 2107-2115 12. Westwood, J. T., Clos, J., and Wu, C. (1991) Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature. 353, 822-827 13. Xia, W., and Voellmy, R. (1997) Hyperphosphorylation of heat shock transcription factor 1 is correlated with transcriptional competence and slow dissociation of active factor trimers. J Biol Chem. 272, 4094-4102 14. Zuo, J., Rungger, D., and Voellmy, R. (1995) Multiple layers of regulation of human heat shock transcription factor 1. Mol Cell Biol. 15, 4319-4330 15. Lis, J., and Wu, C. (1993) Protein traffic on the heat shock promoter: parking, stalling, and trucking along. Cell. 74, 1-4 16. Wu, C. (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol. 11, 441-469 17. Hegde, R. S., Zuo, J., Voellmy, R., and Welch, W. J. (1995) Short circuiting stress protein expression via a tyrosine kinase inhibitor, herbimycin A. J Cell Physiol. 165, 186-200 18. Zou, J., Guo, Y., Guettouche, T., Smith, D. F., and Voellmy, R. (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell. 94, 471-480 19. Cotto, J. J., Kline, M., and Morimoto, R. I. (1996) Activation of heat shock factor 1 DNA binding precedes stress-induced serine phosphorylation. Evidence for a multistep pathway of regulation. J Biol Chem. 271, 3355-3358 20. Garcia-Cardena, G., Fan, R., Shah, V., Sorrentino, R., Cirino, G., Papapetropoulos, A., and Sessa, W. C. (1998) Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature. 392, 821-824 21. Schulte, T. W., Blagosklonny, M. V., Romanova, L., Mushinski, J. F., Monia, B. P., Johnston, J. F., Nguyen, P., Trepel, J., and Neckers, L. M. (1996) Destabilization of Raf-1 by geldanamycin leads to disruption of the Raf-1-MEK-mitogen-activated protein kinase signalling pathway. Mol Cell Biol. 16, 5839-5845 22. Whitesell, L., Mimnaugh, E. G., De Costa, B., Myers, C. E., and Neckers, L. M. (1994) Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci U S A. 91, 8324-8328 23. Whitesell, L., Sutphin, P. D., Pulcini, E. J., Martinez, J. D., and Cook, P. H. (1998) The physical association of multiple molecular chaperone proteins with mutant p53 is altered by geldanamycin, an hsp90-binding agent. Mol Cell Biol. 18, 1517-1524 24. Smith, D. F., Whitesell, L., and Katsanis, E. (1998) Molecular chaperones: biology and prospects for pharmacological intervention. Pharmacol Rev. 50, 493-514 25. Roe, S. M., Prodromou, C., O'Brien, R., Ladbury, J. E., Piper, P. W., and Pearl, L. H. (1999) Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem. 42, 260-266 26. Stebbins, C. E., Russo, A. A., Schneider, C., Rosen, N., Hartl, F. U., and Pavletich, N. P. (1997) Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell. 89, 239-250 27. Grenert, J. P., Sullivan, W. P., Fadden, P., Haystead, T. A., Clark, J., Mimnaugh, E., Krutzsch, H., Ochel, H. J., Schulte, T. W., Sausville, E., Neckers, L. M., and Toft, D. O. (1997) The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem. 272, 23843-23850 28. Schulte, T. W., Akinaga, S., Soga, S., Sullivan, W., Stensgard, B., Toft, D., and Neckers, L. M. (1998) Antibiotic radicicol binds to the N-terminal domain of Hsp90 and shares important biologic activities with geldanamycin. Cell Stress Chaperones. 3, 100-108 29. Mosser, D. D., Kotzbauer, P. T., Sarge, K. D., and Morimoto, R. I. (1990) In vitro activation of heat shock transcription factor DNA-binding by calcium and biochemical conditions that affect protein conformation. Proc Natl Acad Sci U S A. 87, 3748-3752 30. Price, B. D., and Calderwood, S. K. (1991) Ca2+ is essential for multistep activation of the heat shock factor in permeabilized cells. Mol Cell Biol. 11, 3365-3368 31. Lamarche, S., Chretien, P., and Landry, J. (1985) Inhibition of the heat shock response and synthesis of glucose-regulated proteins in Ca2+-deprived rat hepatoma cells. Biochem Biophys Res Commun. 131, 868-876 32. Choi, A. M., Tucker, R. W., Carlson, S. G., Weigand, G., and Holbrook, N. J. (1994) Calcium mediates expression of stress-response genes in prostaglandin A2-induced growth arrest. Faseb J. 8, 1048-1054 33. Calderwood, S. K., Stevenson, M. A., and Hahn, G. M. (1988) Effects of heat on cell calcium and inositol lipid metabolism. Radiat Res. 113, 414-425 34. Newton, A. C. (1995) Protein kinase C: structure, function, and regulation. J Biol Chem. 270, 28495-28498 35. Nishizuka, Y. (1995) Protein kinase C and lipid signaling for sustained cellular responses. Faseb J. 9, 484-496 36. Holmberg, C. I., Roos, P. M., Lord, J. M., Eriksson, J. E., and Sistonen, L. (1998) Conventional and novel PKC isoenzymes modify the heat-induced stress response but are not activated by heat shock. J Cell Sci. 111 ( Pt 22), 3357-3365 37. Bers, D. M., Patton, C. W., and Nuccitelli, R. (1994) A practical guide to the preparation of Ca2+ buffers. Methods Cell Biol. 40, 3-29 38. Nuccitelli, R., Yim, D. L., and Smart, T. (1993) The sperm-induced Ca2+ wave following fertilization of the Xenopus egg requires the production of Ins(1, 4, 5)P3. Dev Biol. 158, 200-212 39. Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 260, 3440-3450 40. Pszczolkowski, M. A., Lee, W. S., Liu, H. P., and Chiang, A. S. (1999) Glutamate-induced rise in cytosolic calcium concentration stimulates in vitro rates of juvenile hormone biosynthesis in corpus allatum of Diploptera punctata. Mol Cell Endocrinol. 158, 163-171 41. Kao, J. P. (1994) Practical aspects of measuring [Ca2+] with fluorescent indicators. Methods Cell Biol. 40, 155-181 42. Chomczynski, P., and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 162, 156-159 43. Chen, K. D., Chen, L. Y., Huang, H. L., Lieu, C. H., Chang, Y. N., Chang, M. D., and Lai, Y. K. (1998) Involvement of p38 mitogen-activated protein kinase signaling pathway in the rapid induction of the 78-kDa glucose-regulated protein in 9L rat brain tumor cells. J Biol Chem. 273, 749-755 44. Ding, X. Z., Smallridge, R. C., Galloway, R. J., and Kiang, J. G. (1996) Rapid assay of HSF1 and HSF2 gene expression by RT-PCR. Mol Cell Biochem. 158, 189-192 45. Nishizuka, Y. (1984) The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 308, 693-698 46. Erdos, G., and Lee, Y. J. (1994) Effect of staurosporine on the transcription of HSP70 heat shock gene in HT-29 cells. Biochem Biophys Res Commun. 202, 476-483 47. Lee, Y. J., Berns, C. M., Erdos, G., Borrelli, M. J., Ahn, C. H., and Corry, P. M. (1994) Effect of 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) on HSP70 and HSP28 gene expression and thermotolerance development in human colon carcinoma cells. Biochem Pharmacol. 48, 2057-2063 48. Yamamoto, N., Smith, M. W., Maki, A., Berezesky, I. K., and Trump, B. F. (1994) Role of cytosolic Ca2+ and protein kinases in the induction of the hsp70 gene. Kidney Int. 45, 1093-1104 49. Kroeger, P. E., Sarge, K. D., and Morimoto, R. I. (1993) Mouse heat shock transcription factors 1 and 2 prefer a trimeric binding site but interact differently with the HSP70 heat shock element. Mol Cell Biol. 13, 3370-3383 50. Mosser, D. D., Duchaine, J., and Massie, B. (1993) The DNA-binding activity of the human heat shock transcription factor is regulated in vivo by hsp70. Mol Cell Biol. 13, 5427-5438
|