跳到主要內容

臺灣博碩士論文加值系統

(3.236.225.157) 您好!臺灣時間:2022/08/16 00:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林宏昇
研究生(外文):Hung-Sheng Lin
論文名稱:耐輻射奇異球菌之表面蛋白invitro下自組合之研究:分析自組合蛋白之體積分佈
論文名稱(外文):In vitro self-assembly of S-layer proteins extracted from Deinococcus radiodurans cell wall: size analysis of the assemblies
指導教授:譚世特
指導教授(外文):Shieh-Te Tan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:45
中文關鍵詞:耐輻射奇異球菌自組合奈米科技庫爾特粒徑分析儀表面蛋白
外文關鍵詞:Deinococcus radioduransself-assemblynanotechnologyCOULTER MultisizerS-layerHPI proteins
相關次數:
  • 被引用被引用:0
  • 點閱點閱:97
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
耐輻射奇異球菌野生型菌株Deinococcus radiodurans R1 (為type strain) 細胞表面結晶蛋白 (S-layer proteins, SLPs)已知為分子量約100 kD大小的分子。本研究中,我們以另一耐輻射奇異球菌野生型菌株Deinococcus radiodurans IR (輻射抗性與生長速率均較R1為高)為材料,進行D. radiodurans SLPs的性質分析。我們以利用氫鍵破壞劑 (hydrogen-bond-breaking agent) 之添加與移除方式,成功展示D. radiodurans IR SLPs的自組合 (self-assembly) 能力。如此得到的自組合產品 (self-assemblies, SAs) 經光學顯微鏡檢以及SEM/TEM鏡檢指出為可達微米尺寸的片狀結構。在TEM下可觀察到SA表面具有某種規則排列的等大小結構。在field emission SEM (FE-SEM) 下可清楚觀察到SAs可以是多層片狀結構。另外,我們利用庫爾特粒徑分析儀 (COULTER® Multisizer II)測量SAs族群的體積分佈,也成功的監測此自組合過程,以及分析溫度對SAs體積的影響。這些結果顯示了D. radiodurans SLPs在水溶液中的自組合現象的一些性質,以及庫爾特粒徑分析技術在這方面研究的應用價值。

We have demonstrated the in vitro self-assembly capacity of Deinococcus radiodurans IR S-layer proteins (SLPs) by using a protocol involving removing of a hydrogen-bond-breaking agent that had added in a cell wall preparation to extract protein molecules of interest. The resulted self-assemblies (SAs) were micron-scale sheet structures when observed under light and electronic microscope. Also observed was the regular pattern on SAs’ surface (TEM) and multilayer structures (field-emission SEM). Furthermore, we determined the SAs’ particle size distribution (COULTER® Multisizer II) in the course of SAs formation. These results suggested that the self-assembly was time- and temperature-dependent and was mainly due to ~100 kD cell-wall proteins (SDS-PAGE). Coulter size analysis could be of potential application in the study of mechanism of self-assembly in particular and in the field of nanotechnology in general.

中文摘要……………………………………………1
英文摘要……………………………………………2
緒言…………………………………………………3
材料與方法…………………………………………7
結果…………………………………………………11
討論…………………………………………………17
參考文獻……………………………………………24
圖……………………………………………………i
附錄…………………………………………………xiii

1.Sleytr, U. B., and P. Messner. 1983. Crystalline surface layers on bacteria. Annu. Rev. Microbiol. 37: 311-339.
2.Thornley, M. J., A. M. Glauert, and U. B. Sleytr. 1974. Structure and assembly of bacterial surface layers composed of regular arrays of subunits. Phil. Trans. R. Soc. Lond. B. 268: 147-153.
3.Glauert, A. M., and M. J. Thornley. 1969. The topography of the bacterial cell wall. A. Rev. Microbiol. 23: 159-198.
4.Holt, S. C., and E. R. Leadbetter. 1969. Comparative ultrastructure of selected aerobic spore-forming bacteria: a freeze-etching study. Bact. Rev. 33: 346-378.
5.Mesnage, S., E. Tosi-couture, P. Gounon, M. Mock, and A. Fouet. 1998. The capsule and S-layer: Two independent and yet compatible macromolecular structures in Bacillus anthracis. J. Bacteriol. 180: 1488-1495.
6.Müller, D. J., W. Maumeister, and A. Engel. 1996. Conformation change of the hexagonally packed intermediate layer of Deinococcus radiodurans Monitored by atomic force microscopy. J. Bacteriol. 178: 3025-3030.
7.Sleytr, U. B., S. Margit, P. Dietmar, and S. Bernhard. 2001. Characterization and use of crystalline bacterial cell surface layers. Progress in Surface Science. 68: 231-278.
8.Pum, D., A. Neubauer, E. Gyoervary, M. Sára, U. B. Sleytr. 2000. S-layer proteins as basic building blocks in a biomolecular construction kit. Nanotechnology. 11: 100-107.
9.Glauert, A. M., and M. J. Thornley. 1973. Self-assembly of a surface component of a bacterial outer membrane. John Innes Symp. 1: 297-305.
10.Sleytr, U. B. 1976. Self-assembly of the hexagonally and tetragonally arranged subunits of bacterial surface layers and their reattachment to cell walls. J. Ultrastruct. Res. 55: 360-377.
11.Scholz, H. C., E. Riedmann, A. Witte, W. Lubitz, and B. Kuen. 2001. S-layer variation in Bacillus stearothermophilus PV72 is based on DNA rearrangement between the chromosome and the naturally occurring megaplasmids. J. Bacteriol. 183: 1672-1679.
12.Thornley, M. J., R. W. Horne, and A. M. Glauert. 1965. The fine structure of Micrococcus radiodurans. Arch. Mikrobiol. 51: 267-289.
13.Work, E., and H. Griffiths. 1968. Morphology and chemistry of cell walls of Micrococcus radiodurans. J. Bacteriol. 95: 641-657.
14.Sleytr, U. B., M. Kocur, A. M. Glauert, and M. J. Thornley. 1973. A study of freeze-etching of the fine structure of Micrococcus radiodurans. Arch. Mikrobiol. 94: 77-87.
15.Lancy, JR., P., and R. G. E. Murray. 1978. The envelope of Micrococcus radiodurans: isolation, purification, and preliminary analysis of the cell wall layers. Can. J. Microbiol. 24: 162-176.
16.Baumeister, W., and O. Kübler. 1978. Topographic study of the cell surface of Micrococcus radiodurans. Proc. Natl. Acad. Sci. U.S.A. 75(11): 5525-5528.
17.Thompson, B. G., and R. G. E. Murray. 1982. The association of the surface array and the outer membrane of Deinococcus radiodurans. Can. J. Microbiol. 28: 1081-1088.
18.Karrasch, S., R. Hegerl, J. H. Hoh, W. Baumeister, and A. Engel. 1994. Atomic force microscopy produces faithful high-resolution images of protein surfaces in an aqueous environment. Proc. Natl. Acad. Sci. USA. 91: 836-838.
19.Müller, D. J., D. Fotiadis, S. Scheuring, C. Möller, and A. Engel. 2000. Comformation changes, flexibilities and intramolecular forces observed on individual proteins using AFM. Single Mol. 1: 115-118.
20.Müller, D. J., and A. Engel. 1999. Voltage and pH-induced channel closure of porin OmpF visualized by atomic force microscopy. J. Mol. Biol. 285: 1347-1351.
21.Reinhoudt, D. N., and M. Crego-Calama. 2002. Synthesis beyond the molecule. Science. 295: 2403-2407.
22.Beveridge, T. J. 1994. Bacterial S-layers. Curr. Opin. Struct. Biol. 4: 204-212.
23.Chu, S., S. Cavaignac, J. Feutrier, B. M. Phipps, M. Kostrzynska,, W. W. Kay, and T. J. Trust. 1991. Structure of the tetragonal surface virulence array protein and gene of Aeromonas salmonicida. J. Biol. Chem. 266: 15258-15265.
24.Sara, M., and U. B. Sleytr. 1987. Molecular sieving through S-layers of Bacillus stearothermophilus strains. J. Bacteriol. 169: 4092-4098.
25.Engelhardt, H., and J. Peters. 1998. Structural research on surface layers: a focus on stability, surface layer homology domains, and surface layer-cell wall interactions. J. Struct. Biol. 124: 276-302.
26.Brechtel, E., M. Matuschek, A. Hellberg, E. M. Egelseer, R. Schmid, and H. Bahl. 1999. Cell wall of Thermoanaerobacterium thermosulfurigenes EM1: isolation of its components and attachment of the xylanase XynA. Arch. Microbiol. 171: 159-165.
27.Dietmar, P., and U. B. Sleytr. 1999. The application of bacterial S-layers in molecular nanotechnology. Nanotechnology. 17: 8-12.
28.Pum, D., G. Stangl, C. Sponer, K. Riedling, P. Hudek, W. Fallmann, and U. B. Sleytr. 1997. Patterning of monolayers of crystalline S-layer proteins on a silicon surface by deep ultraviolet radiation. Microelectronic Engineering. 35: 297-300.
29.Müller, D. J., W. Maumeister, and A. Engel. 1999. Controlled unzipping of a bacterial surface layer with atomic force microscopy. PNAS. 96: 13170-13174.
30.Barthlott, W., and C. Neinhuis. 1997. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta. 202: 1-8.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top