( 您好!臺灣時間:2022/08/16 00:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Lin yi hsuan
論文名稱(外文):The Developmental Analysis of Corpus Allatum and the Mapping of Corpus Allatum Innervated Neuronal Network in Drosophila melanogaster
指導教授(外文):Ann-Shyn Chiang
外文關鍵詞:Copus alltumMushroom body
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
咽側腺(Corpus Allatum, CA)是昆蟲體內一對內分泌腺體,它會合成並釋放青春激素去調節昆蟲的發育和生殖週期。在果蠅中,咽側腺與前胸腺(Prothoracic gland, PG)於幼蟲期正好位於一個環狀結構上,統稱為環狀腺(ring gland)。之前研究指出,果蠅中的咽側腺體會受到神經內分泌細胞的調控,而神經內分泌細胞的分布圍繞在蕈狀體的周圍,為了解咽側腺在果蠅幼蟲腦中的發育,及觀察大腦對其調控的機制,利用免疫染色及對染的技術,觀察咽側腺細胞在不同齡期果蠅幼蟲腦中的發育情形;利用數種果蠅突變株來觀察不同的神經內分泌細胞在果蠅腦中的分布及調控咽側腺體的情形,並使用化學傷害(chemical ablation)的方法造成蕈狀體(Mushroom Body, MB)發育不完全而產生結構缺陷,觀察是否會影響神經內分泌細胞體發育或造成神經束分布的改變,藉以了解是否蕈狀體為神經內分泌細胞的上游調控組織。結果發現,整個果蠅幼蟲的發育期中,咽側腺細胞的細胞數目會不斷增長,在三齡果蠅腦中會達到最高峰,然後逐漸減少,進入蛹期前,細胞數目會驟減。此外,咽側腺的體積不斷的增大,咽側腺細胞數目消長的趨勢和之前研究指出的咽側腺分泌之青春激素合成曲線是相符合的,因此我們推測咽側腺細胞數目的增長及體積的增加為製造青春激素所必須的。同時,藉由觀察突變株得到神經內分泌細胞在不同齡期中的發育情形及分布位置的改變,並確實觀察到神經內分泌細胞伸展軸突到咽側腺。由比較正常與受傷害的蕈狀體周圍神經內分泌細胞之分布,發現當腦中的蕈狀體受到傷害後,神經內分泌細胞體會減少或是神經網路分布情形有巨大的改變,推測可能是因為藥物傷害到神經內分泌細胞本身的發育而造成細胞的死亡,或造成細胞體分化的錯亂,或是細胞未得到適當的來自蕈狀體的調控訊號,因此無法被引導發育到正確的位置而造成神經束分布的改變,將來可以藉由傷害蕈狀體或神經內分泌細胞下,觀察咽側腺的發育,了解蕈狀體,神經內分泌細胞及咽側腺三者間的確切調控機制。

Corpus allatum (CA), a pair of the endocrine glands, synthesize and release juvenile hormone (JH) to regulate the development and reproduction of insects. In the larval stages of Drosophila, CA and prothoracic gland (PG) are located in a structure called ring gland. Previous report indicates that some neurosecretory cells near the mushroom bodies extent their axonal processes into CA of the ring gland. However, the developmental changes of CA and the upstream regulator of those CA-innervated neurons are still unclear. In this thesis, I used confocal analysis in combination with immunolabeling, counterstaining techniques to monitor the developmental changes of CA. For examine the regulatory sequencing between mushroom bodies and the CA-innervated neurosecretory cells, some neurosecretory Gal-4 lines were selected to identify the distributions of the labeled neurons. Besides, the chemical ablation by hydroxyurea (HU) treatment, which partially ablated mushroom bodies, was applied to observe the upstream influence on neurosecretory cells. The results showed that the cell numbers of CA reached to the peak at the third instars and dramatically declined before the entrance of puparation. However, the volume of CA gradually increased during development. These results in comparison with the published data of JH biosynthesis in Drosophila suggested that the changes of cell numbers and the cell sizes might respond for JH biosynthesis and storage, respectively. Furthermore, I found that the HU treatment resulted in the damages of mushroom bodies, the decrease of the labeled somata and the difference of the GFP expression patterns. Although, the real mechanism was not elucidated, three possibilities might be concerned: the direct cell killing effect, the differentiation interference, and the abolishment of the upstream signaling. Thereafter, under the controlled damage on mushroom bodies, the developmental observation of neurosecretory cells and CA will provide information for understanding the regulatory relationship between mushroom bodies and neurosecretory.

Chinese Abstract…………………………… 1
English Abstract…………………………… 2
Introduction………………………………… 3
Material and Methods……………………….11
Discussion…………………………………… 22
Figure………………………………………… 31

Alicia, H., Urban, J. and Brand, A. H. (1995). Targeted ablation of glia disrupts axon tract formation in the Drosophila CNS. Development 121, 3703-3712.
Betra, S. and Hadorn, E. (1983). The structure of the ring-gland (corpus allatum ) in normal and lethal larvae of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 24, 236-242.
Chiang, A. S., Pszczolkowski M. A., Lee C. M., Wei T. W. (1999). Protocerebral neurons inhibiting proliferation of corpus allatum cells in the cockroach, Diploptera punctata. J Comp Neurol 413(4), 593-602.
Christopher, A. C. and Thomas, J. B. (1994). Tau-βgalactosidase, an axon-targeted fusion protein. Proc. Natl. Acad. Sci. USA 91, 5972-5976.
Crittenden JR, Skoulakis EM, Han KA, Kalderon D, Davis RL. (1998). Tripartite mushroom body architecture revealed by antigenic markers. Learn Mem 5(1-2), 38-51.
Dagmar, M. Plath, N., Giurfa, M., Moseleit, A. D. and Müller, U. (2002). Hydroxyurea-induced partial mushroom body ablation in the honeybee Apis mellifera: volumetric analysis and quantitative protein determination. J. Neurobiol. 50, 31-44.
Dai J.D. and Gilbert L. I. (1998). Juvenile hormone prevents the onset of programmed cell death in the prothoracic glands of Manduca sexta. Gen Comp Endocrinol 109(2), 155-65.
David S, R., Applebaum, S. W. and Gilbert, L. I. (1989). Developmental regulation of juvenile hormone biosynthesis by the ring gland of Drosophila melanogaster. J. Comp. Physiol. B 159, 383-387.
David S, R., Applebaum, S. W. and Gilbert, L. I. (1990). Allatostatic regulation of juvenile hormone production in vitro by the ring gland of Drosophila melanogaster. Mol. Cell. Endocrinol. 68, 153-161.
de Belle J. S. and Heisenberg, M. (1994). Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science 263, 692-695.
Ernst, H. (1937). An accelerating effect of normal “ring-gland” on puparium-formation in lethal larvae of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 23, 478-484.
Gilbert, L. I. (1962). Maintance of the prothoracic gland by the jevenile hormone in insects. Nature 193, 1205-1207.
Hang, H., Rauth, S. J., Hopkins, K. M., Lieberman, H. B. (2000). Mutant alleles of Schizosaccharomyces pombe rad9 (+) alter hydroxyurea resistance, radioresistance and checkpoint control. Nucleic Acids Res 28(21), 4340-4349.
Harvie PD, Filippova M, Bryant PJ. (1998). Genes expressed in the ring gland, the major endocrine organ of Drosophila melanogaster. Genetics 149(1), 217-31.
Holger, A., Walther, C. and Wicher, D. (1997). Octopamine modulates ionic currents and spiking in dorsal unpaired median (DUM) neurons. NeuroReport 8, 3737-3741.
Horodyski FM, Ewer J, Riddiford LM, Truman JW. (1993). Isolation, characterization and expression of the eclosion hormone gene of Drosophila melanogaster. Eur J Biochem 215, 221-228.
Ito, K., Wakae A., Kazumi S., Yasushi H. and Daisuke Y. (1997). The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 124, 761-771.
Johnson, E. Ringo, J. and Dowse, H. (1997). Modulation of Drosophila heartbeat by neurotransmitters. J. Comp. Physiol. B 167, 89-97.
Ji-Da D. and Gilbert, L.I. (1991). Metamorphosis of the corpus allatum and degeneration of the prothoracic glands during the larval-pupal-adult transformation of Drosophila melanogaster: A cytophysiological analysis of the ring gland. Developmental Bio. 144, 309-326.
Kei, I., Sass, H., Urban, J., Hofbauer, A. and Schneuwly, S. (1997). GAL4-responsive USA-tau as a tool for studying the anatomy and development of the Drosophila central nervous system. Cell Tissue Res. 290, 1-10.
Kyung-An, H., Millar, N. S. and Davis, R. L. (1998). A novel octopamine receptor with preferential expression in Drosophila mushroom bodies. J. Neurosci. 10, 3650-3658.
Liu L, Wolf R, Ernst R, Heisenberg M. (1999). Context generalization in Drosophila visual learning requires the mushroom bodies. Nature 400(6746), 753-756.
Mauelshagen J. (1993). Neural correlates of olfactory learning paradigms in an identified neuron in the honeybee brain. J Neurophysiol 69(2), 609-25.
McBride SM, Giuliani G, Choi C, Krause P, Correale D, Watson K, Baker G, Siwicki KK. (1999). Mushroom body ablation impairs short-term memory and long-term memory of courtship conditioning in Drosophila melanogaster. Neuron 24(4), 967-77.
Monastrioti, M., Jr, C. E. L. and White, K. (1996). Characterization of Drosophila Tyramine β-Hydroxylase gene and isolation of mutant flies lacking octopamine. J. Neurosci. 12, 3900-3911.
Nijhout HF. (1994). Insect hormones. Princeton, NJ: Princeton University Press.
Noveen A, Daniel A, Hartenstein V. (2000). Early development of the Drosophila mushroom body: the roles of eyeless and dachshund. Development 127(16), 3475-88.
Robert C. K., Aggarwal, S. K. and Bodenstein, D. (1966b). The comparative submicroscopic morphology of the ring gland of Drosophila melanogaster during the second and third larval instars. Z. Zellforsch 73, 272-85.
Stocker RF., Lienhard, M. C., Borst, A., Fishbach, K.-F. (1990). AGT synonym, inner antennocerebral trsce (iACT). Cell Tissue Res. 262-269.
Stalker HD. (1972). Intergroup phylogenies in Drosophila as determined by comparisons of salivary banding patterns. Genetics 70(3), 457-74.
Sutherland TD, Unnithan GC, Andersen JF, Evans PH, Murataliev MB, Szabo LZ, Mash EA, Bowers WS, Feyereisen R. (1998). A cytochrome P450 terpenoid hydroxylase linked to the suppression of insect juvenile hormone synthesis. Proc Natl Acad Sci USA 95(22), 12884-9.
Thomas S. and Gunter, K. (2001). Innervation of the ring gland of Drosophila melanogaster. J. Comp. Neurol. 431, 481-491.
Timson J. (1975). Hydroxyurea. Mutat Res 32(2), 115-32.
Troy Z. (2000). Behavioral functions of insect mushroom bodies. Current
Opinion of Neurobiology 10, 790-795.
Tobe SS, Bendena WG. (1999). The regulation of juvenile hormone production in arthropods. Functional and evolutionary perspectives. Ann N Y Acad Sci 897, 300-10.
Tzumin, L., Lee, A. and Luo, L. (1999). Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development 126, 4065-4076.
Vazquez Nin GH., Echeverria OM. (1996). The polytene nucleus in morphological, cytochemical, and functional studies of messenger RNA transcription, processing, and transportation. Eur J Histochem 40(1), 7-16.
Violette, B. P. Zhang, Y. Z., Haugland, R. P. and Singer, V. L. (1997). The ELF-97 alkaline phosphatase substrate provides a bright, photostable, fluorescent signal amplification method for FISH. The Histochem. Cytochem. 45, 345-357.
Wolf R, Wittig T, Liu L, Wustmann G, Eyding D, Heisenberg M. (1998). Drosophila mushroom bodies are dispensable for visual, tactile, and motor learning. Learn Mem 5(1-2), 166-78.
Yasuhito, S., Shimazaki, K. Teruo, I. Matsubara, F. and Aizono, Y. (1995). The in vitro release of prothoracicotropic hormone (PTTH) from the brain-corpus cardiacum-corpus allatum complex of silkworm. Bombyx mori. Comp. Biochem. Physiol. 110, 143-148.

第一頁 上一頁 下一頁 最後一頁 top