跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/09/29 14:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳昆峰
研究生(外文):Wu,Kuen-Phon
論文名稱:日本腦炎病毒封套蛋白第三區塊之核磁共振研究
論文名稱(外文):NMR studies of Japanese encephalitis virus envelope protein of the domain III
指導教授:程家維
指導教授(外文):Cheng, Jya-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:83
中文關鍵詞:核磁共振日本腦炎日本腦炎病毒封套蛋白第三區塊二級結構
外文關鍵詞:NMRJEJEVenvelope proteindomain IIIsecondary structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
日本腦炎病毒在東亞地區廣泛流行,西起印度,東至日本都曾經發現日本腦炎病毒的感染病例. 在日本腦炎病毒中,其封套蛋白扮演著舉足輕重的角色,舉凡與寄主細胞的受器結合,免疫系統的反應,病毒本身的再製,以及處於低pH值的融合反應都與封套蛋白有關係. 其中,封套蛋白的第三區塊為一111個殘基,分子量約為12千道耳吞的蛋白質. 利用核磁共振儀,吾人得到此蛋白質之骨架序列光譜標定關係 (使用HNCA, HNCO, HN(CO)CA, HN(CA)CO, CBCANH, and CBCA(CO)NH 光譜). 每個殘基側鏈之氫光譜則是經由TOCSY-HSQC, HCCH-TCOSY,HCCH-COSY 以及H(CC)(CO)NH光譜實驗所觀測. 3JHNHA 耦合常數值是使用HNHA光譜標定. 除此之外,吾人亦完成了氫氘交換以及骨架動力學的光譜實驗. NOE光譜的關連性,氨基之氫氘,以及 3JHNHA 耦合常數以及化學位移索引之統合分析,此第三區塊蛋白質之二級結構可清楚地判斷出來. 日本腦炎病毒封套蛋白第三區塊之二級結構是由由七個beta-strands所組成,並且與免疫球蛋白G的二級結構相似.

Japanese encephalitis virus (JEV) is found throughout Asia from India in the west to Japan in the east. JEV envelope protein plays an important role in cell receptor binding, immunological response, virion assembly and fusion activity at low pH state. The domain III of JEV envelope protein is a 111 amino acid protein with a molecular weight of 12 kDa. The backbone sequential assignments were determined from six triple resonance experiments (HNCA, HNCO, HN(CO)CA, HN(CA)CO, CBCANH, and CBCA(CO)NH). Proton side chain assignments were obtained from TOCSY-HSQC, H(CC)(CO)NH, HCCH-TOCSY and HCCH-COSY. 3JHNHA coupling constants were accomplished based on HNHA experiment. Moreover, hydrogen-deuterium exchange experiments and backbone dynamics experiments were achieved. Secondary structures were identified via NOE correlations, amide exchange, 3JHNHA coupling constants, and CSI analysis. This protein is comprised of seven beta strands and shared as an immunoglobulin-G like domain.

Content
List of Figures III
List of Tables IV
Abbreviations V
Abstract (English Version) VI
Abstract (中文) VII
Chapter 1 Introduction: 1
1.1. Flaviviridae Family 1
1.2 Japanese Encephalitis Virus 1
1.3. Envelope protein of JEV 3
1.4. Summary. 4
Chapter 2 Materials and Methods 15
2.1. Cell culture 15
2.1.1 Non-isotope Labeled Condition. 15
2.1.2 Isotope Labeled Condition. 15
2.2. Sample Protein Preparations 17
2.2.1 pET32a clone 17
2.2.2 pET22b clone 18
2.3. Buffer Compositions 18
2.3.1 PBS (phosphate-buffered saline) 18
2.3.2 Wash buffer for S-tagged column 19
2.3.3 Elute buffer for S-tagged column 19
2.4. NMR Spectroscopy. 19
2.4.1 General information 19
2.4.2 NMR experiments 20
2.4.3 Dynamics experiments 21
2.4.4 Data processing and analysis 21
Chapter 3 Results 24
3.1. Backbone assignment 24
3.2. Side chain assignment 25
3.3. Secondary structure determination 26
3.4. NMR relaxation data and backbone dynamics 27
3.5. Hydrogen-deuterium exchange 28
Chapter 4
Discussions74
Reference 80

1.Archer, S. J., Ikura, M., Torchia, D. A. & Bax, A. (1991). An alternative 3D NMR technique for correlating backbone 15N with side chain Hb resonances in larger proteins. J Magn Reson 95, 636-641.
2.Bax, A., Vuister, G. W., Grzesiek, S., Delaglio, F., Wang, A. C., Tschudin, R. & Zhu, G. (1994). Measurement of homo- and heteronuclear J couplings from quantitative J correlation. Methods Enzymol 239, 79-105.
3. Campbell, A. P., Spyracopoulos, L., Irvin, R. T. & Sykes, B. D. (2000). Backbone dynamics of a bacterially expressed peptide from the receptor binding domain of Pseudomonas aeruginosa pilin strain PAK from heteronuclear 1H-15N NMR spectroscopy. J Biomol NMR 17, 239-55.
4. Cecilia, D. & Gould, E. A. (1991). Nucleotide changes responsible for loss of neuroinvasiveness in Japanese encephalitis virus neutralization-resistant mutants. Virology 181, 70-7.
5. Chen, W. R., Tesh, R. B. & Rico-Hesse, R. (1990). Genetic variation of Japanese encephalitis virus in nature. J.Gen.Virol. 71 ( Pt 12), 2915-2922.
6. Cheng, J. W., Lepre, C. A., Chambers, S. P., Fulghum, J. R., Thomson, J. A. & Moore, J. M. (1993). 15N NMR relaxation studies of the FK506 binding protein: backbone dynamics of the uncomplexed receptor. Biochemistry 32, 9000-10.
7. Cheng, J. W., Lepre, C. A. & Moore, J. M. (1994). 15N NMR relaxation studies of the FK506 binding protein: dynamic effects of ligand binding and implications for calcineurin recognition. Biochemistry 33, 4093-100.
8. Clore, G. M., Bax, A. & Gronenborn, A. M. (1991). Stereospecific assignment of Cb-methylene protons in larger proteins using three-dimensional 15N separated Hartmann-Hahn and 13C-separated rotating frame Overhauser spectroscopy. J Biomol NMR 1, 13-22.
9. Crill, W. D. & Roehrig, J. T. (2001). Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J Virol 75, 7769-73.
10. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J. & Bax, A. (1995). NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J.Biomol.NMR 6, 277-293.
11. Dewasthaly, S., Ayachit, V. M., Sarthi, S. A. & Gore, M. M. (2001). Monoclonal antibody raised against envelope glycoprotein peptide neutralizes Japanese encephalitis virus. Arch Virol 146, 1427-35.
12. Englander, S. W., Sosnick, T. R., Englander, J. J. & Mayne, L. (1996). Mechanisms 81 and uses of hydrogen exchange. Curr Opin Struct Biol 6, 18-23.
13. Fesik, S. W. & Zuiderweg, E. R. (1988). Heteronuclear three dimensional NMR spectroscopy. A strategy for the simplification of homonuclear two dimensioanl NMR spectra. J Magn Reson 78, 588-593.
14. Grzesiek, S. & Bax, A. (1992a). An efficient experiment for sequential backbone assignment of medium-sized isotopically enriched proteins. J Magn Reson A 99, 201-207.
15. Grzesiek, S. & Bax, A. (1992b). Improved 3D triple-resonance nmr techniques applied to a 31 kDa protein. J Magn Reson B 96, 432-440.
16. Grzesiek, S., Ikura, M., Clore, G. M., Gronenborn, A. M. & Bax, A. (1992). A 3D triple resonance NMR technique for qualitative measurement of carbonyl-Hb J couplings in isotopically enriched proteins. J Magn Reson 96, 215-221.
17. Hasegawa, H., Yoshida, M., Shiosaka, T., Fujita, S. & Kobayashi, Y. (1992). Mutations in the envelope protein of Japanese encephalitis virus affect entry into cultured cells and virulence in mice. Virology 191, 158-165.
18. Ikura, M., Kay, L. E. & Bax, A. (1990). A novel approach for sequential assignment of 1H, 13C, and 15N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry 29, 4659-67.
19. Johnson, B. A. & Blevins, R. A. (1994). NMRView: A computer program for the visualization and anaylis of NMR data. J Biomol.NMR 4, 603-614.
20. Kay, L. E., Xu, G. Y., Singer, A. U., Muhandiram, D. R. & Forman-Kay, J. D. (1993). A gradient-enhanced HCCH-TOCSY experiment for recording side-chain 1H and 13C correlation in H2O samples for proteins. J Magn Reson B 101, 333-337.
21. Kolaskar, A. S. & Kulkarni-Kale, U. (1999). Prediction of three-dimensional structure and mapping of conformational epitopes of envelope glycoprotein of Japanese encephalitis virus. Virology 261, 31-42.
22. Kuhn, R. J., Zhang, W., Rossmann, M. G., Pletnev, S. V., Corver, J., Lenches, E., Jones, C. T., Mukhopadhyay, S., Chipman, P. R., Strauss, E. G., Baker, T. S. & Strauss, J. H. (2002). Structure of dengue virus. Implications for flavivirus
organization, maturation, and fusion. Cell 108, 717-25.
23. Logan, T. M., Olejniczak, E. T., Xu, R. X. & Fesik, S. W. (1993). A general method for assigning NMR spectra of denatured proteins using 3D HC(CO)NH-TOCSY triple resonance expereiments. J Biomol NMR 3, 225-231.
24. Marion, D., Driscoll, P. C., Kay, L. E., Wingfield, P. T., Bax, A., Gronenborn, A. M. & Clore, G. M. (1989). Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear
1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear
Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta. Biochemistry 28, 6150-6.
25. McMinn, P. C. (1997). The molecular basis of virulence of the encephalitogenic flaviviruses. J.Gen.Virol. 78 ( Pt 11), 2711-2722.
26. Morita, K., Tadano, M., Nakaji, S., Kosai, K., Mathenge, E. G., Pandey, B. D., Hasebe, F., Inoue, S. & Igarashi, A. (2001). Locus of a virus neutralization epitope on the japanese encephalitis virus envelope protein determined by use of long
pcr-based region-specific random mutagenesis. Virology 287, 417-26.
27. Ni, H. & Barrett, A. D. (1998). Attenuation of Japanese encephalitis virus by selection of its mouse brain membrane receptor preparation escape variants. Virology 241, 30-6.
28. Nilges, M., Macias, M. J., O'Donoghue, S. I. & Oschkinat, H. (1997). Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from beta-spectrin. J.Mol.Biol. 269, 408-422.
29. Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C. & Harrison, S. C. (1995). The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature 375, 291-298.
30. Seif, S. A., Morita, K., Matsuo, S., Hasebe, F. & Igarashi, A. (1995). Finer mapping of neutralizing epitope(s) on the C-terminal of Japanese encephalitis virus E-protein expressed in recombinant Escherichia coli system. Vaccine 13, 1515-21.
31. Smith, T. (2002). Does Dengue virus fuse using beta-barrels? Nat Struct Biol 9, 244.
32. Stiasny, K., Allison, S. L., Schalich, J. & Heinz, F. X. (2002). Membrane Interactions of the Tick-Borne Encephalitis Virus Fusion Protein E at Low pH. J Virol 76, 3784-90.
33. Sumiyoshi, H., Tignor, G. H. & Shope, R. E. (1995). Characterization of a highly attenuated Japanese encephalitis virus generated from molecularly cloned cDNA. J Infect Dis 171, 1144-51.
34. Takada, K., Masaki, H., Konishi, E., Takahashi, M. & Kurane, I. (2000). Definition of an epitope on Japanese encephalitis virus (JEV) envelope protein recognized by JEV-specific murine CD8+ cytotoxic T lymphocytes. Arch Virol 145,
523-34.
35. Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.
36. Tsarev, S. A., Sanders, M. L., Vaughn, D. W. & Innis, B. L. (2000). Phylogenetic analysis suggests only one serotype of Japanese encephalitis virus. Vaccine 18 Suppl 2, 36-43.
37. Vuister, G. W. & Bax, A. (1993). Quantitative J correlation: A new approach for measuring homonuclear three-bond J(HN-H alpha) coupling constants in 15N-enriched proteins. J. Am. Chem. Soc. 115, 7772-7.
39. Vuister, G. W., Delaglio, F. & Bax, A. (1992). Resolution enhancement and spectral editing of uniformly 13C enriched proteins by homonuclear broadband 13C-13C decoupling. J Magn Reson 98, 428-435.
40. Wishart, D. S., Bigam, C. G., Holm, A., Hodges, R. S. & Sykes, B. D. (1995). 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR 5, 67-81.
41. Wishart, D. S. & Sykes, B. D. (1994). The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4, 171-80.
41. Wu, S. C. & Lee, S. C. (2001). Complete nucleotide sequence and cell-line multiplication pattern of the attenuated variant CH2195LA of Japanese encephalitis virus. Virus Res 73, 91-102.
42. Wu, S. C., Lian, W. C., Hsu, L. C. & Liau, M. Y. (1997). Japanese encephalitis virus antigenic variants with characteristic differences in neutralization resistance and mouse virulence. Virus Res 51, 173-81.
43. Wu, S. C. & Lin, C. (2001). Neutralizing peptide ligands selected from phage-displayed libraries mimic the conformational epitope on domain III of the Japanese encephalitis virus envelope protein. Virus Res. 76, 59-69.
44. Yagnik, A. T., Lahm, A., Meola, A., Roccasecca, R. M., Ercole, B. B., Nicosia, A. & Tramontano, A. (2000). A model for the hepatitis C virus envelope glycoprotein E2. Proteins 40, 355-366.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊