|
1. Svensson, B., et al., Sequence homology between putative raw-starch binding domains from different starch-degrading enzymes. Biochem J, 1989. 264: p. 309-11. 2. Tanaka, Y., et al., Comparison of amino acid sequences of three glucoamylases and their structure-function relationships. Agric Biol Chem, 1986. 50(4): p. 965-9. 3. Aleshin, A., et al., Crystal structure of glucoamylase from Aspergillus awamori var. X100 to 2.2-A resolution. J Biol Chem, 1992. 267(27): p. 19291-8. 4. Aleshin, A.E., L.M. Firsov, and R.B. Honzatko, Refined structure for the complex of acarbose with glucoamylase from Aspergillus awamori var. X100 to 2.4-A resolution. J Biol Chem, 1994. 269(22): p. 15631-9. 5. Aleshin, A.E., et al., Refined crystal structures of glucoamylase from Aspergillus awamori var. X100. J Mol Biol, 1994. 238(4): p. 575-91. 6. Harris, E.M., et al., Refined structure for the complex of 1-deoxynojirimycin with glucoamylase from Aspergillus awamori var. X100 to 2.4-A resolution. Biochemistry, 1993. 32(6): p. 1618-26. 7. Stoffer, B., et al., Refined structure for the complex of D-gluco-dihydroacarbose with glucoamylase from Aspergillus awamori var. X100 to 2.2 A resolution: dual conformations for extended inhibitors bound to the active site of glucoamylase. FEBS Lett, 1995. 358(1): p. 57-61. 8. Jacks, A.J., et al., 1H and 15N assignments and secondary structure of the starch-binding domain of glucoamylase from Aspergillus niger. Eur J Biochem, 1995. 233(2): p. 568-78. 9. Sorimachi, K., et al., Solution structure of the granular starch binding domain of glucoamylase from Aspergillus niger by nuclear magnetic resonance spectroscopy. J Mol Biol, 1996. 259(5): p. 970-87. 10. Sorimachi, K., et al., Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin. Structure, 1997. 5(5): p. 647-61. 11. Coutinho, P.M. and P.J. Reilly, Structural similarities in glucoamylase by hydrophobic cluster analysis. Protein Eng, 1994. 7(6): p. 749-60. 12. Coutinho, P.M. and P.J. Reilly, Glucoamylase structural, functional, and evolutionary relationships. Proteins, 1997. 29(3): p. 334-47. 13. Chiba, S., Molecular mechanism in alpha-glucosidase and glucoamylase. Biosci Biotechnol Biochem, 1997. 61(8): p. 1233-9. 14. Sierks, M.R., et al., Catalytic mechanism of fungal glucoamylase as defined by mutagenesis of Asp176, Glu179 and Glu180 in the enzyme from Aspergillus awamori. Protein Eng, 1990. 3(3): p. 193-8. 15. Frandsen, T.P., et al., Site-directed mutagenesis of the catalytic base glutamic acid 400 in glucoamylase from Aspergillus niger and of tyrosine 48 and glutamine 401, both hydrogen-bonded to the gamma-carboxylate group of glutamic acid 400. Biochemistry, 1994. 33(46): p. 13808-16. 16. Sierks, M.R. and B. Svensson, Energetic and mechanistic studies of glucoamylase using molecular recognition of maltose OH groups coupled with site-directed mutagenesis. Biochemistry, 2000. 39(29): p. 8585-92. 17. Sierks, M.R., et al., Site-directed mutagenesis at the active site Trp120 of Aspergillus awamori glucoamylase. Protein Eng, 1989. 2(8): p. 621-5. 18. Bakir, U., et al., Cassette mutagenesis of Aspergillus awamori glucoamylase near its general acid residue to probe its catalytic and pH properties. Protein Eng, 1993. 6(8): p. 939-46. 19. Natarajan, S.K. and M.R. Sierks, Identification of enzyme-substrate and enzyme-product complexes in the catalytic mechanism of glucoamylase from Aspergillus awamori. Biochemistry, 1996. 35(48): p. 15269-79. 20. Aleshin, A.E., et al., Crystallographic complexes of glucoamylase with maltooligosaccharide analogs: relationship of stereochemical distortions at the nonreducing end to the catalytic mechanism. Biochemistry, 1996. 35(25): p. 8319-28. 21. Fierobe, H.P., et al., Restoration of catalytic activity beyond wild-type level in glucoamylase from Aspergillus awamori by oxidation of the Glu400-->Cys catalytic-base mutant to cysteinesulfinic acid. Biochemistry, 1998. 37(11): p. 3743-52. 22. Hiromi, K., et al., Subsite affinities of glucoamylase: examination of the validity of the subsite theory. Biochim Biophys Acta, 1973. 302(2): p. 362-75. 23. V. Beschkov, A.M., J. M. Engasser, A kinetic model for the hydrolysis and synthesis of maltose, isomaltose, and maltotritose by glucoamylase. Biotechnol Bioeng, 1984. 16: p. 22-6. 24. Ermer, J., et al., Subsite affinities of Aspergillus niger glucoamylase II determined with p-nitrophenylmaltooligosaccharides. Biol Chem Hoppe Seyler, 1993. 374(2): p. 123-8. 25. Belshaw, N.J. and G. Williamson, Specificity of the binding domain of glucoamylase 1. Eur J Biochem, 1993. 211(3): p. 717-24. 26. Sierks, M.R., et al., Functional roles and subsite locations of Leu177, Trp178 and Asn182 of Aspergillus awamori glucoamylase determined by site-directed mutagenesis. Protein Eng, 1993. 6(1): p. 75-9. 27. Liu, H.L., et al., Mutations to alter Aspergillus awamori glucoamylase selectivity. III. Asn20-->Cys/Ala27-->Cys, Ala27-->Pro, Ser30-->Pro, Lys108-->Arg, Lys108-->Met, Gly137-->Ala, 311-314 Loop, Tyr312-->Trp and Ser436-->Pro. Protein Eng, 1998. 11(5): p. 389-98. 28. Liu, H.L., C. Ford, and P.J. Reilly, Mutations to alter Aspergillus awamori glucoamylase selectivity. IV. Combinations of Asn20-->Cys/Ala27-->Cys, Ser30-->Pro, Gly137-->Ala, 311-4 loop, Ser411-->Ala and Ser436-->Pro. Protein Eng, 1999. 12(2): p. 163-72. 29. Sierks MR, S.B., Functional roles of the invariant aspartic acid 55, tyrosine 306, and aspartic acid 309 in glucoamylase from Aspergillus awamori studied by mutagenesis. Biochemistry, 1993. 32: p. 1113-7. 30. Li Y, R.P., Ford C, Effect of introducing proline residues on the stability of Aspergillus awamori. Protein Eng, 1997. 10(10): p. 1199-204. 31. Fierobe, H.P., et al., Mutational modulation of substrate bond-type specificity and thermostability of glucoamylase from Aspergillus awamori by replacement with short homologue active site sequences and thiol/disulfide engineering. Biochemistry, 1996. 35(26): p. 8696-704. 32. Hsiu-mei Chen, U.B., P.J. Reilly and Clark Ford, Increased Thermostability for Asn182Ala Mutant Aspergillus awamori Glucoamylase. Biotechnol Bioeng, 1994. 43: p. 101-5. 33. Southall, S.M., et al., The starch-binding domain from glucoamylase disrupts the structure of starch. FEBS Lett, 1999. 447(1): p. 58-60. 34. Goto, M., et al., Analysis of the raw starch-binding domain by mutation of a glucoamylase from Aspergillus awamori var. kawachi expressed in Saccharomyces cerevisiae. Appl Environ Microbiol, 1994. 60(11): p. 3926-30. 35. Chen, L., et al., Deletion analysis of the starch-binding domain of Aspergillus glucoamylase. Protein Eng, 1995. 8(10): p. 1049-55. 36. Moore, K.L., et al., Identification of a specific glycoprotein ligand for p-selectin (cd62) on myeloid cells. J Cell Biol, 1992. 118(2): p. 445-56. 37. Rudd, P.M., et al., Glycoforms modify the dynamic stability and functional-activity of an enzyme. Biochemistry, 1994. 33(1): p. 17-22. 38. Kern, G., et al., Kinetics of folding and association of differently glycosylated variants of invertase from Saccharomyces-cerevisiae. Protein Sci, 1993. 2(11): p. 1862-8. 39. Chen, D.C., B.-C.Y. and Tsong Teh Kuo, One-step transformation of yeast in stationary phase. Current Genetics, 1991. 21: p. 83-4. 40. I, N., et al., A spectrophotometric assay for glucosidase I. Anal Biochem, 1994. 222(1): p. 190-5.
|