跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/10 10:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉士豪
研究生(外文):Shih-Hao Yeh
論文名稱:細胞內鋅離子對NMDA受器調控之研究
論文名稱(外文):The intracellular regulation by zinc to NMDA receptor
指導教授:張兗君
指導教授(外文):Yen-Chung Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:61
中文關鍵詞:NMDA受器細胞內鋅離子微量注射爪蟾蛙卵
外文關鍵詞:NMDA receptorintracellular zincmicroinjectionXenopusoocyte
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
神經突觸是神經細胞間訊息傳遞的主要通道,後突觸膜上的NMDA受器可以被前突觸端釋放之麩胺酸活化,與學習和記憶形成的機制非常相關。鋅離子與麩胺酸共存於前突觸端,並一起釋放至突觸間隙,可由細胞外抑制NMDA受器,也可以透過多種管道進入後突觸細胞。鋅離子在細胞外對NMDA受器的抑制,已經有相當多的研究,但細胞內鋅離子的調節作用,則鮮少有人研究。進入細胞內的鋅離子,是否也可以對NMDA受器進行調節,是本論文研究的主要目標。
我們將大鼠的NR1a/NR2B共表現於爪蟾卵母細胞上,灌流NMDA溶液,利用壓力打藥器作離子注射,將鋅離子打入蛙卵中,觀察細胞內鋅離子對NMDA受器活性的調節作用。我們在離子注射的前後,各記錄一次NMDA誘發電流,在不同濃度鋅離子的注射下,比較前後電流的差異,我們發現注射鋅離子前後,NMDA受器的活性沒有明顯的改變。我們也即時記錄離子注射時蛙卵細胞膜漏電流的變化,分析離子注射對膜電流產生的即時效應。我們對表現NMDA受器的蛙卵注射1 mM~1 M的鋅離子,與在未表現蛙卵注射鋅離子的對照實驗結果比較,我們發現我們所見到的離子效應為鋅離子對蛙卵本身的影響,我們依然沒有見到鋅離子由細胞內對NMDA受器的調節作用。因此我們推論,如果細胞內鋅離子對NMDA受器本身有調節的作用,則此作用非常微小。相對於細胞外鋅離子高效率的抑制,在蛙卵表現系統上,我們未發現細胞內鋅離子對NR1/NR2B受器的直接調節作用。

謝誌 ………………………………………………………………………… i
摘要 ……………………………………………………………………… iii
壹、導論 …………………………………………………………………… 1
1-1. NMDA受器……………………………………………………………… 1
1-2. 鋅離子與NMDA受器…………………………………………………… 6
1-3. 蛙卵表現系統與微量注射…………………………………………… 9
貳、材料與方法 …………………………………………………………… 10
2-1. 質體DNA的轉殖與製備……………………………………………… 10
2-2. cRNA的製備(In Vitro Transcription)………………………… 11
2-3. 蛙卵的取得…………………………………………………………… 11
2-4. 微量注射(Microinjection)……………………………………… 12
2-5. 受器之電生理記錄(Two-electrodes Whole Cell Voltage-clamp)……………………………………………………………………………… 13
2-6. 壓力打藥器(PicoPump)…………………………………………… 14
2-7. NMDA溶液的灌流……………………………………………………… 15
2-8. 電生理訊號的擷取、儲存與分析…………………………………… 16
參、結果 …………………………………………………………………… 17
3-1. NMDA受器次單元的轉殖……………………………………………… 17
3-2. NMDA受器的電生理活性測試………………………………………… 17
3-3. 細胞外鎂離子及鋅離子對NMDA受器的抑制………………………… 18
3-4. 離子微量注射:實驗條件的控制與改進…………………………… 19
3-5. 細胞內注射離子後對NMDA受器活性影響之分析…………………… 24
3-6. 細胞內注射離子對NMDA受器的立即效應之分析…………………… 26
肆、討論 …………………………………………………………………… 28
4-1. 細胞內鋅離子對NMDA受器沒有明顯的作用………………………… 28
4-2. 離子注射實驗的變因………………………………………………… 29
4-3. 其他實驗方式………………………………………………………… 31
伍、參考文獻 ……………………………………………………………… 32
陸、圖表 …………………………………………………………………… 45

Aizenman, E., Stout, A. K., Hartnett, K. A., Dineley, K. E., McLaughlin, B., and Reynolds, I. J. (2000). Induction of neuronal apoptosis by thiol oxidation: putative role of intracellular zinc release. J. Neurochem. 75, 1878-1888.
Anson, L. C., Chen, P. E., Wyllie, D. J., Colquhoun, D., and Schoepfer, R. (1998). Identification of amino acid residues of the NR2A subunit that control glutamate potency in recombinant NR1/NR2A NMDA receptors. J. Neurosci. 18, 581-589.
Apple, S. H. (1993) Excitotoxic neuronal cell death in amyotrophic lateral sclerosis. Trends Neurosci. 16, 3-5.
Ascher, P. and Johnson, J. W. (1994) The NMDA receptor, its channel, and its modulation by glycine. The NMDA Receptor. 2nd ed. (Oxford New York Tokyo, Oxford University Press)
Assaf, S. Y., and Chung, S. H. (1984). Release of endogenous Zn2+ from brain tissue during activity. Nature 308, 734-736.
Bettler, B., Boulter, J., Hermans-Borgmeyer, I., O'Shea-Greenfield, A., Deneris, E. S., Moll, C., Borgmeyer, U., Hollmann, M., and Heinemann, S. (1990). Cloning of a novel glutamate receptor subunit, GluR5: expression in the nervous system during development. Neuron 5, 583-595.
Bettler, B., and Mulle, C. (1995). Review: neurotransmitter receptors. II. AMPA and kainate receptors. Neuropharmacology 34, 123-139.
Bliss, T. V., and Collingridge, G. L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31-39.
Boulter, J., Hollmann, M., O'Shea-Greenfield, A., Hartley, M., Deneris, E., Maron, C., and Heinemann, S. (1990). Molecular cloning and functional expression of glutamate receptor subunit genes. Science 249, 1033-1037.
Brose, N., Gasic, G. P., Vetter, D. E., Sullivan, J. M., and Heinemann, S. F. (1993). Protein chemical characterization and immunocytochemical localization of the NMDA receptor subunit NMDA R1. J. Biol. Chem. 268, 22663-22671.
Burnashev, N., Khodorova, A., Jonas, P., Helm, P. J., Wisden, W., Monyer, H., Seeburg, P. H., and Sakmann, B. (1992). Calcium-permeable AMPA-kainate receptors in fusiform cerebellar glial cells. Science 256, 1566-1570.
Canzoniero, L. M., Turetsky, D. M., and Choi, D. W. (1999). Measurement of intracellular free zinc concentrations accompanying zinc-induced neuronal death. J. Neurosci. 19, RC31.
Chen, C., and Leonard, J. P. (1996). Protein tyrosine kinase-mediated potentiation of currents from cloned NMDA receptors. J. Neurochem. 67, 194-200.
Chen, L., and Huang, L. Y. (1992). Protein kinase C reduces Mg2+ block of NMDA-receptor channels as a mechanism of modulation. Nature 356, 521-523.
Chen, N., Moshaver, A., and Raymond, L. A. (1997). Differential sensitivity of recombinant N-methyl-D-aspartate receptor subtypes to zinc inhibition. Mol. Pharmacol. 51, 1015-1023.
Cheng, C., and Reynolds, I. J. (1998). Calcium-sensitive fluorescent dyes can report increases in intracellular free zinc concentration in cultured forebrain neurons. J. Neurochem. 71, 2401-2410.
Choi, D. W., Yokoyama, M., and Koh, J. (1988). Zinc neurotoxicity in cortical cell culture. Neuroscience 24, 67-79.
Choi, Y. B., and Lipton, S. A. (1999). Identification and mechanism of action of two histidine residues underlying high-affinity Zn2+ inhibition of the NMDA receptor. Neuron 23, 171-180.
Chorna-Ornan, I., Joel-Almagor, T., Ben-Ami, H. C., Frechter, S., Gillo, B., Selinger, Z., Gill, D. L., and Minke, B. (2001). A common mechanism underlies vertebrate calcium signaling and Drosophila phototransduction. J. Neurosci. 21, 2622-2629.
Christine, C. W., and Choi, D. W. (1990). Effect of zinc on NMDA receptor-mediated channel currents in cortical neurons. J. Neurosci. 10, 108-116.
Cik, M., Chazot, P. L., and Stephenson, F. A. (1994). Expression of NMDAR1-1a (N598Q)/NMDAR2A receptors results in decreased cell mortality. Eur. J. Pharmacol. 266, R1-3.
Crawford, I. L., and Connor, J. D. (1972). Zinc in maturing rat brain: hippocampal concentration and localization. J. Neurochem. 19, 1451-1458.
Csermely, P., Szamel, M., Resch, K., and Somogyi, J. (1988). Zinc can increase the activity of protein kinase C and contributes to its binding to plasma membranes in T lymphocytes. J. Biol. Chem. 263, 6487-6490.
Davis, S., Butcher, S. P., and Morris, R. G. (1992). The NMDA receptor antagonist D-2-amino-5-phosphonopentanoate (D-AP5) impairs spatial learning and LTP in vivo at intracerebral concentrations comparable to those that block LTP in vitro. J. Neurosci. 12, 21-34.
Dineley, K. E., Scanlon, J. M., Kress, G. J., Stout, A. K., and Reynolds, I. J. (2000). Astrocytes are more resistant than neurons to the cytotoxic effects of increased [Zn(2+)](i). Neurobiol. Dis. 7, 310-320.
Egebjerg, J., Bettler, B., Hermans-Borgmeyer, I., and Heinemann, S. (1991). Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not AMPA. Nature 351, 745-748.
Ehlers, M. D., Zhang, S., Bernhadt, J. P., and Huganir, R. L. (1996). Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell 84, 745-755.
Fayyazuddin, A., Villarroel, A., Le Goff, A., Lerma, J., and Neyton, J. (2000). Four residues of the extracellular N-terminal domain of the NR2A subunit control high-affinity Zn2+ binding to NMDA receptors. Neuron 25, 683-694.
Forbes, I. J., Zalewski, P. D., Giannakis, C., and Betts, W. H. (1990). Zinc induces specific association of PKC with membrane cytoskeleton. Biochem. Int. 22, 741-748.
Frederickson, C. J. (1989). Neurobiology of zinc and zinc-containing neurons. Int. Rev. Neurobiol. 31, 145-238.
Gillo, B., Chorna, I., Cohen, H., Cook, B., Manistersky, I., Chorev, M., Arnon, A., Pollock, J. A., Selinger, Z., and Minke, B. (1996). Coexpression of Drosophila TRP and TRP-like proteins in Xenopus oocytes reconstitutes capacitative Ca2+ entry. Proc. Natl. Acad. Sci. U S A 93, 14146-14151.
Gillo, B., Lass, Y., Nadler, E., and Oron, Y. (1987). The involvement of inositol 1,4,5-trisphosphate and calcium in the two-component response to acetylcholine in Xenopus oocytes. J. Physiol. 392, 349-361.
Haug, F. M., Blackstad, T. W., Simonsen, A. H., and Zimmer, J. (1971). Timm's sulfide silver reaction for zinc during experimental anterograde degeneration of hippocampal mossy fibers. J. Comp. Neurol. 142, 23-31.
Hesketh, J. E. (1982). Zinc-stimulated microtubule assembly and evidence for zinc binding to tubulin. Int. J. Biochem. 14, 983-990.
Hirai, H., Kirsch, J., Laube, B., Betz, H., and Kuhse, J. (1996). The glycine binding site of the N-methyl-D-aspartate receptor subunit NR1: identification of novel determinants of co-agonist potentiation in the extracellular M3-M4 loop region. Proc. Natl. Acad. Sci. U S A 93, 6031-6036.
Hollmann, M., Boulter, J., Maron, C., Beasley, L., Sullivan, J., Pecht, G., and Heinemann, S. (1993). Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron 10, 943-954.
Hollmann, M., and Heinemann, S. (1994). Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31-108.
Hollmann, M., O'Shea-Greenfield, A., Rogers, S. W., and Heinemann, S. (1989). Cloning by functional expression of a member of the glutamate receptor family. Nature 342, 643-648.
Howell, G. A., Welch, M. G., and Frederickson, C. J. (1984). Stimulation-induced uptake and release of zinc in hippocampal slices. Nature 308, 736-738.
Keinanen, K., Wisden, W., Sommer, B., Werner, P., Herb, A., Verdoorn, T. A., Sakmann, B., and Seeburg, P. H. (1990). A family of AMPA-selective glutamate receptors. Science 249, 556-560.
Kleckner, N. W., and Dingledine, R. (1988). Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 241, 835-837.
Kohr, G., and Seeburg, P. H. (1996). Subtype-specific regulation of recombinant NMDA receptor-channels by protein tyrosine kinases of the src family. J. Physiol. 492 ( Pt 2), 445-452.
Kornau, H. C., Schenker, L. T., Kennedy, M. B., and Seeburg, P. H. (1995). Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269, 1737-1740.
Kutsuwada, T., Kashiwabuchi, N., Mori, H., Sakimura, K., Kushiya, E., Araki, K., Meguro, H., Masaki, H., Kumanishi, T., Arakawa, M., and et al. (1992). Molecular diversity of the NMDA receptor channel. Nature 358, 36-41.
Laube, B., Hirai, H., Sturgess, M., Betz, H., and Kuhse, J. (1997). Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron 18, 493-503.
Legendre, P., and Westbrook, G. L. (1990). The inhibition of single N-methyl-D-aspartate-activated channels by zinc ions on cultured rat neurones. J. Physiol. 429, 429-449.
Lemaire, P., Garrett, N., and Gurdon, J. B. (1995). Expression cloning of Siamois, a Xenopus homeobox gene expressed in dorsal-vegetal cells of blastulae and able to induce a complete secondary axis. Cell 81, 85-94.
Lengyel, I., Fieuw-Makaroff, S., Hall, A. L., Sim, A. T., Rostas, J. A., and Dunkley, P. R. (2000). Modulation of the phosphorylation and activity of calcium/calmodulin-dependent protein kinase II by zinc. J. Neurochem. 75, 594-605.
Lester, H. A. (1988). Heterologous expression of excitability proteins: route to more specific drugs? Science 241, 1057-1063.
Li-Smerin, Y., Aizenman, E., and Johnson, J. W. (2000). Inhibition by intracellular Mg(2+) of recombinant N-methyl-D-aspartate receptors expressed in Chinese hamster ovary cells. J. Pharmacol. Exp. Ther. 292, 1104-1110.
Manzerra, P., Behrens, M. M., Canzoniero, L. M., Wang, X. Q., Heidinger, V., Ichinose, T., Yu, S. P., and Choi, D. W. (2001). Zinc induces a Src family kinase-mediated up-regulation of NMDA receptor activity and excitotoxicity. Proc. Natl. Acad. Sci. U S A 98, 11055-11061.
Matsuda, K., Kamiya, Y., Matsuda, S., and Yuzaki, M. (2002). Cloning and characterization of a novel NMDA receptor subunit NR3B: a dominant subunit that reduces calcium permeability. Brain Res. Mol. Brain Res. 100, 43-52.
Meguro, H., Mori, H., Araki, K., Kushiya, E., Kutsuwada, T., Yamazaki, M., Kumanishi, T., Arakawa, M., Sakimura, K., and Mishina, M. (1992). Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature 357, 70-74.
Mills, J. W., Zhou, J. H., Cardoza, L., and Ferm, V. H. (1992). Zinc alters actin filaments in Madin-Darby canine kidney cells. Toxicol. Appl. Pharmacol. 116, 92-100.
Monyer, H., Sprengel, R., Schoepfer, R., Herb, A., Higuchi, M., Lomeli, H., Burnashev, N., Sakmann, B., and Seeburg, P. H. (1992). Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256, 1217-1221.
Mori, H., Masaki, H., Yamakura, T., and Mishina, M. (1992). Identification by mutagenesis of a Mg(2+)-block site of the NMDA receptor channel. Nature 358, 673-675.
Moriyoshi, K., Masu, M., Ishii, T., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1991). Molecular cloning and characterization of the rat NMDA receptor. Nature 354, 31-37.
Morris, R. G. (1989). Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. J. Neurosci. 9, 3040-3057.
Morris, R. G. M. and Davis, M. (1994) The role of NMDA receptors in learning and memory. The NMDA Receptor. 2nd ed. (Oxford New York Tokyo, Oxford University Press)
Murakami, K., Whiteley, M. K., and Routtenberg, A. (1987). Regulation of protein kinase C activity by cooperative interaction of Zn2+ and Ca2+. J. Biol. Chem. 262, 13902-13906.
Nakanishi, N., Shneider, N. A., and Axel, R. (1990). A family of glutamate receptor genes: evidence for the formation of heteromultimeric receptors with distinct channel properties. Neuron 5, 569-581.
Niethammer, M., Kim, E., and Sheng, M. (1996). Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases. J. Neurosci. 16, 2157-2163.
O'Hara, P. J., Sheppard, P. O., Thogersen, H., Venezia, D., Haldeman, B. A., McGrane, V., Houamed, K. M., Thomsen, C., Gilbert, T. L., and Mulvihill, E. R. (1993). The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron 11, 41-52.
Okamoto, N., Hori, S., Akazawa, C., Hayashi, Y., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1994). Molecular characterization of a new metabotropic glutamate receptor mGluR7 coupled to inhibitory cyclic AMP signal transduction. J. Biol. Chem. 269, 1231-1236.
Oron, Y., and Dascal, N. (1992). Regulation of intracellular calcium activity in Xenopus oocytes. Methods Enzymol. 207, 381-390.
Oron, Y., Gillo, B., Straub, R. E., and Gershengorn, M. C. (1987). Mechanism of membrane electrical response to thyrotropin-releasing hormone in Xenopus oocytes injected with GH3 pituitary cell messenger ribonucleic acid. Mol. Endocrinol. 1, 918-925.
Paoletti, P., and Ascher, P. (1994). Mechanosensitivity of NMDA receptors in cultured mouse central neurons. Neuron 13, 645-655.
Paoletti, P., Ascher, P., and Neyton, J. (1997). High-affinity zinc inhibition of NMDA NR1-NR2A receptors. J. Neurosci. 17, 5711-5725.
Paoletti, P., Perin-Dureau, F., Fayyazuddin, A., Le Goff, A., Callebaut, I., and Neyton, J. (2000). Molecular organization of a zinc binding n-terminal modulatory domain in a NMDA receptor subunit. Neuron 28, 911-925.
Peters, S., Koh, J., and Choi, D. W. (1987). Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons. Science 236, 589-593.
Quest, A. F., Bloomenthal, J., Bardes, E. S., and Bell, R. M. (1992). The regulatory domain of protein kinase C coordinates four atoms of zinc. J. Biol. Chem. 267, 10193-10197.
Rassendren, F. A., Lory, P., Pin, J. P., and Nargeot, J. (1990). Zinc has opposite effects on NMDA and non-NMDA receptors expressed in Xenopus oocytes. Neuron 4, 733-740.
Rosenmund, C., and Westbrook, G. L. (1993). Calcium-induced actin depolymerization reduces NMDA channel activity. Neuron 10, 805-814.
Schoepp, D. D., and Conn, P. J. (1993). Metabotropic glutamate receptors in brain function and pathology. Trends Pharmacol. Sci. 14, 13-20.
Sensi, S. L., Canzoniero, L. M., Yu, S. P., Ying, H. S., Koh, J. Y., Kerchner, G. A., and Choi, D. W. (1997). Measurement of intracellular free zinc in living cortical neurons: routes of entry. J. Neurosci. 17, 9554-9564.
Sensi, S. L., Yin, H. Z., Carriedo, S. G., Rao, S. S., and Weiss, J. H. (1999). Preferential Zn2+ influx through Ca2+-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production. Proc. Natl. Acad. Sci. U S A 96, 2414-2419.
Sheng, M., and Pak, D. T. (2000). Ligand-gated ion channel interactions with cytoskeletal and signaling proteins. Annu. Rev. Physiol. 62, 755-778.
Siekevitz, P. (1985). The postsynaptic density: a possible role in long-lasting effects in the central nervous system. Proc. Natl. Acad. Sci. U S A 82, 3494-3498.
Smart, T. G., Xie, X., and Krishek, B. J. (1994). Modulation of inhibitory and excitatory amino acid receptor ion channels by zinc. Prog. Neurobiol. 42, 393-341.
Soloviev, M. M., and Barnard, E. A. (1997). Xenopus oocytes express a unitary glutamate receptor endogenously. J. Mol. Biol. 273, 14-18.
Stern-Bach, Y., Bettler, B., Hartley, M., Sheppard, P. O., O'Hara, P. J., and Heinemann, S. F. (1994). Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron 13, 1345-1357.
Sucher, N. J., Akbarian, S., Chi, C. L., Leclerc, C. L., Awobuluyi, M., Deitcher, D. L., Wu, M. K., Yuan, J. P., Jones, E. G., and Lipton, S. A. (1995). Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain. J. Neurosci. 15, 6509-6520.
Takeda, A. (2000). Movement of zinc and its functional significance in the brain. Brain Res. Brain Res. Rev. 34, 137-148.
Tingley, W. G., Ehlers, M. D., Kameyama, K., Doherty, C., Ptak, J. B., Riley, C. T., and Huganir, R. L. (1997). Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-D-aspartate receptor NR1 subunit using phosphorylation site-specific antibodies. J. Biol. Chem. 272, 5157-5166.
Traynelis, S. F., Burgess, M. F., Zheng, F., Lyuboslavsky, P., and Powers, J. L. (1998). Control of voltage-independent zinc inhibition of NMDA receptors by the NR1 subunit. J. Neurosci. 18, 6163-6175.
van Rossum, D., Kuhse, J., and Betz, H. (1999). Dynamic interaction between soluble tubulin and C-terminal domains of N-methyl-D-aspartate receptor subunits. J. Neurochem. 72, 962-973.
Wang, Y. T., and Salter, M. W. (1994). Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature 369, 233-235.
Weinberger, R. P., and Rostas, J. A. (1991). Effect of zinc on calmodulin-stimulated protein kinase II and protein phosphorylation in rat cerebral cortex. J. Neurochem. 57, 605-614.
Westbrook, G. L., and Mayer, M. L. (1987). Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons. Nature 328, 640-643.
Williams, K. (1996). Separating dual effects of zinc at recombinant N-methyl-D-aspartate receptors. Neurosci. Lett. 215, 9-12.
Wo, Z. G., and Oswald, R. E. (1995). Unraveling the modular design of glutamate-gated ion channels. Trends Neurosci. 18, 161-168.
Wyszynski, M., Lin, J., Rao, A., Nigh, E., Beggs, A. H., Craig, A. M., and Sheng, M. (1997). Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature 385, 439-442.
Xie, X., Gerber, U., Gahwiler, B. H., and Smart, T. G. (1993). Interaction of zinc with ionotropic and metabotropic glutamate receptors in rat hippocampal slices. Neurosci. Lett. 159, 46-50.
Zalewski, P. D., Forbes, I. J., Giannakis, C., Cowled, P. A., and Betts, W. H. (1990). Synergy between zinc and phorbol ester in translocation of protein kinase C to cytoskeleton. FEBS Lett. 273, 131-134.
Zheng, F., Gingrich, M. B., Traynelis, S. F., and Conn, P. J. (1998). Tyrosine kinase potentiates NMDA receptor currents by reducing tonic zinc inhibition. Nat. Neurosci. 1, 185-191.
Zukin, R. S., and Bennett, M. V. (1995). Alternatively spliced isoforms of the NMDARI receptor subunit. Trends Neurosci. 18, 306-313.
范國賢 (2000) 魚類fGluR1a(i)及fGluR3a(i)麩氨酸嵌合體受器之電生理特性研究。清華大學生命科學研究所碩士論文。
孫志彰 (2000) 細胞內鋅離子對鼠大腦皮質神經元麩氨酸受器之調控。清華大學生命科學研究所碩士論文。
曾德旺 (1998) 魚類麩胺酸嵌合體受器tGluR3a/1a之電生理特性研究。 清華大學輻射生物研究所碩士論文。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top