跳到主要內容

臺灣博碩士論文加值系統

(18.208.126.232) 您好!臺灣時間:2022/08/12 02:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉獻文
研究生(外文):Xein-Wien Liu
論文名稱:以ECR-CVD系統合成非晶質碳氮化合物之鑑定及其電子場發射,奈米微結構與低介電常數性質之研究
論文名稱(外文):Synthesis and Characterization of Amorphous Carbon Nitrides for Electron Field Emission, Nano-structure and Low Dielectric Properties by ECR-CVD System
指導教授:施漢章
指導教授(外文):Han C. Shih
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:英文
論文頁數:153
中文關鍵詞:電子迴旋共振電漿輔助化學氣相沉積 系統非晶質碳氮化合物電子場發射奈米微結構低介電常數
外文關鍵詞:ECR-CVDAmorphous Carbon NitridesElectron Field EmissionNano-structureLow Dielectric constant
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文的主要目的為以電子迴旋共振電漿輔助化學氣相沉積 (ECR-CVD) 系統,在施加直流或射頻負偏壓和改變通入反應氣體與壓力的條件下合成三種不同的非晶質碳氮化合物,並且探討其對所合成的材料造成的影響。一種是在系統施加直流與射頻負偏壓並沉積在矽晶片上可做為電子場發射源與可應用於具低介電常數之中間介電層 (ILD) 的非晶質碳氮薄膜 (a-C:N thin films); 另有在系統施加直流負偏壓並沉積在矽晶片與多孔鋁陽極處理膜上做為更佳電子場發射源與可應用於其他光電元件的奈米尺寸非晶質碳氮尖點 (a-C:N nanotips) 與 (a-C:N nano-rods) 纖維棒。
以ECR-CVD系統在施加直流負偏壓和通入氮氣、乙炔與氬氣反應氣體的環境下合成的a-C:N 奈米尖點,其場發射啟動電場強度可低達1.5 Vμm-1,遠低於其他碳基的電子場發射材料。同時將探討氬氣對a-C:N 薄膜在此性質中所扮演的石墨化效應與造成的影響。
接著以同樣系統在施加直流負偏壓和通入氮氣與乙炔於多孔性鋁陽極處理膜中合成的具有垂直排列方向性且長度50-80 m 及管徑長度100-250 nm 的a-C:N 奈米棒。
再於同樣系統中施加射頻負偏壓和通入氮氣、乙炔與氬氣反應氣體的環境下合成的具低介電性質的a-C:N 薄膜,其介電常數值在1 MHz時更可低達1.4。
此論文中應用到以OES來分析電漿中反應物種; 利用FE-SEM 與AFM來觀察試片形貌與粗糙度; TEM 則用來觀察奈米尺度結構的材料; FTIR與Raman光譜可用來鑑定碳結構中的化學鍵結與狀態; 並可利用XPS與AES來作化學元素的定性與定量分析。

This thesis mainly focuses on the influence of precursor gases and pressure, and/or the applied negative dc/rf bias for the synthesis of three different amorphous carbon nitride (a-C:N) compounds using ECR-CVD system. One is the a-C:N thin films on Si substrate for promising electron field emitters and for low-dielectric-constant (low k) materials as an interlayer dielectric (ILD) with the application of dc or rf bias voltage; Others are the nano-structural materials for a-C:N nano-tips and -rods on Si and porous alumina template substrates with the application of the dc bias by ECR-CVD. a-C:N nanotips and well-aligned a-C:N nano—rods can be predicted and expected to have potential applications in flat pannel display field emitters, optic, electronic and optoelectronic devices.
The superior field emission characteristics of a-C:N nanotips were synthesized for the first time by an ECR-CVD system by applying a negative dc bias to a Si substrate and using a mixture of C2H2, N2 and Ar as precursors. An onset emission field can be as low as 1.5 Vμm-1, which is significantly lower than other carbon-based electron field emitters. The effect of argon induced graphitization on the electron field emission properties of the a-C:N thin films has also been analyzed in this work. Well-aligned a-C:N nano-rods with a diameter of about 100-250 nm and a length of about 50-80 m on a porous alumina template were successfully synthesized by an ECR-CVD system in which a negative dc bias was applied to the substrate holder of graphite to promote the flow of ionic fluxes through the nano-channels of the alumina template in microwave excited plasma of C2H2 and N2 as precursors. The a-C:N thin films have been synthesized on Si for low k materials by using an ECR-CVD system with an application of negative rf bias to the silicon substrate in a mixture of C2H2 and N2 as precursors. The dielectric constants of a-C:N thin films have been reported as low as 1.4, at 1 MHz, respectively.
OES was used for these studies to investigate and analyze the activated radicals in the plasma. Various analytical techniques, such as FE-SEM for the surface and cross section morphology, AFM for the surface morphology and roughness, TEM for the atomic-scale structure, FTIR for chemical bonding structure, Raman spectroscopy for carbon bonding state, and XPS and AES for relevant chemical elements, were employed to characterize their properties.

摘要 I-II
Abstract 1-2
Chapter 1. Overviews
1.1. Motivation 1
1.2. Carbon Nitrtides 2
1.3. Electron Field Emission from a-C:N Thin Films and Nano- tips 6
1.4. a-C:N nano-rods 8
1.5. Low dielectric a-C:N thin films 10
1.6. References 13
Chapter 2. Experimental and Characterization
2.1. Deposition System—Electron Cyclotron Resonance
Chemical Vapor Deposition 1
2.2. Characterization 5
2.2.1. Atomic Force Microscope (AFM) 5
2.2.2. Field Emission Scanning Electron Microscopy
(FE-SEM) 6
2.2.3. X-ray Diffraction (XRD) 6
2.2.4. Raman Spectroscopy 6
2.2.5. Fourier Transform Infrared Spectroscopy (FTIR) 7
2.2.6. X-ray Photoelectron Spectroscopy (XPS) 8
2.2.7. Auger Electron Spectroscopy (AES) 8
2.2.8. Optical Emission Spectroscopy (OES) 9
2.2.9. Transmission Electron Microscopy (TEM) 10
2.2.10. Electron Field Emission 10
2.2.11. Capacitance-Voltage Characteristics 11
2.2.12. Notations 11
2.3. References 13
Chapter 3. The Synthesis and Electron Field Emission Properties of the a-C:N Thin Films
3.1. Introduction 1
3.2. Experimental 1
3.3. Results and Discussion 3
3.4. Conclusions 14
3.5. References 17
Chapter 4. The Formation of a-C:N Nanotips as Superior Electron Field Emitters
4.1. Introduction 1
4.2. Experimental 1
4.3. Results and Discussion 2
4.4. Conclusions 11
4.5. References 13
Chapter 5. The Morphology and Characterization of Aligned a-C:N Nano-rods
5.1. Introduction 1
5.2. Experimental 2
5.3. Results and Discussion 3
5.4. Conclusions 18
5.5. References 20
Chapter 6. Deposition of Thermally Stable a-C:N Thin Films with Low Dielectric Constants
6.1. Introduction 1
6.2. Experimental 2
6.3. Results and Discussion 3
6.4. Conclusions 19
6.5. References 20
Chapter 7. The Effect of Pressure Control on the a-C:N Thin Films with Low k
7.1.Introduction 1
7.2. Experimental 2
7.3. Results and Discussion 3
7.4. Conclusions 22
7.5. References 26
Chapter 8. Summary and Future Works 1-4 Appendixes
Appendix A 1 Appendix B 2
Appendix C 3
Publications

1. M. L. Cohen, Phys. Rev. B, 32 (1985) 7988.
2. A. Y. Liu and M. L. Cohen, Science, 245 (1989) 841.
3. A. Y. Liu and M. L. Cohen, Phys. Rev. B, 41 (1990) 10727.
4. D. M. Teter and R. J. Hemley, Science, 271 (1996) 53.
5. M. Côté and M. L. Cohen, Phys. Rev. B, 55 (1997) 5684.
6. M. R. Wixom, J. Am. Ceram. Soc., 73 (1990) 1973.
7. O. Matsumoto, T. Kotaki, H. Shikano, K. Takemura and S. Tanaka, J. Electrochem. Soc., 141 (1994) L16.
8. K. M. Yu, M. L. Cohen, E. E. Haller, W. L. Hansen, A. Y. Liu and I. C. Wu, Phys. Rev. B, 49 (1994) 5034.
9. C. Y. Hsu, and F. C. N. Hong, Jpn. J. Appl. Phys., 37 (1998) L675.
10. C. Y. Hsu, and F. C. N. Hong, Jpn. J. Appl. Phys., 37 (1998) L1058.
11. F. Fujimoto and K. Ogata, Jpn. J. Appl. Phys., 32 (1993) L420.
12. S. L. Sung, T. G. Tsai, K. P. Huang, J. H. Huang and H. C. Shih, Jpn. J. Appl. Phys., 37 (1998) L148.
13. C. M. Niu, Y. Z. Lu and C. M. Lieber, Science ,261 (1993) 334.
14. C. M. Lieber and Z. J. Zhang, Adv. Mater., 6 (1994) 497.
15. E. C. Franklin, J. Am. Chem. Soc., 44 (1922) 486.
16. P. T. Murray and M. Y. Chen, Surf. Rev. Lett., 3 (1996) 197.
17. T. A. Yen, C. L. Lin, J. M. Sivertsen and Jack H. Judy, J. Magn. & Magn. Mater., 120 (1993) 314.
18. Y. Taki, T. Kitagawa and O. Takai, Jpn. J. Appl. Phys. Part 1, 36(7B) (1997) 4901.
19. D. Li, X. Chu, S. C. Cheng, X. W. Lin, V. P. Dravid, Y. W. Chung, M. S. Wong and W. D. Sproul, Appl. Phys. Lett., 67 (1995) 203.
20. M. L. Wu, X. W. Lin, V. P. Dravid, Y. W. Chung, M. S. Wong and W. D. Sproul, J. Vac. Sci. Technol. A, 15(3) (1997) 946.
21. S. H. Tsai, C. W. Chao, C. L. Lee, X. W. Liu, I. N. Lin, and H. C. Shih, J. Electronchem. Soc., 2(5) (1999) 247.
22. J. H. Jung, B. K. Ju, H. Kim, M. H. Oh, S. J. Chung and J. Jang, J. Vac. Sci. Technol. B, 16 (1998) 705.
23. C. F. Chen, H. C. Wang, and H. C. Hsieh, Jpn. J. Appl. Phys., Part 1 39, (2000) 1880.
24. P. Lerner, N.M. Miskovsky, and P. H. Cutler, J. Vac. Sci. Technol. B, 16(2) (1998) 919.
25. M. W. Geis, J. C. Twichell, N. N. Efremow, K. Krohn, and T. M. Lyszczarz, Appl. Phys. Lett., 68 (1996) 2294.
26. M. W. Geis, J. C. Twichell, J. Macaulay and K. Okano, Appl. Phys. Lett., 67 (1995) 1328.
27. E. J. Chi, J. Y. Shim, H. K. Baik and S. M. Lee, Appl. Phys. Lett., 71 (1997) 324.
28. O. Groning, O. M. Kuttel, P. Groning, and L. Schlapbach, Appl. Phys. Lett., 71 (1997) 2253.
29. B. S. Satyanarayana, A. Hart, W. I. Milne, and J. Robertson, Appl. Phys. Lett. 71 (1997) 1430.
30. E. J. Chi, J. Y. Shim, D. J. Choi and H. K Baik, J. Vac. Sci. Technol. B, 16 (1998) 1219.
31. S. R. P. Silva, Gehan A. J. Amaratunga and J. R. Barnes, Appl. Phys. Lett., 71 (1997) 1477.
32. G. A. J. Amaratunga and S. R. P. Silva, Non-crystal. Solids, 198-200 (1996) 611.
33. E. I. Givargizov, V. V. Zhirnov, A. V. Kuznestov and P. S. Plekhanov, J. Vac. Sci. Technol. B, 74 (1996) 2030.
34. J. Chen, A. X. Wei, S. Z. Deng, Y. Lu, X. G. Zheng, D. H. Chen, D. Mo, S. Q. Peng and N. S. Xu, J. Vac. Sci. Technol. B, 16 (1998) 697.
35. S. L. Sung, X. J. Guo, K. P. Huang, F. R. Chen and H. C. Shih, Jpn. Thin Solid Films, 340 (1999) 169.
36. K. C. Park, J. H. Moon, S. J. Chang and J. H. Jang, J. Vac. Sci. Technol. B, 15(2) (1997) 454.
37. S. L. Sung, S. H. Tsai, C. H. Tseng, X. W. Liu and H. C. Shih, Appl. Phys. Lett., 74 (1999) 197.
38. X. W. Liu, C. H. Tseng, J. H. Lin, and H. C. Shih, Surf. Coat. Technol., 135 (2001) 184.
39. S. L. Sung, S. H. Tsai, X. W. Liu, and H. C. Shih, J. Mater. Res., 15(2) (2000) 502.
40. L. K. Cheah, X. Shi, B. K. P. Silva and Z. Sun, Diamond Rel. Mater., 7 (1998) 640.
41. K. C. Park, J. H. Moon, S. J. Chang and J. H. Jang, J. Vac. Sci. Technol. B, 15(2) (1997) 430.
42. R. D. Forrest, A. P. Burden, and S. R. P. Silva, L. K. Cheah and X. Shi, Appl. Phys. Lett., 73 (1998) 3784.
43. X. W. Liu, S. H. Tsai , L. C. Lee , M. X. Yang, A. C. M. Yang, I. N. Lin, and H. C. Shih, J. Vac. Sci. Technol. B, 18 (2000) 1840.
44. X. W. Liu, C. H. Lin, L. T. Chao, and H. C. Shih, Mater. Lett., 44 (2000) 304.
45. S. H. Tsai, F. K. Chiang, T. G. Tsai, F. S. Shieu, and H. C. Shih, Thin Solid Films, 366 (2000) 11.
46. F. K. Chiang, S. H. Tsai, F. S. Shieu, and H. C. Shih, J. Mater. Sci. lett., 19 (2000) 671.
47. S. H. Tsai, C. T. Shiu, W. J. Jong, and H. C. Shih, Carbon, 38 (2000) 1879.
48. S. H. Tsai, C. W. Chao, C. L. Lee, and H. C. Shih, Appl. Phys. Lett., 74 (1999) 3462.
49. S. H. Tsai, C. L. Lee, C. W. Chao, and H. C. Shih, Carbon, 38 (2000) 775.
50. E. W. Wong, B. W. Maynor, L. D. Burns, and C. M. Lieber, Chem. Mater., 8 (1996) 2041.
51. A. Heilmann, P. Jutzi, A. Klipp, U. Kreibig, R. Neuendorf, T. Sawitowski, and G. Schmid, Adv. Mater., 10 (1998) 398.
52. T. M. Whitney, J. S. Jiang, P. C. Searson, and C. L. Chien, Science, 261 (1993) 1316.
53. R. Sen, B. C. Satishkumar, A. Govindaraj, K. R. Harikumar, G. Raina, J. P. Zhang, A. K. Cheetham, and C. N. R. Rao, Chem. Phys. Lett., 287 (1998) 671.
54. K. Suenaga, M. P. JoHansson, N. Hellgren, E. Broitman, L. R. Wallenberg, C. Colliex, J. E. Sundgren, and L. Hultman, Chem. Phys. Lett., 300 (1999) 695.
55. Y. Miyamoto, M. L. Cohen, and S. G. Louie, Solid State Communications, 102 (1997) 605.
56. T. Belt, A. Bauger, J. Find, M. Gunter, D. Herein, H. Mockel, N. Pfander, H. Sauer, G. Schulz, J. Schutze, O. Timpe, U. Wild, and R. Schlogl, Carbon, 36 (1998) 731.
57. R. Sen, B. C. Satishkumar, A. Govindaraj, K. R. Harikumar, H. K. Renganathan, and C. N. R. Rao, J. Mater. Chem., 7(12) (1997) 2335.
58. M. Terrones, P. Redlich, N. Grobert, S. Trasobares, W. K. Hsu, H. Terrones, Y. Q. Zhu, J. P. Hare, C. L. Reeves, A. K. Cheetham, M. Ruhle, H. W. Kroto, and R. M. Walton, Adv. Mater., 11 (1998) 655.
59. H. Sjostrom, S. Stafstrom, M. Boman, and J. E. Sundgren, Phys. Rev. Lett., 75 (1995) 1336.
60. S. Lijima, Nature, 354 (1991) 56.
61. T. W. Ebbesen, and P. M. Ajayan, Nature, 358 (1992) 220.
62. W. A. de Heer, A. Châtelain, and D. Ugarte, Science, 270 (1995) 1179.
63. W. A. de Heer, J. M. Bonard, K. Fauth, A. Châtelain, and L. Forró, D. Ugarte, Adv. Mater., 9 (1997) 87.
64. M. Bohr, Tech. Dig. Int. Electron Devices Meet., 241 (1995).
65. W. Lee, P. Ho, Mater. Res. Bull., 22 (1997) 19.
66. T. Homma, R. Yamaguchi and Y. Murao, J. Electrochem., Soc. 140 (1993) 687.
67. T. Ussami, K. Shimokawa and M. Yoshimaru, Jpn. J. Appl. Phy., 33 (1994) 408.
68. A. E. Fering, B. C. Auman, and E. R. Wonchoda, Macromolecules, 26 (1993) 2779.
69. P. R. Resnick, Polymer, 31 (1990) 312.
70. K. Endo, K. Shinoda, and T. Tatsumi, Appl. Phys. Lett., 68 (1996) 2864.
71. K. Endo, K. Shinoda, and T. Tatsumi, Appl. Phys. Lett., 86 (1999) 2739.
72. K. Endo and T. Tatsumi, Appl. Phys. Lett., 68 (1996) 3656.
73. R. D. Miller, Science, 286 (1999) 422.
74. T. Iwasaki, M. Aono, S. Nitta, H. Habuchi, T. Itoh, and S. Nonomura, Diamond relat. Mater., 8 (1999) 440.
75. S. Yoshida, T. Itoh, N. Takada, S. Nitta, and S. Nonomura, J. Non-Cryst. Solids, 227 (1998) 650.
76. S. Nitta, N. Takada and K. Sugiyama, T. Itoh, S. Nonomura, J. Non-Cryst. Solids, 227 (1998) 655.
77. M. Aono, S. Nitta, T. Katsuno, and T. Iuchi, J. Vac. Sci. Technol. B 18 (2000) 1773.
78. T. Itoh, M. Aono, S. Yoshida, S. Hattori, T. Katsuno, S. Nitta, and S. Nonomura, J. Non-Cryst. Solids, 266 (2000) 825.
79. M. Aono, S. Nitta, T. Katsuno, and T. Iuchi, S. Nonomura, Appl. Surf. Sci. 159 (2000) 341.
80. M. Aono, S. Nitta, T. Iwasaki, H. Yokoi, T. Itoh, and S. Nonomura, Mater. Res. Soc. Symp. Proc. 565 (1999) 422.
81. H. Yokomichi and A. Masuda, J. Non-Cryst. Solids, 271 (2000) 147.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top