跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/17 22:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:方怡之
論文名稱:胎鼠大腦神經元麩胺酸受器對鈣離子通透性之研究
指導教授:張兗君
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:72
中文關鍵詞:麩胺酸受器鈣離子
相關次數:
  • 被引用被引用:2
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
突觸 ( synapse ) 可被視為大腦處理訊息的基本單位,神經元藉由彼此之間的突觸連結來溝通傳遞訊息。因此,對於突觸在發育過程轉變機制的研究,亦顯得十分重要。在哺乳類動物中樞神經系統中,最重要的興奮性神經傳導物質為麩胺酸 ( glutamic acid ),而麩胺酸受器 ( glutamate receptor ) 主要有NMDA受器、AMPA受器及kainate受器。在本論文中主要為觀察AMPA受器在發育早期的表現。取第18天胎鼠鼠腦,進行離體無血清神經細胞培養,觀察在培養第7天、第14天及第19天時,經由鈷離子標定含有calcium-permeable AMPA/kainate受器的細胞,結果顯示由第7天到第14天細胞含有calcium-permeable AMPA/kainate受器的數量增多,而在第14天後增加情形就不明顯。再以西方墨點法分析AMPA受器次級單位GluR2及GluR1的量,發現由第7天到第14天二者的量均增加,但是比較GluR2/GluR1由第7天到第14天比例並無改變,所以推測在發育早期第7天時,不含有GluR2的AMPA受器總數少,而到第14天,不含有GluR2的AMPA受器的總數量增多,但是其中不含GluR2的AMPA受器比例不會改變,也就是calcium-permeable AMPA受器比例不會隨發育而改變。
壹、 緒論……………………………………………………………1
貳、 材料與方法……………………………………………………9
一、 實驗材料………………………………………………………9
二、 實驗方法……………………………………………………..10
參、 結果…………………………………………………………..22
肆、 討論…………………………………………………………..30
伍、 圖表集………………………………………………………..35
陸、 參考文獻……………………………………………………..62
Alexandre Bouron (2001). Modulation of spontaneous quantal release of neurotransmitters in the hippocampus. Prog. Neurobiol. 63, 613-635.
Ascher P., Nowak L. (1986). Calcium permeability of the channels activated by N-methyl-D-aspartate (NMDA) in isolated mouse central neurons. J. Physiol. 377, 35p.
Brewer G. J., Torricelli J. R., Evege E. K., Price P. J. (1993). Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567-576.
Brewer G. J. (1995). Serum-free B27/Neurobasal medium supports differentiated growth of neurons from the striatum nigra, septum, cerebral cortex, cerebellum, and dentate gyrus. J. Neurosci. Res. 42, 674-683.
Brewer G. J. (1997). Isolation and culture of adult rat hippocampal neurons. J. Neurosci. Methods 71, 143-155.
Boulter J., Hollmann M., O’Shea-Greenfield A. (1990). Molecular cloning and functional expression of glutamate receptor subunit genes. Science 249, 1033-1037.
Burnashev N., Monyer H., Seeburg P. H., Sakmann B. (1992). Divalent ion permeability of AMPA receptor channels is dominated by the edited form of single subunit. Neuron 8, 189-198.
Cotman C. W., Iversen L. L. (1987). Excitatory amino acid in the brain: focus on NMDA receptors. Trends Neurosci. 10, 263-265.
David J. C., Yamada K. A., Bagwe M. R., Goldberg M. P. (1996). AMPA receptor activation is rapidly toxic to cortical astrocytes when desensitization is blocked. J. Neurosci. 16, 200-209.
Diamond J.S., Jahr, C.E. (1995). Asynchronous release of synaptic vesicles determines the time course of the AMPA receptor-mediated EPSC. Neuron 15, 1097—1107.
Drian M. J., Bardoul M., König N. (2001). Blockade of AMPA/kainate receptors can either decrease or increase the survival of cultured neocortical cells depending on the stage of maturation. Neurochem. Int. 38, 509-517.
Evans M. S., Collings M. A., Brewer G. J. (1998). Electropphysiology of embryonic, adult and aged rat hippocampal neurons in serum-free culture. J. Neurosci. Methods 79, 37-46.
Fan D., Grooms S. Y., Araneda R. C., Johnson A. B., Dobrenis K., Kessler J. A., Zukin R. S. (1999). AMPA receptor protein expression and function in astrocytes cultured from hippocampus. J. Neurosci. 57, 557-571.
Gardette R., Faivre-Bauman A., Loudes C., Kordon C., Epelbaum J. (1995). Modulation by somatostatin of glutamate sensitivity during development of mouse hypothalamic neurons in vitro. Devel. Brain Reas. 86, 123-133.
Geiger J. R., Melcher T., Koh D. S., Sakmann B., Seeburg P. H., Jonas P., Monyer H. (1995). Relative abundance of subunit mRNAs determines gating and Ca 2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15, 193—204.
Haberly L. B., Behan M. (1983). Structure of the piriform cortex of the opossum. Ⅲ. Ultrastructural characterization of synaptic terminals of association and olfactory bulb afferent fibers. J. Comp. Neurol. 219, 448-460.
Haberly L. B., Presto S. (1986). Ultrastructural analysis of synaptic realationships of intracellularly stained pyramidal cell axons in piriform cortex. J. Comp. Neurol. 248, 464-474.
Hollmann M., O’shea-Greenfield A., Roger S. W., Heinemann S. (1989). Cloning by functional expression of a member of the glutamate receptor family. Nature 342, 643-648.
Hollmann M. and Heinemann S. (1994). Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31-108.
Itazawa S., Isa T., Ozawa S. (1997). Inwardly rectifying and Ca2+-permeable AMPA-type glutamate receptor channels in rat neocortical neurons. J Neurophysiol 78, 2592—2601.
Jensen J. B., Schousboe A., Pickering D. S. (1998). Development of calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in cultured neocortical neurons visualized by cobalt staining. J. Neurosci. Res. 54, 273-281.
Johnson M., Perry R. H., Piggott M. A., Court J. A., Spurden D., Lloyd S., Ince P. G., Perry E. K. (1996). Glutamate receptor binding in the human hippocampus andadjacent cortex during development and aging. Neurobiol. Aging 17, 639-651.
Jonas P., Racca C., Sakmann B., Seeburg P. H., Monyer H. (1994). Differences in calcium permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 12, 1281-1289.
Keinanen K., Wisden W., Sommer B., Werner P., Herb A., Verdon T. A., Sakmann B., Seeburg P. H. (1990). A family of AMPA-selective glutamate receptor. Science 249, 556-560.
Kim J. H., Huganir R. L. (1999). Organization and regulation of proteins at synapses. Curr. Opin. Cell Biol. 11, 248-254.
Köles L., Wirkner K., Illes P. (2001). Modulation of ionotropic glutamate receptor channels. Neurochem. Res. 26, 925-932.
Kumar S. S., Bacci A., Kharazia V., Huguenard J. R. (2002). A developmental switch of AMPA receptor subunits in neocortical pyramidal neurons. J. Neurosci. 22, 3005-3015.
Kutsuwada T., Kashiwabuchi N., Mori H., Sakimura K., Kushiya E., Araki K., Meguro H., Masaki H., Kumanishi T., Arakawa M., Mishina M. (1992). Molecular diversity of the NMDA receptor channel. Nature 358, 36-41.
Lawrence J. J., Trussell L. O. (2000). Long-term specification of AMPA receptor properties after synapse formation. J Neurosci 20, 4864—4870.
Lee S. H., Sheng M. (2000). Development of neuron-neuron synapses. Curr. Opin. Neurobiol. 10,125-131.
Luscher C., Xia H., Beattie E. C., Carroll R. C., von Zastrow M., Malenka R. C., Nicoll R. A. (1999). Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 24, 649-658.
MacPherson P. A., Jones S., Pawson P. A., Marshall K. C., Mcburney M. W. (1997). P19 cells differentiate into glutamatergic and glutamate-responsive neurons in vitro. Neurosci. 80, 487-499.
Mahanty N. K., Sah P. (1998). Calcium permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala. Nature 394, 683-687.
Mano I., Teichberg V. I. (1998). A tetrameric subunit stoichiometry for a glutamate receptor-channel complex. NeuroReport 9, 327-331.
Mattson M. P., Kater S. B. (1987). Calcium regulation of neurite elongation and growth cone motility. J. Neurosci. 7, 4034-4043.
Mattson M. P., Ping D., Kater S. B. (1988). Outgrowth-regulation actions of glutamate in isolated hippocampal pyramidal neurons. J. Neurosci. 8, 2087-2100.
Mayer M. L., Wesbrook G. L., Guthrie P. B. (1984). Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurons. Nature 309, 261-263.
McBain C. J., Dingledine R. (1993). Heterogeneity of synaptic glutamate receptors on CA3 stratum radiatum interneurons of rat hippocampus. J. Physiol. (Lond) 462, 373-392.
Morales M., and Goda Y. (1999). Nomadic AMPA receptors and LTP. Neuron 23, 431-434.
Nakanishi N, Shneider NA, Axel R. (1990). A family of glutamate receptor genes: evidence for the formation of heteromultimeric receptors with distinct channel properties. Neuron 5, 569-581.
Partin K. M., Bowie D., Mayer M. L. (1995). Structural determinants of allosteric regulation in alternatively spliced AMPA receptors. Neuron 14, 832-843.
Paternain A. V., Morales M., Lerma J. (1995). Selective antagonism of AMPA receptor unmasks kainate receptor-mediated responses in hippocampal neurons. Neuron 14, 185-189.
Patneau D. K., Mayer M. L. (1990). Structure-activity relationships for amino acid transmitter candidates action at N-methyl-D-aspartate and quisqualate receptors. J. Neurosci. 10, 2385-2399.
Patneau D. K., Vyklicky L., Mayer M. L. (1993). Hippocampal neurons exhibit cyclothiazide-sensitive rapidly desensitizing responses to kainate. J. Neurosci. 13, 3496-3509.
Pickard L., Noel J., Henley J. M., Collingridge G. L., Molnar E. (2000). Developmental changes in synaptic AMPA and NMDA receptor distribution and AMPA receptor subunit composition in living hippocampal neurons. J Neurosci 20, 7922—7931.
Pruss R. M., Akeson R. L., Racke M. M., Wilburn J. L. (1991). Agonist-activated cobalt uptake identifies divalent cation-permeable kainate receptors on neurons and glial cells. Neuron 7, 509-518.
Raff M. C., Abney E. R., Cohen J., Lindsay R., Noble M. (1983). Two types of astrocytes in culture of developing rat white matter: differences in morphology, surface gangliosides, and growth characteristics. J. Neurosci. 3, 1289-1300.
Roche K. W., O’Brien R. J., Mammen A. L., Berhardt J. and Huganir R. L. (1996). Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron 16, 1179-1188.
Rohrbough J., Spitzer N. C. (1999). Ca2+-permeable AMPA receptors and spontaneous presynaptic transmitter release at developing excitatory spinal synapses. J Neurosci 19, 8528—8541.
Sheng M., Cummings J., Roldan L. A., Jan Y. N., Jan L. Y. (1994). Changing subunit composition of heteromeric NMDA receptors during development of the rat cortex. Nature 368, 144-147.
Turrigiano G. G. (2000). AMPA receptor unbound: membrane cycling and synaptic plasticity. Neuron 26, 5-8.
Wenthold R. J., Yokatani N., Doi K., Wada K. (1992). Immunochemical characterization of the non-NMDA glutamate receptor using subunit-specific antibodies. J. Biol. Chem. 267, 1132-1135.
Wenthold R. J., Petralia R. S., Blahos J. II, Niedzielski A. S. (1996). Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J. Neurosci. 16, 1982-1989.
Yin H. Z., Sensi S. L., Carriedo S. G., Weiss J. H. (1999). Dendritic localization of Ca2+ permeable AMPA/kainate channels in hippocampal pyramidal neurons. J. Com. Neurol. 409, 250-260.
Yuste R., Majewska A., Cash S. S., Denk W. (1999). Mechanisms of calcium influx into hippocampal spines: heterogeneity among spines, coincidence detection by NMDA receptors, and optical quantal analysis. J Neurosci. 19, 1976—1987.
Zhou F.-M., Hablitz J. J. (1998) AMPA receptor-mediated EPSCs in rat neocortical layer II/III interneurons have rapid kinetics. Brain Res 780, 166—169.
Zhou M., Kimelberg H. K. (2001). Freshly isolated hippocampal CA1 astrocytes transporter and AMPA receptor expression. J. Neurosci. 21, 7901-7908.
Zhou N., Taylor D. A., Parks T. N. (1995). Cobalt-permeable non-NMDA receptors in developing chick brainstem auditory nuclei. Neuroreport 6, 2273—2276.
王心瑩(1996)麩胺酸受器 AMPA/Kainate subtype 次級體間雙硫鍵構造之研究.國立清華大學碩士論文.
王培育(2000)菟絲子水抽出物減緩麩胺酸所致海馬迴神經細胞死亡.國立陽明大學碩士論文.
孫志彰(2000)細胞內鋅離子對鼠大腦皮質神經元麩胺酸受器之調控.國立清華大學碩士論文.
林彥昌(2001)鼠大腦神經元發育早期興奮性突觸麩胺酸受器之研究.國立清華大學碩士論文.
鄭宜珊(2001)胎鼠大腦神經元發育早期之麩胺酸受器次級單位轉變.國立清華大學碩士論文.
鄭慧萱(2001)鋅離子參與豬腦後突觸質密區之生成.國立清華大學碩士論文.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊