|
Ädelroth, P., Paddock, M. L., Tehrani, A., Beatty, T., Feher, G., and Okamura, M. Y. (2001) Identification of the proton pathway in bacterial reaction centers: decrease of proton transfer rate by mutation of surface histidine at H126 and H128 and chemical rescue by imidazole identifies the initial proton donors. Biochemistry 40: 14538-14546. Ausubel, F. M., Brent, R., Kingston, R., Moore, D. D., Seidman, J. G., Smith, J. a., and Struhl, K. (1992) in Short Protocols in Molecular Biology, Unit: 13.7 pp. 31-35, 4th Ed, John Wiley & Sons Inc., Canada. Barik, S. (1997) in PCR Cloning Protocols: From Molecular Cloning to Genetic Engineering (White, B. A. eds) pp. 173-182, Humana Press Inc., New Jersey, USA. Bradford, M. (1976) A rapid and sensitive method for the quantities of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248-254. Chen, C. H. (2001) Functional determination in C-terminal region of vacuolar H+-pyrophosphatase from etiolated mung bean seedlings. Department of Life Science, College of Life Science, National Tsing Hua University,Hsin Chu 30043, Taiwan, ROC. Chen, J. H. (2000) Roles of C-terminal region of vacuolar H+-pyrophosphatase was determined by deleted mutation. Department of Life Science, College of Life Science, National Tsing Hua University, Hsin Chu 30043, Taiwan, ROC. Drozdowicz, Y. M., Kissinger, J. C., and Rea, P. A. (2000) AVP2, a sequence-divergent, K+-insenstive H+-translocating inorganic pyrophosphatase from Arabidopsis. Plant Physiol. 123: 353-362. Drozdowicz, Y. M., and Rea, P. A. (2001) Vacuolar H+ pyrophosphatases: from the evolutionary backwaters into the mainstream. Trends Plant Sci. 6: 206-211. von Heijne, G. (1992) Membrane protein structure prediction hydrophobicity analysis and the positive-inside rule. J. Mol. Biol. 225: 487-494. Hsiao, Y. Y., Van, R. C., Hung, H. H., and Pan, R. L. (2002) Diethylpyrocarbonate inhibition of vacuolar H+-pyrophosphatase possibly involves a histidine residue. J. Protein Chem. 21: 51-58. Huang, S., and Tu., S. C. (1997) Identification and characterization of a catalytic base in bacterial luciferase by chemical rescue of a dark mutant. Biochemistry 36: 14609-14615. Kim, Y., Kim, E. J., and Rea, P. A. (1994) Isolation and characterization of cDNAs encoding the vacuolar H+-pyrophosphatase of Beta vulgaris. Plant Physiol. 106: 375-382. Kim E. J., Zhen, R. G., and Rea, P. A. (1994) Heterologous expression of plant vacuolar pyrophospatase in yeast demonstrates sufficiency of the substrate-binding subunit for proton transport. Proc. Natl. Acad. Sci. USA 91: 6128-6132. Kim E. J., Zhen, R. G., and Rea, P. A. (1995) Site-directed mutagenesis of vacuolar H+-pyrophosphatase. Necessity of Cys634 for inhibition by maleimides but not catalysis. J. Biol. Chem. 270: 2630-2635. Kirby, A. H., and Neuberger, A. (1938) Glyoxalines: the determination of their pK values and the use of their salts as buffer. Biochem. J. 32: 1146-1151. Kuo, S. Y., and Pan, R. L. (1990) An essential arginyl residue in the tonoplast pyrophosphatase from etiolated mung bean seedlings. Plant Physiol. 93: 1128-1133. Lehoux, I. E., and Mitra, B. (1999) (S)-Mandelate dehygenase from Pseudomonas putida: mutations of the catalytic base histidine-274 and chemical rescue of activity. Biochemistry 38: 9948-9955. Lin, Y. T. (2000) Essential roles of C-terminal domain in vacuolas H+-pyrophosphatase from etiolated mung bean seedlings. Department of Life Science, College of Life Science, National Tsing Hua University, Hsin Chu 30043, Taiwan, ROC. Maeshima, M. (2000) Vacuolar H+-pyrophosphatase. Biochim. Biophys. Acta 1465: 37-51. Maeshima, M. (2001) Tonoplast transporters: organization and function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 469-497. Maruyama, C., Tanaka, Y., Takeyasu, K. Yoshida, M., and Sato, M. H. (1998) Structural studies of the vacuolar H+-pyrophosphatase: sequence analysis identification of the residues modified by fluorescent cyclohexylcarbodiimide and maleimide. Plant Cell Physiol. 39: 1045-1053. McPherson, M. J., and Møller, S. G. (2000) in PCR, pp.143-182, BIOS Scientific Publishers Ltd., Oxford, UK. Nakanishi, Y., Saijo, T., Wada, Y., and Maeshima, M. (2001) Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase. J. Biol. Chem. 276(10): 7654-7660. Newmyer, S. L., Sun, J., Loehr, T. M., and de Montellano, P. R. O. (1996) Rescue of the horseradish peroxidase His-170 Ala mutant activity by imidazole: importance of proximal ligand tethering. Biochemistry 35: 12788-12795. Palmgren, M. G. (1991) Acridine orange as a probe for measuring pH Gradients across membranes: mechanism and limitations. Anal. Biochem. 192: 316-321. Salisbury, F. B., and Ross, C. W. (1992) Plant Physiology, pp. 24-25.4th edition, Wadsworth Inc., California, USA. Tu, C. K., and Silverman, D. N. (1989) Role of histidine 64 in the catalytic mechanism of human carbonic anhydrase II studies with a site-specific mutant. Biochemistry 28: 7913-7918. van Veldhoven, P. P., and Mannaerts, G. (1987) Inorganic and organic phosphate measurements in the nanomolar range. Anal. Biochem. 161:45-48. De Wall, S. L., Meadows, E. S., Barbour, L. J., and Gokel, G. W. (1999) Synthetic receptors as models for alkali metal cation- binding in proteins. Proc. Natl. Acad. Sci. USA 97: 6271-6276. Weibe C. A., Dibattista, E. R., and Fliegel, L. (2001) Functional role of polar amino acid residues in Na+/H+ exchangers. Biochem. J. 357: 1-10. Yang, S. J., Jiang, S. S., Tzeng, C. M., Kuo, S. Y., Hung, S. H., and Pan, R. L. (1996) Involvement of tyrosine residues in the inhibition of plant vacuolar H+-pyrophosphatase tetranitromethane. Biochim. Biophys. Acta 1294:89-97. Yang, S. J., Jiang, S. S., Van, R. C., Hsiao, Y. Y., and Pan, R. L. (2000) A lysine residue involved in the inhibition of vacuolar H+-pyrophosphatase by fluorescein 5’-isothiocyanate. Biochim. Biophys. Acta 1460: 375-383. Zhen, R. G., Kim, E. J., and Rea, P. A. (1997) Acidic residues necessary for pyrophosphatase-energized pumping and inhibition of the vacuolar H+-pyrophosphatase by N, N’-dicyclohexylcarboiimide. J. Biol. Chem. 272: 22340-22348.
|