跳到主要內容

臺灣博碩士論文加值系統

(3.235.140.84) 您好!臺灣時間:2022/08/13 05:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:方友清
研究生(外文):Yu-Ching Fang
論文名稱:氧化物添加劑對玻璃陶瓷之緻密化及結晶動力學的影響
論文名稱(外文):Effects of Oxide Additives on Densification and Devitrification Kinetics and Mechanism of Glass-Ceramic
指導教授:簡朝和
指導教授(外文):Jau-Ho Jean
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:中文
論文頁數:235
中文關鍵詞:玻璃陶瓷結晶緻密化動力學
外文關鍵詞:glass-ceramicdevitrificationdensificationkinetics
相關次數:
  • 被引用被引用:3
  • 點閱點閱:757
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本篇論文探討氧化鋁及二氧化鈦對K2O-CaO-SrO-BaO-B2O3-SiO2玻璃(TG玻璃)的緻密化與結晶動力學及機構的影響。首先,在第一章回顧低溫共燒陶瓷技術的發展,以及有關玻璃陶瓷的緻密化與結晶化行為的相關文獻。在第二章中,首先探討純TG玻璃的結晶動力學及機構。此純玻璃經燒結後會生成cristobalite (SiO2)及pseudowollastonite ((Ca,Ba,Sr)SiO3)兩結晶相。由活化能的分析顯示結晶相的孕核是受玻璃的相分離所控制。cristobalite及pseudowollastonite的結晶動力學皆遵循Avrami方程式的分析,且由實驗結果顯示二者的表觀活化能與鹼土金屬及鹼金屬離子在玻璃中擴散的活化能相近,此說明擴散為其速率控制步驟,上述結論進一步由成長速率的分析得到驗證。
接著,在第三章中,alumina被加入TG玻璃中以探討其對原始玻璃結晶動力學及其機構的影響。當alumina的添加量高於一臨界值,10-20 vol%時,純玻璃的結晶相即完全被抑制,但會形成anorthite ((Ca,Sr,Ba)Al2Si2O8)結晶。上述結果係由於alumina溶解於玻璃,使玻璃變為富鋁(aluminum-rich)的組成,且此溶解行為在動力學上遠較cristobalite及pseudowollastonite的形成為快所致。anorthite的結晶動力學依循Avrami方程式的分析,結果顯示,其表觀活化能與Al-O鍵的強度相當,說明anorthite的形成屬反應控制動力學(reaction-controlled kinetics)機構。
在第四章中,探討alumina的含量及粒徑對(TG玻璃 + alumina)系統之緻密化及結晶行為的影響。結果顯示,降低alumina的含量或增加alumina的粒徑皆會提高緻密化速率,但當降低含量或增大粒徑至一定限度時,將導致系統無可避免地發生起泡現象。由緻密化活化能的分析顯示,此系統的緻密化在低alumina含量及低於臨界DF值時主要是受純玻璃的黏性流動所控制,但當alumina含量提高且DF高於臨界值時,其緻密化的控制機構會轉為由Al3+離子溶入原始玻璃所形成之新玻璃的黏性流動所控制。當此新玻璃的黏度增加至一定程度時,緻密化程序即受到抑制,故此系統的緻密化行為實際為玻璃黏性流動所控制的燒結動力學與Al3+離子溶入玻璃的反應動力學相互競爭的結果。研究結果顯示,當玻璃滲透進入孔隙所需的滲透時間與形成完整含Al反應層所需的反應時間相當時,系統可燒結緻密;相反地,當二者差異過大時,燒結體將難以緻密,亦即,當滲透時間較短時,燒結體將發生起泡現象而去緻密化,當反應時間較短時,燒結體將因大量Al3+離子溶入玻璃中而使黏度大幅提高,導致難以緻密。此種因Al3+離子溶入TG而造成緻密化受阻的現象,進一步在以TMA及DTA進行的非等溫燒結實驗中得到驗證。藉由動力學的分析可合理地解釋改變alumina含量及粒徑所得到的緻密化圖譜(densification map)。另一方面,就對結晶的效應而言,alumina含量及粒徑的改變並不影響生成anorthite結晶的潛伏期,且不同alumina含量的系統在結晶初期呈現一致的結晶量成長速率。然而,隨著燒結的進行,alumina含量高者由於粉末間距較短及Al3+離子的擴散而成為高黏度的玻璃,不利於Al3+離子的持續擴散,使最終能達到的結晶量受限。另一方面,粒徑較小的粉末不僅具較高的結晶量成長速率,且最終所能達到的結晶比例亦較高。
在第五章中,探討含1-40 vol% titania粉末之可結晶TG玻璃粉末的結晶化與反應動力學。在900-1100℃之間,當所添加的titania達10 vol%時,純玻璃的結晶相即完全被titanite ((Ca,Sr,Ba)TiSiO5)結晶所取代。此抑制原始玻璃結晶相所需的陶瓷填料添加量較(TG + alumina)系統所需的alumina為低。上述觀察係由於在titania與玻璃的界面間發生了一化學反應所致。溶解於玻璃的titania改變了玻璃的組成,且溶解的動力學遠較cristobalite及pseudowollastonite的形成為快。由活化能的分析顯示titanite ((Ca,Sr,Ba)TiSiO5)的結晶化係由形成Ti-O鍵的反應動力學所控制。
最後,探討(TG + alumina + titania)材料系統的組成設計對緻密化、結晶性及電性、熱性的影響。結果顯示,經875℃燒結30分鐘後,僅在玻璃的添加量為50-70 vol%時,樣品方可達到緻密。當玻璃添加量不足時,緻密化不完全;相反地,當玻璃的添加量過高時,此三元複材將因起泡而去緻密化。不同組成配比所需玻璃添加量的變化,主要係與陶瓷填料的粉末粒徑有關。在此三元材料系統中,除了原始TG玻璃的cristobalite (SiO2)、pseudowollastonite ((Ca,Sr,Ba)SiO3)結晶,以及分別會在(TG + alumina)系統、(TG + titania)系統生成的anorthite ((Ca,Sr,Ba) Al2Si2O8)、titanite ((Ca,Sr,Ba)TiSiO5)結晶外,未發現其他結晶生成。在探討的溫度下,anorthite具有與titanite相當的潛伏期,但由於後者具較高的析出速率,且titania粉末的粒徑較小,在玻璃的含量足以提供陶瓷填料充分潤溼的情況下,titanite的生成量明顯高於anorthite。在(TG + alumina + titania)系統中,依據組成配比的不同,材料的介電常數約介於8-20之間,且可由理論計算準確預估。實驗發現,anorthite及titanite結晶的生成對提昇介電常數的效果不大,但由於生成結晶的高Q特性及基地中高介電損失相的玻璃含量減少,可顯著降低三元系統的介電損失。另一方面,此材料系統的熱膨脹係數約介於5.4-7.2之間,且在固定的玻璃含量下,熱膨脹係數隨著titania含量的增加而增加。
圖表索引iv
摘要Xi
第一章 簡介1
1.1 低溫共燒陶瓷(LTCC)的發展1
1.2 陶瓷基材的演進2
1.3 用於LTCC系統的玻璃陶瓷4
1.4 玻璃陶瓷的緻密化7
1.4.1 與結晶陶瓷系統的差異7
1.4.2 黏性燒結7
1.4.3 緻密化與結晶溫度的關係9
1.4.4 等溫燒結與非等溫燒結9
1.4.5 成分對燒結性的影響10
1.5 玻璃陶瓷的結晶化10
1.5.1 孕核11
1.5.1.1 孕核機構11
1.5.1.2 孕核處理及孕核溫度的決定12
1.5.1.3 孕核劑13
1.5.1.4 相分離14
1.5.2 結晶成長14
1.5.2.1 結晶溫度14
1.5.2.2 結晶動力學的分析15
1.5.2.3 組成對結晶的效應17
1.5.2.4 結晶對殘餘玻璃基地的效應19
1.6 製程對玻璃陶瓷的影響19
1.7 論文緣起20
參考文獻23
第二章 K2O-CaO-SrO-BaO-B2O3-SiO2玻璃-陶瓷的結晶動力學及機構36
2.1 前言37
2.2 實驗方法40
2.3 結果與討論41
2.3.1 結晶相的確認41
2.3.2 TG玻璃的緻密化41
2.3.3 結晶動力學及機構42
2.3.3.1 孕核44
2.3.3.2 變態動力學47
2.3.3.3 結晶成長50
2.4 結論52
參考文獻53
第三章 氧化鋁對K2O-CaO-SrO-BaO-B2O3-SiO2玻璃之結晶動力學及其機構的影響76
3.1 前言77
3.2 實驗方法81
3.3 結果與討論82
3.3.1 alumina與TG玻璃間的化學反應82
3.3.2 不同alumina含量的組成研究83
3.3.2.1 XRD分析83
3.3.2.2 alumina與TG玻璃間的反應動力學及其機構85
3.3.2.3 反應時間與潛伏期的比較86
3.3.2.4 anorthite的結晶動力學及其機構87
3.3.3 anorthite結晶組成的遷移90
3.4 結論92
參考文獻93
第四章 氧化鋁的含量及粒徑對K2O-CaO-SrO-BaO-B2O3-SiO2玻璃之緻密化及結晶行為的影響119
4.1 前言121
4.2 實驗方法124
4.3 結果125
4.3.1 alumina的含量及粒徑對(TG + alumina)系統緻密化的影響125
4.3.1.1 含量的效應125
4.3.1.2 粒徑的效應126
4.3.2 (TG + alumina)系統的緻密化圖譜127
4.3.3 alumina的含量及粒徑對(TG + alumina)系統結晶化的影響129
4.3.3.1 含量的效應129
4.3.3.2 粒徑的效應130
4.4 討論132
4.4.1 緻密化控制機構132
4.4.2 動力學的分析134
4.4.3 非等溫燒結的驗證139
4.5 結論143
參考文獻142
第五章 二氧化鈦對K2O-CaO-SrO-BaO-B2O3-SiO2玻璃之結晶動力學及機構的影響169
5.1 前言170
5.2 實驗方法172
5.3 結果與討論173
5.3.1 titania與TG玻璃間的化學反應173
5.3.2 不同titania含量的組成研究173
5.3.2.1 XRD分析174
5.3.2.2 titania與TG玻璃間的反應176
5.3.2.3 反應對潛伏期176
5.3.2.4 titanite的結晶動力學及其機構178
5.4 結論181
參考文獻182
第六章 (TG玻璃+alumina+titanite)三元系統之組成設計對燒結體性質200
的影響
6.1 前言202
6.2 實驗方法204
6.3 結果與討論205
6.3.1 (TG + alumina + titania)系統的緻密化圖譜205
6.3.2 (TG + alumina + titania)系統的結晶相圖及顯微結構207
6.3.3 (TG + alumina + titania)系統的介電性212
6.3.4 (TG + alumina + titania)系統的熱性214
6.4 結論216
參考資料217
第七章 總結232
[1]R. R. Tummala, “Ceramic and glass-Ceramic Packaging in the 1990s,” J. Am. Ceram. Soc., 74[5], 895-908 (1991).
[2]R. C. Sutterlin, G. O. Dayton and J. V. Biggers, “Thick-Film Resistor/Dielectric Interactions in a Low Temperature Co-fired Ceramic Package,” IEEE Trans. on Components, Packaging, and Manufacturing Technology-Part B, 18[2], 346-52 (1995).
[3]B. Geller, B. Thaler, A. Fathy, M. J. Liberatore, H. D. Chen, G. Ayers, V. Pendrick and Y. Narayan, “LTCC-M: An Enabling Technology for High Performance Multilayer RF Systems,” Microwave J., 42[7], 64-72 (1999).
[4]D. Wilcox, Sr., R. F. Huang and S. X. Dai, “ Enabling Materials for Wireless Multilayer Ceramic Integrated Circuit (MCIC) Applications,” Ceramic Transaction, 97, 201-13 (1999).
[5]S. X. Dai, R. F. Huang and D. L. Wilcox Sr., “ Use of Titanates to Achieve a Temperature Stable LTCC Dielectric for Wireless Applications,” Ceramic Transaction, 105 (2000).
[6]T. K. Gupta, “In Search of Low Dielectric Constant Ceramic Materials for Electronic Packages,” Interl. J. Microcircuits Elect. Packag., 17[1], 80-97 (1994).
[7]R. R. Tummala, “Ceramics in Microelectronic Packaging,” Am. Ceram. Soc. Bull., 67[4], 752-8 (1988).
[8]B. Schwartz, “ Microelectronics Packaging II,” Am. Ceram. Soc. Bull., 63[4], 577-81 (1984)
[9]R. Pound, “New Ceramic Fills Performance Gaps, ” Electron. Packag. Prod., 30-33 (1987).
[10]R. R. Tummala, “Borosilicate Glass Composition, ” U.S. Pat. No.3640738 (1971).
[11]J. H. Jean and T. K. Gupta, “Devification Inhibitor in Binary Borosilicate Glass Composite,” J. Mat. Res., 8[2], 356-63 (1993).
[12]T. Miyakoshi, A. Yamada, A. Koyama and H. Ninomiya, “Sintered Ceramic Body, ” U.S. Pat. No.4939106 (1990).
[13]H. T. Sawhill, “Materials Compatibility and Co-Sintering Aspects in Low Temperature Co-Fired Ceramic Packages,” Ceram. Eng. Sci. Proc., 9[11-12], 1603-17 (1995).
[14]G. Partridge, “An Overview of Glass Ceramics. Part 1. Development and Principle Bulk Applications,” Glass Technol., 35[3], 116-27 (1994).
[15]A. H. Kumar, P. W. McMillan, and R. R. Tummala, “Glass-Ceramic Structures and Sintered Multilayered Substrates Thereof with Circuit Patterns of Gold, Silver, or Copper, ” U.S. Pat. No.4 301 324 (1981).
[16]S. H. Knickerbocker, A. H. Kumar, and L. W. Herron, “Cordierite Glass Ceramics for Ceramic Packaging, ” Am. Ceram. Soc. Bull., 72[1], 90-95 (1993).
[17]J. I. Steinberg, S. J. Horowitz, and R. J. Bacher, “Low-Temperature Co-Fired Tape Dielectric Material Systems for Multilayer Interconnections”;pp. 31-39 in Advances in Ceramics, Vol. 19, Multilayer Ceramic Devices. Edited by J. B. Blum and W. R. Cannon. American Ceramic Society, Westerville, OH (1986).
[18]K. Niwa, N. Kamehara, H. Yokoyama, and K. Kurihara, “Multilayer Ceramic Circuit Board with Copper Conductor”; pp.41-47 in Advances in Ceramics, Vol. 19, Multilayer Ceramic Devices. Edited by J. B. Blum and W. R. Cannon. American Ceramic Society, Westerville, OH (1986).
[19]Y. Shimada, K. Utsumi, M. Suzuki, H. Takamizowa, M. Nitta, and T. Watari, “Low Firing Temperature Multilayer Glass Ceramic Substrate,” IEEE Trans. Compon. Hybrids, Manuf. Technol., 6[4], 382-88 (1983).
[20]D. M. Mattox, S. R. Gurkovich, J. A. Olenick and K.M. Mason, “Low Dielectric Constant Alumina-Compatible, Co-Fired Multilayer Substrate, ” Ceram. Eng. Sci. Proc., 9[11-12], 1567-78 (1988).
[21]N. Kamehara, K. Kurihara, and K. Niwa., “Method for Producing Multilayered Glass-Ceramic Structure with Copper-Based Conductors Therein,” U.S. No.4504339, March 12(1985).
[22]Y. S. Cho, D. T. Hoelzer, W. A. Schultz and V. R. W. Amarakoon, “Crystallization and Microstructural Evolution of Cordierite-Based Thick Film Dielectrics,” Acta. Mater., 46[18], 6421-30 (1998).
[23]T. Ishida, S. Nakatani, T. Nishimura and S. Yuhaku, “A New Processing Technique for Multilayered Ceramic Substrates with Copper Conductors,”; pp. 467-80 in Advances in Ceramics, Vol. 26, Ceramic Substrates and Packages for Electronic Application. Edited by M. F. Yan, K. Niwa, H. M. O’Byran, Jr., and W. S. Young, American Ceramic Society, Westerville, OH (1989).
[24]A. H. Kumar and R. R. Tummala, “Glass-Ceramic Structures and Sintered Multilayered Substrates Thereof with Circuit Patterns of Gold, Silver, or Copper, ” U.S. Pat. No.4 413 061 (1981).
[25]K. Ikuma and Y. Shimada, “Multilayer Glass Ceramic Substrate and Process for Producing The Same, ” U.S. Pat. No.5 753 376 (1981).
[26]K. Niwa, Y. Imanaka, N. Kamehara and S. Aoki, “Low-K and Low-T Sintering Materials for Multilayer Circuit Boards,”; pp. 323-37 in Advances in Ceramics, Vol. 26, Ceramic Substrates and Packages for Electronic Application. Edited by M. F. Yan, K. Niwa, H. M. O’Byran, Jr., and W. S. Young, American Ceramic Society, Westerville, OH (1989).
[27]R. F. Huang and R. S. Kommrusch, “The Development of a Multilayer Ceramic Antenna Switch for Wireless Communications,” in Materials and Processes for Wireless Communications, Eds. T. Negas and H. Ling, 169-77, (1995).
[28]C. Makihara, M. Terasawa, H. Wada, “The Possibility of High Frequency Functional Ceramics Substrate,” Ceramic Transaction, Vol. 97, 215-26 (1999).
[29]Y. Yasukawa, S. Y. Nakai, K. Kawamura, and M. Kobayashi, “A Miniaturized VCO using Multilayer Ceramic Technology,” 309-13 in IMC 1992 Proceedings, Yokohama (1992).
[30]J. Estes, R. Kommrusch, and R. F. Huang, “Integration of a Receiver Front-End in Multilayer Ceramic Integrated Circuit Technology,” Proceedings of the 1997 Wireless Communications Conference, Boulder, CO., 11-13 (1997).
[31]M. R. Gongora-Rubio, P. Espinoza-Vallejos, L. Sola-Laguna and J. J. Santiago-Avilés, “Overview of Low Temperature Co-Fired Ceramics Tape Technology for Meso-System Technology (MsST),” Sensors and Actuators A, 89, 222-41 (2001).
[32]I. Gutzow, R. Pascova and A. Karamanov, “The Kinetics of Surface Induced Sinter Crystallization and The Formation of Glass-Ceramic Materials,” J. Mat. Sci., 33, 5265-73 (1998).
[33]S. K. Muralidhar, G. J. Roberts, A. S. Shaikh, D. J. Leandri, D. L. Hankey, L. Dana and T. J. Vlach, “Low Dielectric, Low Temperature Fired Glass Ceramics,” U.S. Pat. No.5258335 (1993).
[34]Y. Imanaka and N. Kamehara, “Influence of Shrinkage Mismatch between Copper and Ceramics on Dimensional Control of the Multilayer Ceramic Circuit Board,” J. Ceram. Soc. Japan Int. Ed., 100, 558-61 (1992).
[35]S. Nishigaki, S. Yano, J. Fukuda, M. Fukaya and T. Fuwa, “A New Multilayered, Low-Temperature Firable Ceramic Substrate,” ISHM Proceedings, 225-34 (1985).
[36]DuPont Microcircuit Materials, The DuPont Co., “A Low Loss, Lead-Free Ltcc System for Wireless and RF Applications,” Microwave J., 41[12], 104-8 (1998).
[37]W. D. Kingery, H. K. Bowen and D. R. Uhlmann, Introduction to Ceramics, 2nd ed. John Wiley, New York, 1976, Ch.2, Ch.5, Ch.10 & Ch.14.
[38]S. Sridharan and M. Tomozawa, “Effect of Various Oxide Additives on Sintering of BaO-SiO2 System Glass-Ceramics,” J. Mat. Sci., 27, 6747-54 (1992).
[39]J. H. Jean, Y. C. Fang, S. X. Dai, R. F. Huang and D. L. Wilcox, Sr., “ Devitrification Kinetics and Mechanism of K2O-CaO-SrO-BaO-B2O3-SiO2 Glass-Ceramic,” J. Am. Ceram. Soc., 84[6], 1354-60 (2001).
[40]K. B. Shim, N. T. Cho and S. W. Lee, “Silver Diffusion and Microstructure in LTCC Multilayer Couplers for high Frequency Applications,” J. Mat. Sci., 35, 813-20 (2000).
[41]J. I. Steinberg, “Dielectric Composition,” U.S. Pat. No.4654095 (1987).
[42]J. I. Steinberg, “Dielectric Composition,” U.S. Pat. No.4752531 (1988).
[43]K. Ikuma and Y. Shimada, “Multilayer Glass Ceramic Substrate and Process for Producing the Same,” U.S. Pat. No.5989484 (1999).
[44]K. Ikuma and Y. Shimada, “Multilayer Glass Ceramic Substrate and Method of Fabricating the Same,” U.S. Pat. No.5506058 (1996).
[45]S. Yano and S. Nishigaki, “Low Temperature Fired Ceramics,” U.S. Pat. No.4749665 (1988).
[46]H. Jantunen, R. Rautioaho, A. Uusimaki and S. Leppavuori, “Preparing Low-Loss Low-Temperature Cofired Ceramic Material Without Glass Addition,” J. Am. Ceram. Soc., 83[11], 2855-57 (2000).
[47]S. Knickerbocker, S. Lawhorne and M. R. Tuzzolo “Sinterable Beta-Spodumene Glass-ceramics, ” J. Am. Ceram. Soc., 72[10], 1873-79 (1989).
[48]P. F. James, “Glass Ceramics: New Composition and Uses,” J. Non-Cryst. Solids, 181, 1-15 (1995).
[49]Y. M. Sung and J. S. Park, “Sintering and crystallization of (SrO‧SiO2)-(SrO‧Al2O3‧2SiO2) Glass-Ceramics,” J. Mat. Sci., 34, 5803-9 (1999).
[50]M. A. Mccoy and A. H. Heuer, “Microstructural Characterization and Fracture-Toughness of Cordierite ZrO2 Glass-Ceramics,” J. Am. Ceram. Soc., 71[8], 673-7 (1988).
[51]A. F. Wright, B. E. F. Fender, A. N. Fitch and J. B. Hayter, “Nucleation and Crystallization of Cordierite TiO2 Glass Ceramic, 1. Small-Angle Neutron-Scattering Measurements and Simulations,” Phys. Chem. Glasses, 26[4], 113-8 (1985).
[52]P. F. James, “Nucleation in Glass-forming systems-a Review,”; pp. 1-48 in Advances in Ceramics, Vol. 4, Nucleation and Crystallization in Glasses. Edited by J. H. Simmons, D. R. Uhlmann and G. H. Beall, American Ceramic Society, Columbus, OH (1982).
[53]P. F. James, “Volume Nucleation in Silicate Glasses,”; pp. 59-105 in Glasses and Glass-Ceramics. Edited by M. H. Lewis, Chapman and Hall, London (1989).
[54]P. F. James, Y. Iqbal, U. S. Jais, S. Jordery and W. E. Lee, “Crystallization of Silicate and Phosphate Glasses,” J. Non-Cryst. Solids, 219, 17-29 (1997).
[55]J. Schmelzer, R. Pascova, J. Moller and I. Gutzow, “Surfaced-Induced Devitrification of Glasses — The Influence of Elastic Strains,” J. Non-Cryst. Solids, 162, 26-39 (1993).
[56]A. Marotta, F. Branda and A. Buri, “Nucleation in Glass and Differential Thermal-Analysis,” J. Mater. Sci., 16[2], 341-4 (1981).
[57]C. S. Ray and D. E. Day, “Determining The Nucleation Rate Curve for Lithium Disilicate Glass by Differential Thermal-Analysis,” J. Am. Ceram. Soc., 73[2], 439-42 (1990).
[58]M. C. Weinberg, “Interpretation of DTA Experiments Used for Crystal Nucleation Rate Determinations,” J. Am. Ceram. Soc., 74[8], 1905-9 (1991).
[59]R. H. Bryden and W. F. Caley, “Determination of Nucleation Temperature of a Lime Aluminosilicate Glass-Ceramic by Differential Thermal analysis,” J. Mater. Sci. Lett., 16, 56-8 (1997).
[60]L. Barbieri, C.Leonelli, T. Manfredini, C. Siligardi, A. B. Corradi, P. Mustarelli and C. Tomasi, “Nucleation and crystallization of a Lithium Aluminodilicate Glass,” J. Am. Ceram. Soc., 80[12], 3077-83 (1997).
[61]I. M. Reaney, P. F. James and W. E. Lee, “Effect of Nucleating Agents on The Crystallization of Calcium Phosphate Glasses,” J. Am. Ceram. Soc., 79[7], 1934-44 (1996).
[62]S. Jordery, W. E. Lee and P. F. James, “Crystallization Hierarchy of CaO-P2O5-SiO2-Al2O3-TiO2 Glass-Ceramics,” J. Am. Ceram. Soc., 81[9], 2237-44 (1998).
[63]M. H. Lin and M. C. Wang, “Phase Transformation and Characterization of TiO2 and ZrO2 Addition in The Li2O-Al2O3-SiO2 Gels,” J. Mater. Res., 11[10], 2611-5 (1996).
[64]E. Demirkesen and E. Maytalman, “Effect of Al2O3 additions on The Crystallization Behavior and Bending Strength of a Li2O-ZnO-SiO2 Glass-Ceramics,” Ceramics International, 27, 99-104 (2001).
[65]S. Yilmaz, O. T. Özkan and V. Gunay, “Crystallization Kinetics of Basalt Glass,” Ceramics International, 22, 477-81 (1996).
[66]V. Znidarsic-Pongrac and D. Kolar, “The Crystallization of Diabase Glass,” J. Mater. Sci., 26[9], 2490-4 (1991).
[67]J. J. Shyu and Y. S. Yang, “Crystallization and Properties of a Perovskite Glass-Ceramic,” J. Mater. Sci., 31, 4859-63 (1996).
[68]N. P. Bansal, R. H. Doremus, A. J. Bruce and C. T. Moynihan, “Kinetics of Crystallization of ZrF4-BaF2-LaF3 Glass by Differential Scanning Calorimetry,” J. Am. Ceram. Soc., 66[4], 233-8 (1983).
[69]M. Avrami, “Kinetics of Phase Change: I. General Theory,” J. Chem. Phys., 7[12], 1103-12 (1939).
[70]M. Avrami, “Kinetics of Phase Change: II. Transformation-Time Relations for Random Distribution of Nuclei,” J. Chem. Phys., 8[2], 212-24 (1940).
[71]M. Avrami, “Kinetics of Phase Change: III. Granulation, Phase Change and Microstructure,” J. Chem. Phys., 9[2], 177-84 (1941).
[72]P. Balaya and C. S. Sunandana, “Crystallization Studies of 30Li2O-70 TeO2 Glass,” J. Non-Cryst. Solids, 162[3], 253-62 (1993).
[73]A. Marotta, A. Buri and G. L. Valenti, “Crystallization Kinetics of Gehlenite Glass,” J. Mater. Sci., 13, 2483-6 (1978).
[74]N. P. Bansal and R. H. Doremus, “Determination of Reaction Kinetic- Parameters from variable Temperature DSC or DTA,” J. Therm. Analysis, 29[1], 115-9 (1984).
[75]S. Mahadevan, A. Giridhar and A. K. Singh, “Calorimetric Measurements on As-Sb-Se Glasses,” J. Non-Cryst. Solids, 88[1], 11-34 (1986).
[76]O. P. Thakur, D. Kumar, O. Parkash and L. Pandey, “Effect of K2O Addition on Crystallization and Microstructural Behavior of The Strontium Titanate-Borosilicate Glass-Ceramic System,” J. Mater. Lett., 23, 253-60 (1995).
[77]J. H. Jean and T. K. Gupta, “Alumina as a Devitrification Inhibitor during Sintering of Borosilicate Glass Powders,” J. Am. Ceram. Soc., 76[8], 2010-16 (1993).
[78]S. M. Cox and P. L. Kirby, “Rate of Crystal Growth in Glass,” Nature, 159[2], 162-63 (1947).
[79]J. H. Jean and T. K. Gupta, “Cristobalite Growth Inhibitor in Pyrex Borosilicate Glass-Gallium Oxide,” J. Mater. Res., 8[8], 1767-69 (1993).
[80]J. H. Jean and Y. C. Fang, “Devitrification Kinetics and Mechanism of Pyrex Borosilicate Glass,” J. Mater. Res., 16[6], 1752-58 (2001).
[81]T. K. Gupta and J. H. Jean, “Principles of The Development of a Silica Dielectric for Microelectronics Packaging,” J. Mater. Res., 11[1], 243-63 (1996).
[82]J. H. Park and S. J. Lee, “Mechanism of Preventing Crystallization in Low-Firing Glass/Ceramic Composite Substrates,” J. Am. Ceram. Soc., 78[4], 1128-30 (1995).
[83]S. M. Bud, V. H. Exelby and J. J. Kirwan, “ The Formation of gas Bubbles in Glass at High Temperature,” Glass Tech., 3[4], 124-29 (1962).
[84]R. K. Day, “Bubbles in Glass — The Problem and Some Approaches to Its Solution,” Glass Industry, 36[7], 357-87 (1955).
[85]R. H. Dalton, “Extraction and Analysis of Glass from Glass,” J. Amer. Chem. Soc., 57, 2150-53 (1935).
[86]J. T. Brown, “Bubble Gas Analysis,” Glass Ind., 51[12], 542-45 (1970).
[87]S. J. Bethke, W. W. Chiou and R. G. Pastor, “Ceramic Composition,” U.S. Pat. No.5821181 (1998).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top