跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.74) 您好!臺灣時間:2022/08/12 19:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪啟超
研究生(外文):Chi-Chao Hung
論文名稱:電漿輔助系統中之鑽石合成與矽材料蝕刻研究
論文名稱(外文):Diamond Synthesis and Silicon Etching in the Plasma Enhanced Systems
指導教授:施漢章
指導教授(外文):Han-Chang Shih
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:英文
論文頁數:144
中文關鍵詞:微波電漿化學氣相沉積法鑽石蝕刻多晶矽田口方法反應表面曲面法
外文關鍵詞:MPECVDDiamondEtchpolysiliconTaguchi methodRSM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:230
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本文探討了在電漿輔助的系統中,鑽石合成以及矽材料蝕刻的相關研究。其製程參數分別以田口方法(Taguchi method)及反應曲面法(Response surface methodology, RSM)的實驗設計進行分析與最佳化。IV族中的矽材料現已被廣泛使用於半導體工業中,而成分為碳元素的鑽石則因其優異的導熱性及其他卓越的材料特性,未來於半導體的應用亦深具潛力。於鑽石合成的研究中,首先對微波電漿輔助沉積(Microwave plasma enhanced chemical vapor deposition, MPECVD)鑽石以L18直交表設計進行參數分析與最佳化,而後對於在理論上不易沉積鑽石的高濃度甲烷條件中鑽石的合成現象進行探討,並提出可能的機制。此外﹐本研究也將鑽石粉末與無電鍍鎳形成的複合層,用於抗磨耗的應用,且進一步的研究不規則的鑽石粉末分別於氣態碳源與固態碳源中的成長現象。於矽材料蝕刻中,首先對以感應電耦式電漿(Inductively coupled plasma, ICP)系統在矽晶片溝槽(Trench)蝕刻製程中各項參數對蝕刻率及蝕刻輪廓側壁角度的影響進行研究與探討。另外,傳統上摻雜為N-type與P-type的複晶矽(Polysilicon)在蝕刻製程上有很大的蝕刻率速率差異,造成了不同摻雜特性材料同步蝕刻的困難。本研究中則成功的最佳化了一個能同時蝕刻摻雜為N-type, P-type以及未摻雜的區域的製程,所得結果不僅符合一般蝕刻製程的規格需求並且能正確的偵測出蝕刻終點(End point detection),並且無顯著的電漿導致的損害(Damage)效應,也因此證明了所得的製程參數於該種製程的可行性。
The applications of plasma techniques used in diamond synthesis and silicon etching have been investigated in this study. The Taguchi method and the response surface methodology (RSM) were used to analyze the effect of various control factors and optimize the processes parameters. In group IV, diamond composed of carbon element is a unique and fascinating material due to its wide range of extreme properties, and silicon has been widely used by today''s semiconductor industry. In the part of diamond synthesis, the Taguchi method with an L18 orthogonal array design has been used to investigate the effect of various control factors on the performance of microwave plasma enhanced chemical vapor deposition (MPECVD) diamond films. The phenomena of diamond synthesis on molten metals substrates resulting from high carbon concentration conditions were observed. The results suggest that there may exist a low methane content boundary layer in the proximity of molten metal surface on which suitable species are composed. Furthermore, a commercially available process of electroless nickel plating with co-deposited diamond powders was applied to the steel substrate as an intermediate layer for tribological applications. The growth phenomena of diamond grits from both gaseous and solid carbon sources were also investigated. In the part of silicon etching, RSM is used to investigate the effect of various control factors on the performance of silicon trench etch in high-density transformer coupled plasma (TCP) on Cl2/HBr/O2-based chemistry. Quantitative relationships between etching characteristics and process parameters have been established. The possible mechanisms are also proposed to explain the different sidewall profile angles as varying the parameters. The feasibility of simultaneously etching n+, p+, and undoped polysilicon (poly-Si) materials by a commercial TCP reactor has been also investigated in this study. The results indicate that a suitable process window would meet the requirements of etching polysilicon with different doping types simultaneously. In this study, high etch rate, superior uniformity, only fewer minor plasma induced damages, good end point detection (EPD) characteristics and profile control can be obtained with the optimized recipe.
Contents
Chapter 1. Introduction1
1.1. CVD Diamond2
1.2. Plasma Etching6
1.3. Experimental Design9
1.4. References10
Chapter 2. Experimental equipment12
2.1. Microwave plasma enhanced chemical vapor deposition (MPECVD) system12
2.2. Inductively coupled plasma (ICP) etcher14
2.3. References16
Chapter 3. Diamond synthesis in MPECVD system17
3.1. Experimental design method applied to MPECVD diamond films17
3.1.1. Introduction17
3.1.2. Experimental procedure18
3.1.3. Results and discussion18
3.1.3.1. Data analysis20
3.1.3.2. Confirmation experiment29
3.1.4. Conclusions29
3.1.5. References32
3.2. MPECVD synthesis from high carbon content34
3.2.1. Introduction34
3.2.2. Experimental procedure35
3.2.3. Results and discussion37
3.2.3.1. Silicon substrates with different CH4/H2 ratios37
3.2.3.2. Silver with high methane concentration37
3.2.3.3. Copper with solid carbon sources41
3.2.4. Conclusions45
3.2.5. References46
3.3. Electroless Nickel/Diamond Composite Coatings on the Steels for Tribological Studies48
3.3.1. Introduction48
3.3.2. Experimental procedure48
3.3.2.1. Formation of the composite coating49
3.3.2.2. Diamond growth by MPECVD49
3.3.2.3. Characterization51
3.3.2.4. Tribology51
3.3.3. Results and discussion52
3.3.3.1. Electroless nickel plating and MPECVD diamond growth52
3.3.3.2. The effects of the deposition time on the composite structure properties54
3.3.3.3. Secondary nickel plating and tribological properties58
3.3.3.4. Interfacial adhesion strength62
3.3.4. Conclusions63
3.3.5. References64
3.4. The Formation and Characterization of Diamond Crystallites by Microwave Plasma Enhanced Chemical Vapor Deposition ─ A Comparison of Gaseous and Solid Carbon Sources as Precursors66
3.4.1. Introduction66
3.4.2. Experimental procedure67
3.4.2.1. MPECVD process67
3.4.2.2. Gaseous carbon precursors68
3.4.2.3. Solid carbon precursors70
3.4.2.4. Characterization70
3.4.3. Results and discussion70
3.4.3.1. Growth by gaseous carbon sources70
3.4.3.2. Growth by graphite powders in molten metal77
3.4.4. Conclusions82
3.4.5. References86
Chapter 4. Silicon etching in TCP system89
4.1. Response Surface Methodology Applied to Silicon Trench Etching in Cl2/HBr/O2 Using Transformer-Coupled Plasma Technique89
4.1.1. Introduction89
4.1.2. Experimental procedure90
4.1.3. Results and discussion91
4.1.3.1. Etch Rate91
4.1.3.2. Profile Angle of the Trench96
4.1.4. Conclusions103
4.1.5. References106
4.2. Simultaneous Etching Polysilicon Materials with Different Doping Types by Low-Damage Transformer-Coupled Plasma Technique108
4.2.1. Introduction108
4.2.2. Experimental procedure110
4.2.3. Results and discussion112
4.2.3.1. Models fitting112
4.2.3.2. Parameters optimization113
4.2.3.3. Plasma-induced damage characterization119
4.2.4. Conclusions128
4.2.5. References130
Chapter 5. Summary and future works132
Appendix A136
Chap.1
1. Website of CHEMSOC, http://www.chemsoc.org/
2. C.Y. Chang, S.M. Sze, “ULSI Technology”, McGraw-Hill, 1996
3. H. Liu, D.S. Dandy, “Diamond Chemical Vapor Deposition: Nucleation and Early Growth Stage”, Noyes publications, 1995
4. L.S. Pan, D.R. Kania, Diamond: Electronic Properties and Applications, Kluwer Academic Publishers, 1995
5. M.A. Prelas, G.. Popovici, L.K. Bigelow, Handbook of Industrial Diamonds And Diamond Films, Marcel Dekker, New York, 1998
6. P.W. May, Endeavour Magazine 19(1995) 101-106
7. S.T. Lee, Z. Lin, X. Jiang, Mat. Sci. Eng. R. 25 (1999) 123
8. W.G. Eversole, U.S. Patent 3,030,188, April 17, 1962.
9. D.J. Poferl, N.C. Gardner, J.C. Angus, J. Appl. Phys. 444 (1973) 1428.
10. B.V. Spitsyn, L.L. Bovilov, B.V. Derjaguin, J. Crys. Growth 52 (1981) 219.
11. S. Matsumoto, Y. Sato, M. Tsutsimi, N. Setaka, J. Mat. Sci. 17 (1982) 3106.
12. A.R. Badzian, R.C. De Vries, Mater. Res. Bull. 23 (1988) 385.
13. Biwu Sun, Xiaopin Zhang, Zhangda Lin, Phys. Rev. B. 47(15) (1993) 9816.
14. B.J. Waclawski, D.T. Pierce, N. Swanson, R.J. Celotta, J. Vac. Sci. Technol. 21 (1982) 368.
15. T.R. Anthony, Vacuum 41 (1990) 1356.
16. C. Cardinaud, M.-C. Peignon, P.-Y. Tessier, App. Surf. Sci. 164 (2000) 72
17. J. Coburn, H.F. Winters, J. Appl. Phys. 50 (1979) 3189.
18. H.F. Winters, In Topics in Current Chemistry, Plasma Physics III, eds. S. Veprek and M. Venugopalan, p.69, Berlin : Springer-Verlag, 1980.
19. H. Takatsuji, T. Arai, S. Tsuji, K. Kuroda, H. Saka, Thin Solid Films, 337 (1999) 235-239
20. J.M. Chen, C.L. Tsai, C.Y. Yao, S.P. Sheu, H.C. Shih, Mater. Chem. Phys. 51 (1997) 190-194
21. W.H. Yang, Y.S. Tarng, J. Mater. Process Tech. 84 (1998) 122-129
22. K.L. Lin, M.Y. Hwang, C.D. Wu, Mater. Chem. Phys. 46 (1996) 77-83
23. G. Taguchi, Y. Yokoyama, Y. Wu, Taguchi Methods: Design Of Experiments, ASI Press, Dearborn, Michigan, 1993
24. D.C. Montgomery, Design And Analysis Of Experiments, John Wiley & Sons, Inc., 1997
25. P.J. Ross, Taguchi Techniques For Quality Engineering, Mcgraw-Hill companies, Inc., 1996
26. G..S. Peace, Taguchi method: a hands-on approach, Addison-Wesley Publishing Company, 1993
Chap.2
1. H.C. Shih, W.T. Hsu, C.T. Hwang, C.P. Sung, L.K. Lin, C.K. Lee, Thin Solid Films 236 (1993) 111.
2. C.C. Hung and H.C. Shih, J. Cryst. Growth. 233 (2001) 723
3. X.J. Guo, S.L. Sung, J.C. Lin, F.R. Chen, H.C. Shih, Diamond Relat. Mater. 9 (2000) 1840
4. H.C. Shih, C.P. Sung, Y.S. Tang, J. Chin. Inst. Eng. 13 (1990) 697
5. C.P. Sung, H.C. Shih, J. Mater. Res. 7 (1992) 105-116
6. H.C. Shih, C.P. Sung, Y.S. Tang, J.G. Chen, Surf. Coat. Tech. 52 (1992) 105-114
7. M.A. Vyvoda, H. Lee, M.V. Malyshev, F.P. Klemens, M. Cerullo, V.M. Donnelly, D.B. Graves, A. Kornblit, J.T.C. Lee, J. Vac. Sci. Technol. A 16 (1998) 3274
Chap.3
3.1
1. H.O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes, Noyes Publications, Park Ridge, New Jersey, 1993.
2. H. Nakahata, A. Hachigo, S. Shikata, N. Fujimori, IEEE Ultrasonic Symposium 377 (1992)
3. S. Matsumoto, Y. Sato, M. Tsutsumi, N. Setaka, J. Mater. Sci. 17 (1982) 3106.
4. M. Kamo, Y. Sato, S. Sato, M. Tsutsumi, N. Setaka, J. Cryst. Growth 62 (1983) 642.
5. A. Sawabe, T. Inuzuka, Appl. Phys. Lett. 46 (1985) 146.
6. K. Suzuki, A. Sawabe, H. Yasuda, T. Inuzuka, Appl. Phys. Lett. 50 (1987) 728.
7. C.P. Chang, D.L. Flamm, D.E. Ibbotson, J.A. Mucha, J. Appl. Phys. 63 (1988) 1744.
8. F.G. Gelii, P.E. Pehrsson, H.T. Wang, J.E. Butler, Appl. Phys. Lett. 52 (1988) 2043.
9. J.C. Angus, C.C. Hayman, Science 241 (1988) 913.
10. C.P. Sung, H.C. Shih, J. Mater. Res. 7 (1992) 105-116
11. H.C. Shih, C.P. Sung, Y.S. Tang, J.G. Chen, Surf. Coat. Tech. 52 (1992) 105-114
12. H. Takatsuji, T. Arai, S. Tsuji, K. Kuroda, H. Saka, Thin Solid Films, 337 (1999) 235-239
13. J.M. Chen, C.L. Tsai, C.Y. Yao, S.P. Sheu, H.C. Shih, Mater. Chem. Phys. 51 (1997) 190-194
14. W.H. Yang, Y.S. Tarng, J. Mater. Process Tech. 84 (1998) 122-129
15. K.L. Lin, M.Y. Hwang, C.D. Wu, Mater. Chem. Phys. 46 (1996) 77-83
16. G. Taguchi, Y. Yokoyama, Y. Wu, Taguchi Methods: Design Of Experiments, ASI Press, Dearborn, Michigan, 1993
17. D.C. Montgomery, Design And Analysis Of Experiments, John Wiley & Sons, Inc., 1997
18. P.J. Ross, Taguchi Techniques For Quality Engineering, Mcgraw-Hill companies, Inc., 1996
19. G..S. Peace, Taguchi method: a hands-on approach, Addison-Wesley Publishing Company, 1993
20. D.S. Knight, W.B. White, J. Mater. Res. 4 (1985) 385-393
21. F.G. Celii, J. E. Butler, Ann. Rev. Phys. Chem. 42 (1991) 643-684
22. P.K. Bachmann, D.U. Wiechert, Diam. Relat. Mater. 1 (1992) 422-433
23. S.A. Solin, A.K. Ramdas, Phys. Rev. B 19 (1970) 1688-1698
24. R.E. Shroder, R.J. Nemanich, J.T. Glass, Phys. Rev. B, 41 (1990) 3738-3745
25. M.A. Prelas, G.. Popovici, L.K. Bigelow, Handbook of Industrial Diamonds And Diamond Films, Marcel Dekker, New York, 1998,
26. X.J. Guo, S.L. Sung, J.C. Lin, F.R. Chen, H.C. Shih, Diam. Relat. Mater. 9 (2000) 1840-1849
27. H.C. Shih, C.P. Sung, Y.S. Tang, J. Chin. Inst. Eng. 13 (1990) 697
28. S.L. Sung, X.J. Guo, K.P. Huang, F.R. Chen, H.C. Shih, Thin Solid Films 315 (1998) 345-350
3.2
1. H.O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes, Noyes Publications, Park Ridge, New Jersey, 1993, 1023-1147
2. H. Nakahata, A. Hachigo, S. Shikata, N. Fujimori, IEEE Ultrasonic Symposium 377 (1992)
3. S. Matsumoto, Y. Sato, M. Tsutsumi, N. Setaka, J. Mater. Sci. 17 (1982) 3106.
4. M. Kamo, Y. Sato, S. Sato, M. Tsutsumi, N. Setaka, J. Crystal. Growth 62 (1983) 642.
5. A. Sawabe ,T. Inuzuka, Appl. Phys. Lett. 46 (1985) 146.
6. K. Suzuki, A. Sawabe, H. Yasuda ,T. Inuzuka, Appl. Phys. Lett, 50 (1987) 728.
7. C.P. Chang, D.L. Flamm, D.E. Ibbotson ,J.A. Mucha, J. Appl. Phys, 63 (1988) 1744.
8. F.G. Gelii, P.E. Pehrsson, H.T. Wang, J.E. Butler, Appl. Phys. Lett. 52 (1988) 2043.
9. J.C. Angus, C.C. Hayman, Science 241 (1988) 913
10. C.P. Sung, H.C. Shih, J. Mater. Res. 7 (1992) 105-116
11. P.K. Bachmann, D. Leers, H. Lydtin, D.U. Wiechert, Diamond Relat. Mater. 1 (1991) 1
12. H. Liu, D.S. Dandy, Diamond Chemical Vapor Deposition, Noyes Publications, Park Ridge, New Jersey (1995)
13. I.D. Jeon, C.J. Park, D.Y. Kim, N.M. Hwang, J. Crystal Growth 223 (2001) 6-14.
14. Y. Liao, C.H. Li, Z.Y. Ye, C. Chang, G.Z. Wang, R.C. Fang, Diamond Relat. Mater. 9 (2000) 1716-1721
15. H.C. Shih, C.P. Sung, Y.S. Tang, J.G. Chen, Surf. Coat. Technol. 52 (1992) 105-114
16. W. Kalss, R. Haubner, B. Lux, Diamond Relat. Mater. 6 (1997) 240-246.
17. R. Roy, H.S. Dewan, K.A. Cherian, J.P. Cheng, A. Badzian, W. Drawl, C. Langlade, Mater. Lett. 25 (1995) 191-193.
18. R. Roy, K. A. Cherian, J. P. Cheng, A. Badzian, C. Langlade, H. Dewan, W. Drawl, Mater. Res. Innovat. 1 (1997) 117-129
19. P.C. Yang, W. Liu, R. Schlesser, C.A. Wolden, R.F. Davis, J.T. Prater, Z. Sitar, J. Crystal Growth 187 (1998) 81-88
20. C.P. Sung, Y.S. Tang, J.C. Huang, H.C. Shih, Chin. J. Mater. Sci. 22 (1990) 273
21. X.J. Guo, S.L. Sung, J.C. Lin, F.R. Chen, H.C. Shih, Diamond Relat. Mater. 9 (2000) 1840-1849
22. H.C. Shih, C.P. Sung, Y.S. Tang, J. Chin. Inst. Eng. 13 (1990) 697
23. S.L. Sung, X.J. Guo, K.P. Huang, F.R. Chen, H.C. Shih, Thin Solid Films 315 (1998) 345-350
24. C.C. Hung, M. S. Thesis, National Tsing Hua University, 1996.
25. Y. Sato, M. Kamo, Surf. Coat. Technol. 39/40 (1989) 183
26. C.M. Sung, M.F. Tai, High Temp. High Press. 27/28 (1995/1996) 611-628.
27. H.S. Dewan, D.Ravichandran, J.P. Cheng, W.Drawl, K.A. Cherian, R. Roy, 1995, in Applications of Diamond Films and Related Materials: Third International Conference Ed. A Feldman 387-390
3.3
1. L.S. Pan, D.R. Kania, Diamond: Electronic Properties and Applications, Kluwer Academic Publishers, 1995
2. M.A. Prelas, G.. Popovici, L.K. Bigelow, Handbook of Industrial Diamonds And Diamond Films, Marcel Dekker, New York, 1998
3. S. Jahanmir, D.E. Deckman, L.K. Ives, A. Feldman, E. Farbugh, Wear 133 (1989) 73.
4. M.S. Wong, R. Meilunas, T.P. Ong, R.P.H. Chang, Appl. Phys. Lett. 54 (1989) 2006.
5. T.P. Ong, R.P.H. Chang, Appl. Phys. Lett. 58 (1991) 358.
6. N. Yoshino, Y. Shibuya, K. Naoi, T. Nanya, Surf. Coat. Technol. 47 (1991) 84.
7. J.E. Prins, Appl. Phys. Lett. 41 ( 1982) 950.
8. N. Kikuchi, T. Komatsu, Mater. Sci. Eng. A105-106 (1988) 525.
9. H.C. Shih, C.P. Sung, C.K. Lee, W.L. Fan, J.G. Chen, Diamond Relat. Mater. 1 (1992) 605.
10. L.W. de Resende, E.J. Corat, V.J. Trava-Airoldi, N.F. Leite, Diamond Relat. Mater. 10 (2001) 332.
11. A.K. Sikder, T. Sharda, D.S. Misra, D. Chandrasekaram, P. Selvam, Diamond Relat. Mater. 7 (1998) 1010.
12. C.R. Lin, C.T. Kuo, Diamond Relat. Mater. 7 (1998) 903-907.
13. W. Zhu, P.C. Yang, J.T. Glass, F. Arezzo, J. Mater. Res. 10 (1995) 1455.
14. A. Fayer, O. Glozman, A. Hoffman, Appl. Phys. Lett. 67 (1995) 2299.
15. H.C. Shih, C.P. Sung, W.L. Fan, C.K. Lee, Surf. Coat. Technol. 57 (1993) 197.
16. J. Narayan, V.P. Godbole, G. Matera, R.K. Singh, J. Appl. Phys. 71 (1992) 966.
17. X. Chen, J. Narayan, J. Appl. Phys. 74 (1993) 4168.
18. C. Tsai, J. Nelson, W.W. Gerberich, J. Heberlein, E. Pfender, J. Mater. Res. 7 (1992) 1967.
19. H.C. Shih, W.T. Hsu, C.T. Hwang, C.P. Sung, L.K. Lin, C.K. Lee, Thin Solid Films 236 (1993) 111.
20. C.P. Sung, Y.S. Tang, J.C. Huang, H.C. Shih, Chin. J. Mater. Sci. 22 (1990) 273
21. H.C. Shih, C.P. Sung, Y.S. Tang, J. Chin. Inst. Eng. 13 (1990) 697
22. X.J. Guo, S.L. Sung, J.C. Lin, F.R. Chen, H.C. Shih, Diamond Relat. Mater. 9 (2000) 1840
23. C.C. Hung and H.C. Shih, J. Cryst. Growth 233 (2001) 723
24. S.D. Chyou and H.C. Shih, Mater. Sci. Eng. A127 (1990) 109.
25. Q.X. Mai, R.D. Daniels, H.B. Harpalani, Thin Solid Films 166 (1988) 235.
26. S.V.S. Tyagi, S.K. Barthwal, V.K. Tondon, S. Ray, Thin Solid Films 169 (1989) 229.
27. M.A. Prelas, G.. Popovici, L.K. Bigelow, Handbook of Industrial Diamonds And Diamond Films, Marcel Dekker, New York, 1998
28. J.E. Field, The Properties of Nature and Synthetic Diamond, Academic press, 1992
29. L.Z. Mezey, J. Giber, Jpn. J. Appl. Phys. 21 (1982) 1569
3.4
1. L.S. Pan, D.R. Kania, Diamond: Electronic Properties and Applications, Kluwer Academic Publishers, 1995
2. M.A. Prelas, G.. Popovici, L.K. Bigelow, Handbook of Industrial Diamonds And Diamond Films, Marcel Dekker, New York, 1998
3. M. Kamo, Y. Sato, S. Sato, M. Tsutsumi, N. Setaka, J. Cryst. Growth 62 (1983) 642.
4. K. Suzuki, A. Sawabe, H. Yasuda, T. Inuzuka, Appl. Phys. Lett. 50 (1987) 728.
5. C.P. Chang, D.L. Flamm, D.E. Ibbotson, J.A. Mucha, J. Appl. Phys. 63 (1988) 1744.
6. F.G. Gelii, P.E. Pehrsson, H.T. Wang, J.E. Butler, Appl. Phys. Lett. 52 (1988) 2043.
7. J.C. Angus, C.C. Hayman, Science 241 (1988) 913.
8. H.C. Shih, C.P. Sung, Y.S. Tang, J.G. Chen, Surf. Coat. Technol. 52 (1992) 105.
9. W. Kalss, R. Haubner, B. Lux, Diamond Relat. Mater. 6 (1997) 240.
10. A.A. Giardini, J.E. Tydings, Am. Mineral. 47 (1962) 1393
11. C.F. Chen, E. Ko, H. Ishizuka, S. Hosomi, U.S. patent, 5,061,292, (1991)
12. C.P. Sung, H.C. Shih, J.G. Chen, Y.S. Tang, W.L. Fan, Diamond Relat. Mater. 1 (1997) 492.
13. H.C. Shih, W.T. Hsu, C.T. Hwang, C.P. Sung, L.K. Lin, C.K. Lee, Thin Solid Films 236 (1993) 111.
14. C.R. Lin, C.T. Kuo, Diamond Relat. Mater. 7 (1998) 903
15. L.W. de Resende, E.J. Corat, V.J. Trava-Airoldi, N.F. Leite, Diamond Relat. Mater. 10 (2001) 332.
16. R. Roy, H.S. Dewan, K.A. Cherian, J.P. Cheng, A. Badzian, W. Drawl, C. Langlade, Mater. Lett. 25 (1995) 191.
17. R. Roy, K. A. Cherian, J. P. Cheng, A. Badzian, C. Langlade, H. Dewan, W. Drawl, Mat. Res. Innovat. 1 (1997) 117
18. H.C. Shih, W.T. Hsu, C.T. Hwang, C.P. Sung, L.K. Lin, C.K. Lee, Thin Solid Films 236 (1993) 111.
19. C.C. Hung and H.C. Shih, J. Cryst. Growth. 233 (2001) 723
20. X.J. Guo, S.L. Sung, J.C. Lin, F.R. Chen, H.C. Shih, Diamond Relat. Mater. 9 (2000) 1840
21. H.C. Shih, C.P. Sung, Y.S. Tang, J. Chin. Inst. Eng. 13 (1990) 697
22. P. Gonon, E. Gheeraert, A. Deneuville, L. Abello, Thin Solid Films 256 (1995) 13.
23. H. Liu, D.S. Dandy, Diamond Chemical Vapor Deposition, Noyes Publications, Park Ridge, New Jersey (1995)
24. I.D. Jeon, C.J. Park, D.Y. Kim, N.M. Hwang, J. Crystal Growth 223 (2001) 6-14.
25. T. Sharda, M.M. Rahaman, Y. Nukaya, T. Soga, T. Jimbo, M. Umeno, Diamond Relat. Mater. 10 (2001) 561
26. V. Paillard, P. Melinon, V. Dupuis, A. Perez, J.P. Perez, G. Guiraud, J. Fornazero, G. Panczer, Phys. Rev. B 49 (1994) 11433
27. R.E. Shroder, R.J. Nemanich, Phys. Rev. B 41 (1990) 3738
28. S. Prawer, K.W. Nugent, D.N. Jamieson, Diamond Relat. Mater. 7 (1998) 106
29. T. Sharda, A. Vaidya, D.S. Misra, S. Bhargava, H.D. Bist, P. Veluchamy, H. Minoura, P. Selvam, J. Appl. Phys. 83 (1998) 1120
30. S. Yugo, T. Kanai, T. Kimura, T. Muto, Appl. Phys. Lett. 58 (1991) 1036.
31. S. Wolter, J.T. Glass, B.R. Stoner, J. Appl. Phys. 77 (1995) 5119.
32. B.R. Stoner, J.T. Glass, Appl. Phys. Lett. 60 (1992) 698.
33. X. Jiang, C.-P. Klages, Diamond Relat. Mater. 2 (1993) 1112.
34. M. Schreck, T. Baur, R. Fehling, M. Muller, B. Stritzker, A. Bergmaier, G. Dollinger, Diamond Relat. Mater. 7 (1998) 293.
35. N. Ishigaki, S. Yugo, Diamond Relat. Mater. 9 (2000) 1646.
36. X. Jiang, M. Fryda, C.L. Jia, Diamond Relat. Mater. 9 (2000) 1640
37. S. Saada, S. Barrat, E. Bauer-Grosse, Diamond Relat. Mater. 10 (2001) 300.
38. B.W. Sheldon, R. Csencsits, J. rankin, R.E. Boekenhauer, Y. Shigesato, J. Appl. Phys. 75 (1994) 5001.
39. C.M. Sung, M.F. Tai, High Temp. High Press. 27/28 (1995/1996) 611-628.
40. C.C. Hung, M.S. Thesis, National Tsing Hua University, Hsinchu, Taiwan (1996)
Chap.4.
4.1
1.J.H. Lee, G.Y. Yeom, J.W. Lee, J.Y. Lee, J. Vac. Sci. Technol. A 15 (1997) 573
2.C.H. Low, W.S. Chin, K.L. Tan, F.C. Loh, M. Zhou, Q.H. Zhong, L.H. Chan, Jpn. J. Appl. Phys. 39 (2000) 14
3.K.V. Guinn, C.C. Cheng, V.M. Donnelly, J. Vac. Sci. Technol. B 13 (1995) 214
4.T.D. Bestwick, G.S. Oehrlein, J. Vac. Sci. Technol. A 8 (1990) 1696
5.S.C. McNevin, J. Vac. Sci. Technol. B 8 (1995) 1185
6.F.H. Bell, O. Joubert, J. Vac. Sci. Technol. B 15 (1997) 88
7.M. Tuda, Shintani, H. Ootera, J. Vac. Sci. Technol. A 19 (2001) 711
8.L. Desvoivres, L. Vallier, O. Joubert, J. Vac. Sci. Technol. B 19 (2001) 420
9.P. Werbaneth, J. Almerico, Solid State Tech 12 (2000) 87
10.S.D. Lee, S.Y. Nam, J.H. Ha, J.W. Park, Appl. Surf. Sci. 165 (2000) 1
11.J.M. Lane, K.H.A. Bogart, F.P. Klemens, J.T.C. Lee, J. Vac. Sci. Technol. A 18 (2000) 2067
12.M.A. Vyvoda, M. Li, D.B. Graves, H. Lee, M.V. Malyshev, F.P. Klemens, J.T.C. Lee, V.M. Donnelly, J. Vac. Sci. Technol. B 18 (2000) 820
13.R.S. Goodman, N. Materer, S.R. Leone, J. Vac. Sci. Technol. A 17 (1999) 3340
14.J.P. Chang, A.P. Mahorowala, H.H. Sawin, J. Vac. Sci. Technol. A 16 (1998) 217
15.C.C. Cheng, K. V. Guinn, V.M. Donnelly, J. Vac. Sci. Technol. B 14 (1996) 85
16.D.C. Montgomery: Design And Analysis Of Experiments, John Wiley & Sons, New York, 1997
17.C.C. Hung, H.C. Shih, J. Cryst. Growth 233 (2001) 723
18.S. Williams, K. Varahramyan, W. Maszara, Microelec. Engin. 49 (1999) 245
19.A. Burtsev, Y.X. Li, H.W. Zeijl, C.I.M. Beenakker, Microelec. Engin. 40 (1998) 85
20.S. Agarwala, O. King, S. Horst, R. Wilson, D. Stone: J. Vac. Sci. Technol. A 17 (1999) 52-55
21.Z. Cui, R.A. Moody, I.M. Loader, J.G. Watson, P.D. Prewett, Microelec. Engin. 35 (1997) 145
22.S. Thoms, D. Centre, Microelec. Engin. 46 (1999) 287
23.G.D. Tipton, M.G. Blain, J. Vac. Sci. Technol. A 14 (1996) 3004
24.C. Y. Chang, S.M. Sze, ULSI Technology, McGraw-Hill, 1996
4.2
1.Y. Okazaki, T. Kobayashi, H. Inokawa, S. Nakayama, M. Miyake, T. Morimoto, Y. Yamamoto: IEEE Trans. Electron Device 42 (1995) 1583-1589.
2.R. Kraft, T. Boonstra, S. Prengle: J. Vac. Sci. Technol. B 14 (1996) 543-546.
3.Y.H. Lee, M.M. Chen: J. Vac. Sci. Technol. B, 4 (1986) 468-475.
4.H. F. Winters, and D. Haarer: Phy. Rev. B 36 (1987) 6613-6622.
5.D.C. Montgomery: Design And Analysis Of Experiments, John Wiley & Sons, New York, 1997
6.M. F. Anjum, I. Tasadduq, K. Al-Sultan: European J. Operational Res. 101 (1997) 65-73
7.J. M. Bosque-Sendra, S.P. Pescarolo, L. Cuadros-Rodriguez, A.M. Carcia-Campana, E.M. Almansa-Lopez: Fres. J. Anal. Chem. 369 (2001) 715-718
8.R. Hsiao, D. Miller, A. Kellock: J. Vac. Sci. Technol. A 14 (1996) 1028-1032
9.G.D. Tipton, M.G. Blain. P.L. Westerfield, L.S. Trutna, and K. L. Maxwell: J. Vac. Sci. Technol. B 12 (1994) 416-421.
10.G. May, J. Huang, C. Spanos: IEEE Trans. Semi. Manufact. 4 (1991) 83-98.
11.S. Agarwala, O. King, S. Horst, R. Wilson, D. Stone: J. Vac. Sci. Technol. A 17 (1999) 52-55
12.R. Wachter, A. Cordery: Diam. Relate. Mater. 6 (1997) 537-541
13.H.C.Lin, C. Y. Chang, C.C. Chen, C. H. Chien, S. K. Hsein, M. F. Wang, T. S. Chao, and T.Y.Huang, “Evaluation of Plasma Charging Damage in Ultra-thin Gate Oxides”, IEEE Electron Device Letters, EDL-19, p.68-70 (1998).
14.H. C. Lin, C.C. Chen, C. H. Chien, S.K. Hsein, M. F. Wang, T.S Chao, T. Y. Huang, and C. Y. Chang "Characterization of Plasma Charging Damage in Ultra-thin Oxides", 1998 International Reliability Physics. pp.312 — 317, Reno, USA, (1998).
15.M. Markus, C. M. Osburn, P. Magill, and S. M. Bobbio, J. Vac. Sci. Technol., A-12, pp.1339-1345 (1994).
16.G. Derringer, R. Suich: J. Quality Tech. 12 (1980) 214-219.
17.E.D. Castillo, D.C Montgomery, D.R. McCarville: J. Quality Technology, 28 (1996) 337-345.
18.S. J. Chen, H. L. Kao, S. S. Chung, C. C. Chen, C. Y. Chang, and H. C. Lin, “New Mechanism and the Characterization of Plasma Charging Enhanced Hot Carrier Effect in Deep-submicron N-MOSFETs”, 2000 SSDM, pp.16-17, Sendai, Japan.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top