跳到主要內容

臺灣博碩士論文加值系統

(3.238.204.167) 您好!臺灣時間:2022/08/09 22:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭國光
研究生(外文):Kuoguang Perng
論文名稱:微波電漿化學氣相沉積法之鑽石薄膜的成長與特性研究
論文名稱(外文):Study on bias-enhanced nucleation and growth of diamond films by microwave plasma-enhanced chemical vapor deposition method
指導教授:劉國雄劉國雄引用關係林諭男林諭男引用關係
指導教授(外文):Kuo-Shung LiuI-Nan Lin
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:238
中文關鍵詞:鑽石薄膜微波電漿化學氣相沉積偏壓輔助成核成核動力學圖紋鑽石薄膜電子場發射電子能帶
外文關鍵詞:diamond filmsmicrowave plasma-enhanced chemical vapor depositionbias-enhanced nucleationnucleation kineticspatterned diamond filmselectron field emissionelectron band energy
相關次數:
  • 被引用被引用:13
  • 點閱點閱:306
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本篇論文研究中,以微波電漿輔助化學氣相沈積(microwave plasma-enhanced chemical vapor deposition, MPE-CVD)法所合成鑽石薄膜的成核成長(nucleation and growth)機制;圖紋(patterned)鑽石薄膜的製作以及鑽石薄膜表面的電子場發射(electron field emission)性質都被深入的分析與探討。在鑽石薄膜偏壓輔助成核(bias-enhanced nucleation, BEN)的研究中,以拉曼線掃瞄(Raman line-scan)技術觀察鑽石薄膜的拉曼光譜縱深分佈,因而瞭解鑽石核與矽基板間界面(interface)的特性與鑽石成核機制。同時,首次藉由在偏壓輔助成核(BEN)過程中的偏壓電流(I)與時間(t)關係來分析鑽石在基板表面成核的動力學機制。對於硼(B)或氮(N)摻雜(doping)對偏壓輔助成核過程的影響,也經由偏壓電流關係式瞭解到摻雜對鑽石核形成及鑽石薄膜成長的影響。在鑽石薄膜的電子場發射研究中,提出雙層(double layer)結構鑽石薄膜能夠有效地加強電子場發射性質。最後,以兩階段(two-step)方法成功地完成完全選擇性圖紋(patterned)鑽石薄膜在矽基板及金屬薄膜上的選區鍍膜(selected-area deposition,SAD)製作,提高了鑽石薄膜在各類電子元件上的應用的可能性。同時,在微波電漿輔助化學氣相沈積鑽石薄膜方法中,場發射輔助成核(electron-enhanced nucleation)的證據也在本篇論文中被驗證。
目錄
摘要……………………………………………………………………….i
致謝……………………………………………………………………ii
目錄……………………………………………………………………iii
表目錄…………………………………………………………………..vi
圖目錄…………………………………………………………………vii
第一章 序論………………………………………………………………1
參考文獻……………………………………………………………...7
第二章 文獻回顧…………………………………………………………8
I. 鑽石的基本材料性質…………………………………………….8
I.1 碳的性質………………………………………………………9
I.2 硬度…………………………………………………………..11
I.3 熱傳導係數…………………………………………………..11
I.4 化學反應性…………………………………………………..13
I.5 密度…………………………………………………………..13
I.6 光學性質……………………………………………………..14
I.7 電性…………………………………………………………..14
II. 鑽石薄膜的成核理論與合成方法……………………………...15
II.1 鑽石薄膜成核理論…………………………………………15
II.2 促進成核方法………………………………………………22
II.3 摻雜增加鑽石相成長速率理論……………………………29
II.4 鑽石薄膜的各種合成方法…………………………………30
III. 微波電漿輔助化學氣相沈積法………………………………...35
III.1 微波電漿理論……………………………………………...35
III.2 微波電漿化學氣相沈積法………………………………...38
IV. 偏壓輔助鑽石薄膜成核機制探討……………………………...42
IV.1 晶體成核成長的古典模型………………………………..42
IV.2 鑽石薄膜表面成核數目模型……………………………...43
IV.3 偏壓輔助成核……………………………………………...45
V. 鑽石薄膜的半導體電性………………………………………..51
V.1 P型半導體………………………………………………..52
V.2 N型半導體………………………………………………..55
V.3 負電子親和力………………………………………………57
VI. 鑽石薄膜的電子場發射性質…………………………………..62
VI.1 金屬材料電子場發射的理論……………………………..62
VI.2 半導體材料電子場發射的理論…………………………..66
VI.3 鑽石薄膜電子場發射的特性……………………………...71
VI.4 鑽石薄膜之結構與摻雜對電子場發射性質的影響……..72
VII. 鑽石薄膜的選區成長…………………………………………77
VII.1 鑽石成核密度之控制………………………………….…77
VII.2 鑽石薄膜選區成長製程…………………………………80
VII.3 鑽石薄膜選區成長的應用……………………………….91
VIII. 鑽石薄膜的其他應用…………………………………………98
參考文獻…………………………………………………………...101
第三章 實驗方法與分析………………………………………………113
I. 樣品的製作…………………………………………………….113
I.1 鑽石薄膜的合成……………………………………………113
I.2 圖紋鑽石薄膜的製作………………………………………116
II. 鑽石薄膜的分析……………………………………………….118
II.1 拉曼及拉曼線掃瞄分析…………………………………..118
II.2 成核偏壓電流分析………………………………………..123
II.3 二次電子顯微鏡分析……………………………………..123
II.4 二次離子質譜分析………………………………………..123
II.5 歐傑二次電子能譜分析…………………………………..125
II.6 四點探針表面電性分析…………………………………..126
II.7 電子場發射電性分析……………………………………..126
參考文獻…………………………………………………………...127
第四章 偏壓輔助鑽石薄膜成核研究…………………………………128
I. 前言…………………………………………………………….128
II. 實驗步驟……………………………………………………….128
III. 結果與討論…………………………………………………….128
III.1偏壓輔助鑽石薄膜成核之動力學探討………….……….129
III.2偏壓輔助鑽石薄膜成核之機制……………….………….139
III.3 偏壓輔助鑽石薄膜成核之摻硼及摻氮的影響………….149
IV. 結論…………………………………………………………….169
參考文獻…………………………………………………………...170
第五章 雙層結構鑽石薄膜的電子場發射特性研究…………………172
I. 前言…………………………………………………………….172
II. 實驗步驟……………………………………………………….172
III. 結果與討論…………………………………………………….173
III.1 缺陷結構對電子場發射性質的影響…………………….173
III.2 [未摻雜]/[摻硼]雙層鑽石結構的場發射性質…………...177
III.3 [摻氮]/[摻硼]雙層鑽石結構的場發射性質……………...187
IV. 結論…………………………………………………………….191
參考文獻…………………………………………………………...191
第六章 圖紋鑽石薄膜製作與其電子場發射特性研究………………192
I. 前言…………………………………………………………….192
II. 實驗步驟……………………………………………………….192
III. 結果與討論……………………………………….……………193
III.1 兩階段法成長完全選擇性鑽石薄膜圖紋……………….193
III.2 場發射電子輔助成核機制……………………………….204
III.3 圖紋鑽石薄膜的電子場發射性質……………………….218
IV. 結論…………………………………………………………….232
參考文獻…………………………………………………………...232
第七章 總結……………………………………………………………234
表目錄
第一章
表A-1 鑽石的各種性質………………………………………………..2
表A-2 鑽石的各種應用………………………………………………...3
第二章
表B-1 四種Type I (A,B)及Type II (A,B)天然鑽石各項性質…………8
表B-2 鑽石與其他材料的硬度比較…………………………………..11
表B-3 鑽石之耐熱衝擊指數比較…………………………………….12
表B-4 天然鑽石、鑽石膜及類鑽石膜之性質比較………………….14
表B-5 鑽石與其他常見半導體之特性比較………………………….15
表B-6 v(y),t(y)和t2(y)數值對照表……………………………………65
第三章
表C-1 碳結構的各種拉曼特性峰值…………………………………120
第四章
表D-1 各拉曼光譜峰位置與結構的關係…………………………...143
表D-2 摻硼及摻氮偏壓輔助成核之偏壓電流與時間關係以Avrami模型分析的Imax,Imin,t0及1/C值………………………….154
第五章
表E-1 不同[未摻雜]/[摻硼]層厚度之雙層結構鑽石薄膜的表面電阻值及電子場發射性質………………………………………..184
第六章
表F-1 圖紋氧化層經過偏壓輔助成核過程後各表面的成核密度比較……………………………………………………………...204
表F-2 各種晶粒大小圖紋鑽石薄膜的電子場發射性質……………223
圖目錄
第一章
圖A-1 場發射平面顯示器……………………………………………...4
圖A-2 本篇論文各研究主題之相關性………………………………...6
第二章
圖B-1 鑽石和石墨的結晶構造…………………………………………9
圖B-2 碳的平衡相圖………………………………………………….10
圖B-3 鑽石的熱傳導係數…………………………………………….12
圖B-4 鍍鑽石薄膜時之氣體反應機制……………………………….17
圖B-5 薄膜與基材之三種早期成核方式…………………………….19
圖B-6 合成鑽石之C-H-O三相圖……………………………………20
圖B-7 與基材不反應者之孕核成長機制…………………………….24
圖B-8 形成碳化物者之孕核成長機制……………………………….25
圖B-9 加負偏壓成核鑽石之反應模式……………………………….27
圖B-10 正負偏壓於鑽石成核之反應機制………………….………..28
圖B-11 微波電漿CVD設備圖……………………………………….31
圖B-12 熱燈絲CVD設備圖………………………………………….32
圖B-13 RF plasma glow discharge system設備圖……………………33
圖B-14 電子迴旋共振(ECR)設備圖………………………………….34
圖B-15 電漿電域示意圖………………………………………………38
圖B-16 CVD反應機制………………………………………………..39
圖B-17 符合(t-to)3的擴散機制………………………………………..43
圖B-18 表面成核數目動力學…………………………………………44
圖B-19 符合表面成核數目動力學的實驗……………………………46
圖B-20 偏壓輔助鑽石成核機制………………………………………47
圖B-21 微波電漿CVD的電漿鞘變化……………………………….49
圖B-22 微波電漿CVD的電漿包圍現象…………………………….50
圖B-23 典型的半導體能帶圖…………………………………………59
圖B-24 鑽石(100)表面之鍵結圖……………………………………..60
圖B-25 鑽石(111)表面之鍵結圖……………………………………...61
圖B-26 金屬-真空能帶示意圖(a)未加電場(b)外加高電場………….64
圖B-27 v(y),t2(y)和y的關係圖……………………………………….66
圖B-28 半導體能帶圖…………………………………………………68
圖B-29 不考慮電場穿透的半導體場發射示意圖……………………68
圖B-30 考慮電場穿透下n型半導體的場發射示意圖………………70
圖B-31 有表面態的n型半導體………………………………………70
圖B-32 Mo尖端的薄膜場發射陰極…………………………………..72
圖B-33 石墨型態的均勻電子場發射…………………………………76
圖B-34 K. Hirabayashi等人選區成長之多晶及單晶鑽石圖型………81
圖B-35 Jing Sheng Ma等人選區成長之單晶鑽石圖型………………82
圖B-36 R. Ramesham等人進行選區成長之流程圖………………….83
圖B-37 Takayoshi Inoue等人利用RIE方法進行選區成長之流程圖.84
圖B-38 Takayoshi Inoue等人利用ASM方法進行選區成長之流程圖……………………………………………………………….85
圖B-39 K. Higuchi & S. Noda利用(a) diamond seeding (b) ion implantation方法進行選區成長之流程圖……………….……86
圖B-40 S. J. Lin利用ion implantation進行選區成長之流程圖……..87
圖B-41 N.I. Chapliev利用laser進行選區成長之流程圖……………88
圖B-42 Satoshi Katsumata & Shigemi Yugo利用基材加偏壓進行選區成長之流程圖………………………………………………….89
圖B-43 N. A. Fox等人噴墨法製作之圖紋鑽石薄膜…………………90
圖B-44 J.L. Davidson等人製作微結構之流程圖…………………….92
圖B-45 J.L. Davidson等人製作之微結構…………………………….93
圖B-46 C.D. Ellis等人製作微型流量感測器之流程圖………………93
圖B-47 C.D. Ellis等人製作之微型流量感測器………………………94
圖B-48 T. Roppel等人製作之加速規…………………………………95
圖B-49 D.R. Wur等人製作壓力感測器之流程圖……………………96
圖B-50 D.R. Wur等人製作之壓力感測器……………………………97
圖B-51 鑽石薄膜之元件應用…………………………………………98
第三章
圖C-1 ASTeX 5400 微波電漿鍍膜系統…………………………….114
圖C-2 摻雜裝置示意圖………………………………………………115
圖C-3 光罩圖紋設計…………………………………………………116
圖C-4 圖紋鑽石薄膜製作流程圖……………………………………117
圖C-5 在金屬薄膜上圖紋鑽石薄膜製作流程圖……………………118
圖C-6 拉曼光譜量測系統示意圖……………………………………120
圖C-7 矽單晶的拉曼光譜圖…………………………………………121
圖C-8 拉曼線掃瞄試片的準備………………………………………121
圖C-9 拉曼線掃瞄分析結果…………………………………………122
圖C-10 O2+離子束對不同基質分析所得之正離子RSF對游離能趨勢圖……………………………………………………………...125
圖C-11 可變距離真空電子場發射量測夾具………………………..127
第四章
圖D-1 偏壓輔助鑽石成核過程的SEM圖…………………………..130
圖D-2 偏壓飽和電流與矽基板面積的關係圖……………………...131
圖D-3 (a)不同負偏壓大小的偏壓電流與成核時間關係(b)不同負偏壓大小的飽和電流關係………………………………………...132
圖D-4 偏壓輔助成核過程的鑽石串形成示意圖………….………137
圖D-5 Tomellini模型對偏壓電流與時間關係的分析……….…….138
圖D-6 不同負偏壓值所得之成核時間(to)與成核成長率(1/C).……138
圖D-7 拉曼光譜:(a)只有偏壓輔助成核過程(b)鑽石成長過程後及SEM圖:(c)只有偏壓輔助成核過程(d)鑽石成長過程後….140
圖D-8 紅光光源拉曼光譜:(a)-100 V偏壓鑽石成長;(b)不加偏壓鑽石成長………………………………………………………...141
圖D-9 拉曼線掃瞄之(a)鑽石薄膜拉曼光譜縱深圖及(b)各拉曼峰強度的縱深關係圖………………………………………………..144
圖D-10 經過偏壓成核與鑽石成長過程的鑽石薄膜SIMS圖……147
圖D-11 拉曼線掃瞄之HFCVD合成鑽石薄膜拉曼光譜縱深圖…148
圖D-12 偏壓輔助鑽石成核初期的拉曼光譜圖…………………...149
圖D-13 (a)摻硼(b)摻氮偏壓輔助成核過程的偏壓電流與時間關係.153
圖D-14 (a)摻硼(b)摻氮偏壓輔助成核過程的偏壓電流與時間關係以Avrami模型分析所得的成核時間(to)與成核成長率(1/C)關係圖……………………………………………………………...154
圖D-15 (a)摻硼(b)摻氮偏壓輔助成核後之拉曼光譜圖…………….155
圖D-16 (a)摻硼(b)摻氮鑽石薄膜之拉曼線掃瞄光譜圖…………….156
圖D-17 (a)摻硼(b)摻氮鑽石薄膜之拉曼線掃瞄各光譜峰間的強度比率關係………………………………………………………...157
圖D-18 (a)摻氮8 sccm;(b)摻氮1 sccm及(c)摻硼2 sccm拉曼線掃瞄分析之鑽石峰(D)峰值與強度關係圖………………………..162
圖D-19 摻氮4 sccm偏壓輔助成核15分鐘之負偏壓為(a)-100V(b)-120V(c)-170V的SEM圖……………………………………163
圖D-20 摻氮4 sccm偏壓輔助成核15分鐘之負偏壓為-120V的SEM圖……………………………………………………………...164
圖D-21 摻氮4 sccm偏壓輔助成核15分鐘負偏壓為-120V之針狀物的TEM圖……………………………………………………165
圖D-22 (a)摻硼(b)摻氮各2 sccm鑽石薄膜的SIMS圖……………166
圖D-23 不同(a)摻硼(b)摻氮量鑽石薄膜的拉曼光譜圖……………168
第五章
圖E-1 不同CH4/H2比例鑽石薄膜之(a)拉曼光譜(b)電子場發射電流曲線…………………………………………………………...175
圖E-2 (a)3%(b)8.3%的CH4/H2比例鑽石薄膜之SEM圖………….176
圖E-3 不同[未摻雜]/[摻硼]層厚度之雙層結構鑽石薄膜的示意圖.179
圖E-4 不同[未摻雜]/[摻硼]層厚度之雙層結構鑽石薄膜的拉曼光譜圖……………………………………………………………...180
圖E-5 不同[未摻雜]/[摻硼]層厚度之雙層結構鑽石薄膜 (a)L0(b)L1(c)L3(d)L6試片的SIMS圖………………….…….181
圖E-6 [未摻雜]/[摻硼]雙層結構鑽石薄膜L3試片的SEM圖….…..182
圖E-7 [未摻雜]/[摻硼]雙層結構鑽石薄膜的電子場發射電流圖…..185
圖E-8 (a)未摻雜(b)摻硼(c)雙層結構鑽石薄膜的電子能帶圖……..186
圖E-9 [摻氮]/[摻硼]雙層結構鑽石薄膜的SIMS圖………………..189
圖E-10 (a)摻硼(b)[摻氮]/[摻硼]雙層結構鑽石薄膜的電子場發射電壓電流圖………………………………………………………..190
圖E-11 [摻氮]/[摻硼]雙層結構鑽石薄膜之上層摻氮鑽石層不同N/C比例的表面電阻值…………………………………………..190
第六章
圖F-1 1´1cm2圖紋氧化層試片(a)氧化層佔試片中央三分之一(b)試片表面完全為氧化層覆蓋……………………………………..194
圖F-2 圖紋鑽石薄膜之SEM圖:字樣設計……………………….195
圖F-3 圖紋鑽石薄膜之SEM圖:4mm陣列設計…………………..196
圖F-4 圖紋鑽石薄膜之SEM圖:2mm陣列設計…………………..197
圖F-5 圖紋氧化層試片在BEN過程中偏壓電流與時間的關係…..199
圖F-6 圖紋氧化層試片在BEN過程偏壓電流飽和後的SEM圖(a)4´4 mm設計(b)2´2 mm設計……………………………………..200
圖F-7 使用如圖IV-35b試片無法形成的圖紋讚時薄膜SEM圖201
圖F-8 (a)在圖紋氧化層中矽表面(b)一般矽基板表面只經過BEN過程的鑽石核SEM圖…………………………………………….203
圖F-9 (a)氧化鋁基板放置方式(b)BEN過程偏壓電流與時間關係.206
圖F-10 (a)氧化鋁基板放置方式如圖IV-43a所形成的鑽石薄膜(b)氧化鋁基板放置方式不加外圍矽基板無法形成鑽石薄膜…...207
圖F-11 在矽基板下加一絕緣試片進行鑽石鍍膜(a)試片放置方式(b)中間矽基板表面鑽石薄膜形成的示意圖…………………...208
圖F-12 表面為金屬薄膜的試片(a)矽基板上直接鍍上金屬薄膜(b)矽基板與金屬薄膜間存在一5000Å熱氧化層………………..213
圖F-13 金屬薄膜上的鑽石薄膜(a)試片邊緣(b)試片中心…………214
圖F-14 在氧化層上的金屬薄膜表面無法形成鑽石薄膜…………..215
圖F-15 場發射電子輔助圖紋鑽石成核的機制示意圖……………..215
圖F-16 在金屬薄膜上完成的圖紋鑽石薄膜(I)……………………..216
圖F-17 在金屬薄膜上完成的圖紋鑽石薄膜(II)…………………….217
圖F-18 成長過程不加負偏壓的圖紋鑽石薄膜……………………..220
圖F-19 成長過程加負偏壓-50 V的圖紋鑽石薄膜…………………221
圖F-20 成長過程加負偏壓-100 V的圖紋鑽石薄膜………………..222
圖F-21 圖紋鑽石薄膜的電子場發射電壓電流曲線(L)大晶粒(M)中晶粒(S)微晶粒…………………………………………………..223
圖F-22 大晶粒圖紋鑽石薄膜在量過電子場發射後的SEM圖……224
圖F-23 圖紋鑽石薄膜電子場發射機制示意圖……………………..225
圖F-24 在金屬表面圖紋鑽石薄膜的電子場發射電壓電流曲線…..227
圖F-25 在金屬表面圖紋鑽石薄膜電子場發射曲線的分析(a)F-N曲線(b)低電場蕭基曲線(c)高電場空間電荷限制電流曲線……..228
圖F-26 在金屬薄膜上圖紋鑽石薄膜的SEM圖(a)大範圍鑽石圖紋(b)通過高電流後單一圖紋(c)原先未通過高電流鑽石圖紋…...230
圖F-27 在金屬薄膜上圖紋鑽石薄膜的Auger圖(a)鑽石結構(b)通過高電流後的石墨結構………………………………………...231
chapter 1:
[1] J. E. Field, The Properties of Diamonds (Academic, London, 1979).
[2] Y. Tzeng, M. Yoshikawa, M. Murakawa and Feldman, “The Applications of Diamond Films and Related Materials”, eds, Elsevier, New York, (1991), (ADC).
[3] Z. H. Huang, P. H. Cutler, N. M. Miskovsky, and T. E. Sullivan, “Caluation of electron field emission from diamond surface”,Revue “Le Vide, Les Couches Minces”-Supplement au No 271-Mars-Avril, pp92 (1994)
[4] C. Wang, A. Garcia, D. C. Ingram, M. Lake, and M. E. Kordesch, “Cold Field-Emission from CVD Diamond Films Observed in Emission Electron-Microscopy”, Electronics Lett., 27, pp1459 (1991).
[5] N. S. Xu, R. V. Latham, and Y. Tzeng, “Field-Dependence of the Area-Density of Cold Electron-Emission Sites on Broad-Area CVD Diamond Films”, Electronics Lett., 29, pp1596 (1993).
[6] A. Modinos, Field, Thermionic, and Secondary electron Emission Spectroscopy, (Plenum, 1984, New York).
[7] A. L. Lavoisier, Memoire Academie des Science, p. 564 (1882)
[8] P. W. Bridgman, "Synthetic diamonds", Scient. Am., 193, pp42 (1955).
[9] W. G. Eversole, U.S. Patent No. 3,030,188, (1962).
[10] J. C. Angus, H. A. Will and W. S. Stanko, J. Appl. Phys., 39, pp2915 (1968).
[11] B. V. Spitsyn, L. L. Bouilov, and B. V. Derjaguin, "Vapor growth of diamond on diamond and other surfaces", J. Cryst. Growth, 52, pp219 (1981).
chapter 2:
[1] M. Frenklach, W. Howard, D. Hung, J. Yuan, K. E. Spear, and R. Koba, "Induced nucleation of diamond powder", Appl. Phys. Lett., 59(5), p.546(1991).
[2] R. A. Bauer, N. M. Sbrockey, and W. E. Brower, Jr., “Quantitative nucleation and growth studies of PACVD diamond film formation on (100) silicon”, J. Mater. Res., 8, 2858(1993).
[3] F. G. Celii, and J. E. Butler, "Hydrogen-atom detection in the filament-assisted daimond deposition environment", Appl. Phys. Lett., 54(11), p.1031(1989).
[4] M. Frenklach, and K. E. Spear, "Growth-mechanism of vapor-deposited daimond", J. Mater. Res., 3(1), p.133(1988).
[5] S. J. Harris, "Mechanism for diamond growth from methal radicals", Appl. Phys. Lett., 56(23), p.2298(1990).
[6] O. Sanchez, C. G. Aleixandre, F. Agullo, and J. M. Albella, "Study of the plasma discharges in diamond deposition with different O2 concentrations", Dia. and Rel. Mater., 3, p.1183(1994).
[7] J. E. Green, S. A. Barnett, J. E. Sundgren and A. Rockett, Plasma-Surface Interactions and Processing of Materials, 281-311(1990).
[8] X. Jiang, C. P. Klages, R. Zachai, M. Hartweg, and H. J. Fusser, "Epitaxial diamond thin films on (001) silicon substrate", Appl. Phys. Lett., 62, 3438(1993).
[9] P. K. Bachmann, D. Leers, and H. Lydtin, Dia. and Rel. Mater., 1,1(1991).
[10] P. K. Bachmann, D. Leers, and D. U. Wiechert, “Diamond Chemical Vapor-Deposition”, Journal de Physique II, 1, 907(1991).
[11] T. Mitomo, T.Ohta, E. Kondoh, and K. Ohtsuka, “An investigation of product distributions in microwave plasma for diamond growth”, J. Appl. Phys., 70, 4532(1991).
[12] Y. Mitsuda, Y. Tanaka, and T. Yoshida, “Insitu Emission and Mass Spectroscopic Measurement of Chemical-Species Responsible for Diamond Growth in a Microwave Plasma-Jet”, J. Appl. Phys., 67, 3604(1990).
[13] Y. Genchi, T. Yasuda, and, H. Komiyama, “Gas-Phase Processes in Diamond Synthesis by Hot-Filament CVD”, Kagaku Kogaku Ronbunshu, 16, 454(1990).
[14] C. J. Chu, R. H. Hauge, J. L. Margrave, and M. P. D''Evolyn, "Growth kinetics of (100), (110), and (111) homoepitaxial diamond films", Appl. Phys. Lett., 61(12), p.1393(1992).
[15] S. J. Harris, “Gas-phase kinetics during diamond growth; CH4 as-growth species”, J. Appl. Phys., 65, 3044(1989).
[16] M. Frenklach and H. Wang, “Detailed surface and gas-phase chemical kinetics of diamond deposition”, Phys. Rev., B 43, 1520(1991).
[17] M. C. Mcmaster, W. L. Hsu, M. E. Coltrin, and D. S. Dandy, “Experimental Measurements and Numerical Simulations of the Gas-Composition in a Hot-Filament-Assisted Diamond Chemical-Vapor-Deposition Reactor”, J. Appl. Phys., 76, 7567(1994).
[18] D. G. Goodwin, “Simulation of high-rate diamond synthesis: Methyl as growth species”, Appl. Phys. Lett., 59, 277(1991).
[19] Nong M. Hwang, Jun H. Hahn and Gun W. Bahng, “Themodynamic approach to the C-H-O deposition diagram in the diamond chemical vapor deposition process”, Diamond Relat. Mater., 3, 163(1993).
[20] S. Iijima, Y. Aikawa, and K. Baba, "Early formation of chemical vapor-deposition daimond films", Appl. Phys. Lett., 57(25), p.2646(1990).
[21] Jung Ho Je, G. Y. Lee, "Microstructures of diamond films deposited on (100) silicon wafer by microwave plasma-enhanced chemical vapour deposition", J. Mater. Sci., 27, p.6324(1993).
[22] T. P. Ong, F. L. Xiong, and R. P. H. Chang, ”A mechanism of diamond nucleation and growth on single crystal copper”, paper # M8.2, MRS Spring meeting, San Franciso, April, 1992.
[23] S. M. Pimenov, A. A. Smolin, V. G. Ralchenko, V. I. Konov, S. V. Likhanski and I. A. Veselovski, “UV Laser Processing of Diamond Films - Effects of Irradiation Conditions on the Properties of Laser-Treated Diamond Film Surfaces”, Diamond Relat. Mater., 2, 291(1993).
[24] S. Yugo, T. Kimura, H. Kanai, Int. Conf. Diamond Science and Technology, (JNDF Tokyo) Oktt. 24-26, 1988, Tokyo, Japan.
[25] W. G. Moffatt: “Binary Phase Diagrams Handbook”, Vol. 1-3, Genium Publishing Corporation, New York, 1984.
[26] H. Holleck: Fischemeister/Jehn; “Hartstoffschichten zur Verschlei Bminderung”, pp.25-45, Verlag DGM, Oberursel BRD, 1987.
[27] N. Jiang, B. W. Sun, Z. Zhang, and Z. Lin, "Nucleation and initial growth of diamond films on Si substrate", J. Mater. Res., 9(10), p.2695(1994).
[28] D. N. Belton, S. J. Harris, S. J. Schmieg, A. M. Wiener, and T. A. Perry, "Insitu characteristic of diamond nucleation and growth", Appl. Phys. Lett., 54(5), p.416(1989).
[29] Zhidan Li, Long Wang, Tetsuya Suzuki, and Pirouz Pirouz, "Orientation relationship between chemical vapor deposited diamond and graphite substrates", J. Appl. Phys., 73(2), p.711(1993).
[30] R. Meilunas, R. P. H. Chang, ShengZhong Liu, and Manfred M. Kappes, Appl. Phys. Lett., 59, 3461(1991).
[31] R. Meilunas, R. P. H. Chang, S. Z. Liu, and M. M. Kappes, “Activated C70 and Diamond”, NATURE, 354, 271(1991).
[32] Z. Feng, M. A. Brewer. K. Komvopoulos, I. G. Brown, and D. B. Bogy, “Diamond Nucleation on Unscratched Silicon Substrates Coated with Various Non-Diamond Carbon-Films by Microwave Plasma-Enhanced Chemical-Vapor-Deposition”, J. Mater. Res., 10, 165(1995).
[33] M. Ece, B. Oral, J. Patscheider, and K. -H. Ernst, “Effect of Organic Precursors on Diamond Nucleation on Silicon”, Diam. Relat. Mater., 4, 720(1995).
[34] S. Yugo, T. Kanai, T. Kimura and T. Muto, “Generation of Diamond Nuclei by Electric-Field in Plasma Chemical Vapor-Deposition”, Appl. Phys. Lett., 58 ,1036(1991).
[35] B. R. Stoner, G. H. Ma, S. D. Woltor and J. T. Glass, “Characterization of Bias-Enhanced Nucleation of Diamond on Silicon by Invacuo Surface-Analysis and Transmission Electron-Microscopy”, Phys. Rev., B45, 11067(1992).
[36] Masahiro Katoh, Makoto Aoki and Hiroshi Kawarada, “Plasma-enhanced diamond Nucleation on Si”, Jpn. J. Appl. Phys., 33, L194(1994).
[37] C. P. Chang, D. L. Flamm, D. E. Ibbotson, and J. A. Mucha, J. Appl. Phys. 63, 1744 (1988).
[38] G. Z. Cao, J. J. Schermer, W. J. P. Van Enckevort, W. A. L. M. Elst, and L. J. Giling, J. Appl. Phys. 79, 1357 (1996).
[39] S. Jin, and T. D. Moustakas, Appl. Phys. Lett. 65 (4), 403 (1994).
[40] J. Bernholc, A. Antonelli, T. M. Del Sole, Y. Bar-Yam, and S. T. Pantelides, Physical Review Letter, 61 (23), 2689 (1988).
[41] Y. Bar-Yam, and T. D. Moustakas, Nature, 342, 786 (1989).
[42] M. Kaukonen, P. K. Sitch, G. Jungnickel, R. M. Nieminen, S. Po’’ykko’’, D. Porezag, Th. Frauenheim, Phys. Rev. B 57(16), 9965 (1998).
[43] J. —J. Wu, and F. C. —N. Hong, J. Appl. Phys. 81 (8), 3647 (1997).
[44] M. Kamo, Y. Sato, S. Matsumoto, and N. Setaka, “Diamond Synthesis from Gas-Phase in Microwave Plasma”, J. of Crystal Growth, 62, pp642 (1983).
[45] A. Sawabe and T. Inuzuka, “Growth of Diamond Thin-Films by Electron Assisted Chemical Vapor-Deposition”, Appl. Phys. Lett., 46, pp146 (1985).
[46] S. Matsumoto, “Chemical Vapor-Deposition of Diamond in RF Glow-Discharge”, J. Mater. Sci. Lett., 4, pp600 (1985).
[47] J. Suzuki, Jpn. J. Appl. Phys., 28(2) L281 (1989).
[48] J. R. Hollahan, “Deposition of plasma Silicon Oxide Thin Films in a Production Planar Reactor”, J. Electrochem. Soc., 126, 930(1979).
[49] Janet Rankin, Rachel E. Boekenhauer, Roseann Csencsits, Yuzo Shigesato, matthew W. Jacobson, and Brian W. Sheldon, J. Mater. Res., 9, 2164 (1994).
[50] M. Avrami, J. Chem. Phys. 7, 1103 (1939).
[51] M. Avrami, J. Chem. Phys. 8, 212 (1940).
[52] V. Sessa, M. Fanfoni, and M. Tomellini, Physical Review B 54(2), 836 (1996).
[53] M. Fanfoni and M. Tomellini, Physical Review B 54(14), 9828 (1996).
[54] A. M. Bonnot, B. S. Mathis, and S. Moulin, Appl. Phys. Lett. 63 (13), 1754 (1993).
[55] M. Tomellini, R. Polini, and V. Sessa, J. Appl. Phys. 70 (12), 7573 (1991).
[56] X. Jiang, K. Schiffmann, and C. —P. Klages, Physical Review B 50 (12), 8402 (1994).
[57] B. R. Stoner, G. —H. M. Ma, S. D. Wolter, and J. T. Glass, Physical Review B 45(19), 11067 (1992).
[58] R. Stöckel, M. Stammler, K. Janischowsky, L. Ley, M. Albrecht, and H. P. Strunk, J. Appl. Phys. 83 (1), 531 (1998).
[59] P. Reinke and P. Oelhafen, Physcal Review B 56(4), 2183 (1997).
[60] T. Y. Seong, D. G. Kim, K. K. Choi, and Y. J. Baik, Appl. Phys. Lett. 70 (25), 3368 (1997).
[61] J. Gerber, S. Sattel, H. Ehrhardt, J. Robertson, P. Wurzinger, and P. Pongratz, J. Appl. Phys. 79 (8), 4388 (1996).
[62] R. Stöckel, K. Janischowsky, S. Rohmfeld, J. Ristein, M. Hundhausen, and L. Ley, J. Appl. Phys. 79 (2), 768 (1996).
[63] R. Stöckel, M. Stammler, K. Janischowsky, L. Ley, M. Albrecht, and H. P. Strunk, J. Appl. Phys. 83 (1), 531 (1998).
[64] M. D. Irwin, C. G. Pantano, P. Gluche, and E. Kohn, Appl. Phys. Lett. 71 (5), 716 (1997).
[65] P. Reinke, P. Kania, P. Oelhafen, and R. Guggenheim, Appl. Phys. Lett. 68 (1), 22 (1996).
[66] Sz. Kátai, Z. Tass, Gy. Hárs, and P. Deák, J. Appl. Phys. 86 (10), 5549 (1999).
[67] J. Robertson, J. Gerber, S. Sattel, M. Weiler, K. Jung, and H. Ehrhardt, Appl. Phys. Lett. 66 (24), 3287 (1995).
[68] S. P. McGinnis, M. A. Kelly, and S. B. Hagstro’’m, Appl. Phys. Lett. 66 (23), 3117 (1995).
[69] L. J. Huang, I. Bello, W. M. Lau, S. T. Lee, P. A. Stevens, and DeVries, J. Appl. Phys. 76, 7483 (1994).
[70] B. W. Sheldon, R. Csencsits, J. Rankin, R. E. Boekenhauer, and Y. Shigesato, J. Appl. Phys. 75 (10), 5001 (1994).
[71] M. M. Garcia, I. Jimenez, O. Sanchez, C. Gomez-Aleixandre, and L. Vazquez, Physical Review B 61(15), 10383 (2000).
[72] Y. Hayashi, X. Li, and S. Nishino, Appl. Phys. Lett. 71 (20), 2913 (1997).
[73] O. A. Louchev, C. Dussarrat, and Y. Sato, J. Appl. Phys. 86 (3), 1736 (1999).
[74] S. Barrat, S. Saada, I. Dieguez, and E. Bauer-Grosse, J. Appl. Phys. 84 (4), 1870 (1998).
[75] Q. Chen and Z. Lin, Appl. Phys. Lett. 68 (17), 2450 (1996).
[76] Q. Chen and Z. Lin, J. Appl. Phys. 80 (2), 797 (1996).
[77] F. Brunet, A. Deneuville, P. Geermi, M. Pernet, and E. Gheeraert, J. Appl. Phys. 81, 1120 (1997).
[78] H. H. Hsieh, Y. K. Chang, W. F. Pong, M. —H. Tsai, F. Z. Chien, P. K. Tseng, I. —N. Lin, and H. F. Cheng, Appl. Phys. Lett. 75 (15), 2229 (1999).
[79] F. Brunet, P. Germi, M. Pernet, A. Deneuville, E. Gheeraert, F. Laugier, M. Burdin, and G. Rolland, J. Appl. Phys. 83 (1), 181 (1998).
[80] J. Mort, D. Kuhman, M. Machonkin, M. Morgan, F. Jansen, K. Okumura, Y. M. LeGrice, and R. J. Nemanich, Appl. Phys. Lett. 55 (11), 1121 (1989).
[81] G. S. Sandhu, M. L. Swanson, and W. K. Chu, Appl. Phys. Lett. 55 (14), 1397 (1989).
[82] Y. Yokota, T. Tachibana, K. Miyata, K. Kobashi, A. Hatta, T. Ito, A. Hiraki, and Y. Shintani, Appl. Phys. Lett. 73 (11), 1493 (1998).
[83] P. Gonon, E. Gheeraert, A. Deneuville, F. Fontaine, L. Abello, and G. Lucazeau, J. Appl. Phys. 78 (12), 7059 (1995).
[84] J. W. Ager III, W. Walukiewicz, M. McCluskey, M. A. Plano, and M. I. Landstrass, Appl. Phys. Lett. 66 (5), 616 (1995).
[85] C. Wang, and T. Tto, Appl. Phys. Lett. 75 (13), 1920 (1999).
[86] O. B. Krutko, P. B. Kosel, R. L. C. Wu, S. L. Fries-Carr, S. Heidger, and J. Weimer, Appl. Phys. Lett. 76 (7), 849 (2000).
[87] K. Nishimura, K. Das, and J. T. Glass, J. Appl. Phys. 69 (5), 3142 (1991).
[88] R. Walker, S. Prawer, D. N. Jamieson, K.W. Nugent, and R. Kalish, Appl. Phys. Lett. 71 (11), 1492 (1997).
[89] A. Masood, M. Aslam, M. A. Tamor, and T. J. Potter, Appl. Phys. Lett. 61 (15), 1832 (1992).
[90] R. Zeisel, C. E. Nebel, and M. Stutzmann, J. Appl. Phys. 84 (11), 6105 (1998).
[91] W. L. Wang, M. C. Polo, G. Sa’nchez, J. Cifre, and J. Esteve, J. Appl. Phys. 80 (3), 1846 (1996).
[92] V. Baranauskas, B. B. Li, A. Peterlevitz, M. C. Tosin, and S. F. Durrant, J. Appl. Phys. 85 (10), 7455 (1999).
[93] B. B. Li, M. C. Tosin, A. C. Perterlevitz, and V. Baranauskas, Appl. Phys. Lett. 73 (6), 812 (1998).
[94] S. A. Kajihara, A. Antonielli, J. Bernhole, and R. Car, Phys. Rev. Lett. 66, 2019 (1991).
[95] N. Jiang, and T. Ito, J. Appl. Phys. 85 (12), 8267 (1999).
[96] E. Boettger, A. Bluhm, X. Jiang, L. Scha’’fer, and C. —P. Klages, J. Appl. Phys. 77 (12), 6332 (1995).
[97] L. Bergman, M. T. McClure, J. T. Glass, and R. J. Nemanich, J. Appl. Phys. 76 (5), 3020 (1994).
[98] H. Hanzawa, N. Umemura, Y. Nisida, H. Kanda, M. Okada, M. Kobayashi, Phys. Rev. B 54 (6), 3793 (1996).
[99] J. E. Butler, in Proceedings of the 4th International Symposium on Diamond Films and Related Materials, Kharkov, Ukraine, 1999, p. 348.
[100] L. Nistor, J. Van Landuyt, and V. Ralchenko, Phys. Status Solidi A 174, 5 (1999).
[101] S. V. Nister, M. Stefan, V. Ralchenko, A. Khomich, and D. Schoemaker, J. Appl. Phys. 87 (12), 8741 (2000).
[102] S. A. Catledge, and Y. K. Vohra, J. Appl. Phys. 86 (1), 698 (1999).
[103] R. Locher, C. Wild, N. Herres, D. Behr, and P. Koidl, Appl. Phys. Lett. 65 (1), 34 (1994).
[104] B. D. Yu, Y. Miyamoto, and O. Sugino, Appl. Phys. Lett. 76 (8), 976 (2000).
[105] S. A. Kajihara, A. Antonelli, J. Bernholc, and R. Car, Phys. Rev. Lett. 66, 2010 (1991).
[106] I. Sakaguchi, M. N. —Gamo, Y. Kikuchi, E. Yasu, H. Haneda, T. Suzuki, and T. Ando, Phys. Rev. B 60 (4), R2139 (1999).
[107] M. W. Geis, N. N. Efremow, J. D. Woodhouse, M. D. Mcaleese, M. Marchywka, D. G. Socker and J. F. Hochedez, “Diamond Cold-Cathode”, IEEE Electr. Dev. Lett., 12(8), pp456 (1991).
[108] S. Iannazzo, “Review: A Survery of the Present Status of Vacuum Microelectonics”, Solid-State electronics, 36(3), pp301 (1993).
[109] J. van der weide and R. J. Nemanich, “ Angle-resolved photoemission of diamond (111) and (100) surface: negative electron affinity and band measurements”, J. Vac. Sci. Technol., B 12(4), pp2475 (1994).
[110] B. B. Pate, et. al., “Formation of surface states on the (111) surface of diamond”, J. Vac. Sci. Technol., 19(3), pp349 (1981).
[111] J. van der weide and R. J. Nemanich, “Influence of interfacial hydrogen and oxygen on the schotthy barrier heigh of nickel on (111) and (100) diamond surface”, Phys. Rev., B49(19), pp13629 (1994).
[112] N. S. Xu et. al., “Similarties in the cold electron emission characteristics of diamond coated molybdenum electrodes and polished bulk graphite surfaces”, J. Phys. D:appl. Phys., 26, 1776 (1993).
[113] A. Modinos, Field thermionic and secondary electron emission specroscopy, Plenum Press, New York, pp1~18 (1984).
[114] D. A. Kirkpatrick, A. Mankofsky, and K. T. Tsang, Appl. Phys. Lett. 60, pp2065 (1992).
[115] Robert Gomer, Field emission and field ionization, American Institute of Physics, pp21~29 (1993).
[116] A. Vander Ziel, Solid State Physical Electronics (Prentice-Hall, Englewood Cliffs, 1968), pp144.
[117] D. A. Buck and K. R. Shoulders, “An approach to microminiature systems”, in Proc. Eastern Joint Computer Conf., pp55-59 (AIEE, New York (1958).
[118] C. A. Spindt, I. Brodie, L. Humphrey and E. R. Westerberg, “Physical properties of thin field emission cathode with molybdenum cones”, J. Appl. Phys. 47, pp5248-5263 (1976).
[119] W. B. Choi, J. J. Cuomo, V. V. Zhirnov, A. F. Myers and J. J. Hren, “ Field emission from silicon and molybdenum tips coated with diamond powder by dielectrophoresis”, Appl. Phys. Lett., 68, pp720 (1996).
[120] R. V. Latham and N. S. Xu, “Electron Pinholes - The Limiting Defect for Insulating High Voltages by Vacuum, a Basis for New Cold-Cathode Electron Sources”, Vacuum, 42, pp1173 (1991).
[121] Z. H. Huang, P. H. Culter, N. M. Miskovsky, and T. E. Sullivan, “Theoretical-Study of Field-Emission from Diamond”, Appl. Phys. Lett., 65, pp2562 (1994).
[122] V. V. Zhirnov, E. I. Givargizov, and P. S. Plekhanov, “Field-Emission from Silicon Spikes with Diamond Coatings”, J. Vac, Sci. Technol, B 13, pp418 (1995).
[123] W. Zhu, G. P. Kochanski, S. Jin, and L. Seibles, Defect-enhanced electron field emission from chemical vapor deposited diammond, J. Appl. Phys. 78 (4), PP.2707~2711 (1995).
[124] W. Zhu, G. P. Kochanski, and A. E. White,Electron field emission from ion-implanted diamond, Appl. Phys. Lett., 68 (8), PP.1157~1159 (1995).
[125] D. Hong and M. Aslam, “Field emission from P-type polycrystalline diamond films”, J. Vac. Sci. Technol. B 13, pp.427~430 (1995).
[126] K. Okano and K. K. Gleason, Electron emission from phosphorus- and boron-dopes polycrystalline diamond films, ELECTRONICS LETTERS, 31 (1), PP.74~75 (1995).
[127] T. K. Ku, S. H. Chen, and H. C. Cheng, Enhanced Electron Emission from phosphorus-Doped Diamond-Clad Silicon Field Emitter Arrays, IEEE ELECTRON DEVICE LETTERS, 17 (5), PP.208~210 (1996).
[128] J. W. Glesener, and A. A. Morrish, Investigation of the temperature dependence of the field emission current of polycrystalline diamond films, Appl. Phys. Lett., 69 (6), PP.785~787 (1996).
[129] M. W. Geis, J. C. Twichell, and T. M. Lyszczarz, Comparison of electric field emission from nitrogen-doped, type 1b diamond, and boron-doped diamond, Appl. Phys. Lett., 68 (16), PP.2294~2296 (1996).
[130] A. A. Rouse, J. B. Bernhard, E. D. Sosa, and D. E. Golden, Appl. Phys. Lett. 75 (21), 3417 (1999).
[131] S.C. Lim, R. E. Stallcup II, I. A. Akwani, and J. M. Perez, Appl. Phys. Lett. 75 (8), 1179 (1999).
[132] S. Y. Han, J. K. Kim, and J. —L. Lee, Appl. Phys. Lett. 76 (25), 3694 (2000).
[133] M. Park, W. B. Choi, S. K. Streiffer, J. J. Hren, and J. J. Cuomo, Appl. Phys. Lett. 72 (20), 2580 (1998).
[134] V. I. Polyakov, N. M. Rossukanyi, A. I. Rukovishnikov, S. M. Pimenov, A. V. Karabutov, and V. I. Konov, J. Appl. Phys. 84 (5), 2882 (1998).
[135] M. Nagao, T. Kondo, Y. Gotoh, H. Tsuji, J. Ishikawa, K. Miyata, and K. Kobashi, Appl. Phys. Lett. 71 (19), 2806 (1997).
[136] W. Zu, G. P. Kochanski, S. Jin, and L. Seibles, J. Vac. Sci. Technol. B 14 (3), 2011 (1996).
[137] Y. Show, F. Matsuoka, M. Hayashi, H. Ito, M. Iwase, and T. Izumi, J. Appl. Phys. 84 (11), 6351 (1998).
[138] T. Yamada, A. Sawabe, S. Koizumi, J. Itoh, and K. Okano, Appl. Phys. Lett. 76 (10), 1297 (2000).
[139] Y. D. Kim, W. Choi, H. Wakimoto, S. Usami, H. Tomokage, and T. Ando, Appl. Phys. Lett. 75 (20), 3219 (1999).
[140] A. T. Sowers, B. L. Ward, S. L. English, and R. L. Nemanich, J. Appl. Phys. 86 (7), 3973 (1999).
[141] T. Sugino, K. Kuriyama, C. Kimura, Y. Yokota, S. Kawasaki, and J. Shirafuji, J. Appl. Phys. 86 (8), 4635 (1999).
[142] T. Sugino, K. Kuriyama, C. Kimura, and S. Kawasaki, Appl. Phys. Lett. 73 (2), 268 (1998).
[143] J. Y. Shim, H. K. Baik, and K. M. Song, J. Appl. Phys. 87 (10), 7508 (2000).
[144] P. W. May, S. Ho’’hn, W. N. Wang, and N. A. Fox, Appl. Phys. Lett. 72 (17), 2182 (1998).
[145] P. W. May, S. Ho’’hn, M. N. R. Ashfold, W. N. Wang, N. A. Fox, T. J. Davis, and J. W. Steeds, J. Appl. Phys. 84 (3), 1618 (1998).
[146] K. Wu, E. G. Wang, J. Chen, and N. S. Xu, J. Vac. Sci. Technol. B 17 (3), 1059 (1999).
[147] A. N. Obraztsov, I. Y. Pavlovsky, and A. P. Volkov, J. Vac. Sci. Technol. B 17 (2), 674 (1999).
[148] Jing Sheng Ma, et. al., “Selective nucleation and growth of diamond particles by plasma-assisted chemical vapor deposition”, Appl. phys, Lett., 55 (11), pp1071-1073 (11 Sept. 1989).
[149] R. Ramesham et. al., “Selective growth of polycrystalline diamond thin films on a variety of substrates using selective damaging by ultrasonic agitation”, J. Mater. Res., l7(5), pp1144-1151 (May 1992).
[150] R. Ramesham, et. al., “Selective growth of diamond crystals on the apex of silicon pyramids”, J. Mater. Res., 7(5), pp1189-1194 (May 1992).
[151] R. Ramesham, et. al., “Characterization of polycrystalline diamond thin films grown on various substrates”, Thin Solid Films, 212, pp96-103 (1992).
[152] R. Ramesham, et. al., “Selective growth, characterization , and microstructure fabrication of undoped and doped polycrystalline diamond thin films”, Material Science Monographs 73- Applications of Diamond Films and Related Materials, ADC‘91, Auburn, Alabama, U.S.A., Aug. 17-22, pp411-416(1991).
[153] J.L. Davidson, et. al., “Selective Deposition of Diamond Films”, J. of Electronic Materials, 18(6), 711-715 (1989).
[154] Jing-Sheng. Ma, et. al., “Interfacial structures and selective growth of diamond particles formed by plasma-assisted CVD”, Applied Surface Science, 41/42, pp572-579 (1989).
[155] Jing-Sheng Ma, et. al., “Nucleation control and selective growth of diamond particles formed with plasma CVD”, J. of Crystal Growth, 99, pp1206-1210 (1990).
[156] Jing Sheng Ma, et. al., “Selective nucleation of diamond particles by plasma-assisted chemical vapor deposition”, proceeding of the 1st Int. symp on Diamond and Diamond -like films, Electrochem. Soc. pp149-161, 1989.
[157] K.Hirabayashi et. al., “Selective deposition of diamond crystals by chemical vapor deposition using a tungsten-filament method”, Appl. Phys. Lett., 53 (19), Nov., pp1815-1817 (1988).
[158] Takayoshi Inoue, et. al., “Selected-Area deposition of diamond films”, J. Appl. Phys., 67 (12), pp7329-7336 (15 June 1990).
[159] K. Kobashi, et. al., “Selected-area deposition of CVD diamond films”, proceedings of the lst Int. Symp. on Diamond and Diamond-like films, Electrochem. Soc., pp139-148(1989).
[160] S.J. Lin, et. al., “Effects of local facet and latticed damage on nucleation of diamond grown by microwave plasma chemical vapor deposition”, Appl. phys. Lett., 60(13), pp1559-1561 (30 March 1992).
[161] M. Aslam, et. al, “CVD Diamond Piezoresistive Sensors”, The 7th International Conference on Solid-State Sensors and Actuators, 718-721 (1993).
[162] J. L. Valdes, et. al., “Selected Area Nucleation and Patterning of Diamond Thin Films by Electrophoretic Seeding”, J. Electrochem. Soc., 138(2), pp635-636 (Feb.1991).
[163] J.L. Valdes, “Electrophoretic Deposition of Colloidal Diamond for Selective DVD Growth of Diamond Films, Material Science Monographs 73 - Applications of Diamond Films and Related Materials, ADC‘91, Auburn, Alabama, U.S.A. Aug. 17-22, pp423-428 (1991)”.
[164] K. Higuchi et.al., “Selected area diamond deposition by control of the nucleation sites”, Diamond and Related Materials, 1, pp220-229 (1992).
[165] Satoshi Katsumata, et. al., “New method for selective growth of diamonds by microwave plasma chemical deposition”, Diamond and Related Materials, 2, 1490-1492 (1993).
[166] N. A. Fox, M. J. Youh, J. W. Steeds, and W. N. Wang, J. Appl. Phys. 87(11), 8187 (2000).
[167] N.I. Ohapliev, et. al., “Laser-assisted selective area deposition of diamond films”, Material Science Monographs 73-Applications of Diamond Films and Related Materials, ADC‘91, Aubura Alabama, U.S.A. Aug. 17-22, pp417-421 (1991).
[168] J.L.Davidson, et. al., “Synthetic Diamond Micromechanical Membranes, Cantilever Beams, and Bridges” J. Electrochem. Soc., 137 (10), pp3206-3210 (Oct. 1990).
[169] C.D. Ellis et. al., “Polycrystalline Diamond Film Flow Sensor” IEEE, pp132-134 (1990).
[170] T. Roppel, et. al., “Thin film diamond microstructure applications”, Materials Science Monographs, 73 - Applications of Diamond Films and Related Materials, ADC ‘91, Auburn, Alabama, U.S.A. Aug 17-22, pp311-318(1991).
[171] D.R.Wur, et. al., “Fabrication and Characterization of Ooped Polycrystalline Diamond Film (PDF) for strain Sensing Applications” The 7th International Conference on Solid-State Sensors and Actuators, pp722-725 (1993).
[172] Michael Shur; Physis of semiconductor Devices ,prentice-Hall, 1990.
[173] H. Kawarada, C. Wild, N. Herres, P. Koidl, Y. Mizuochi, A. Hokazono, and H. Nagasawa, Appl. Phys. Lett. 72 (15), 1878 (1998).
chapter 3:
[1] R. G. Wilson, F. A. Stevie and C. W. Magee, Secondary Ion Mass Spectrometry, A practical handbook for depth profiling and bulk impurity analysis, Wiley (new York) (1995).
[2] Handbook of Auger Electron Spectroscopy, Perkin Elmer, 1995, 3rd Ed.
chapter 4:
[1] J. S. Lee, K. S. Liu and I. N. Lin, Appl. Phys. Lett., 67, 1555 (1995).
[2] S. Barrat, S. Saada, I. Dieguez, and E. Bauer-Grosse, J. Appl. Phys. 84 (4), 1870 (1998).
[3] A. M. Bonnot, B. S. Mathis, and S. Moulin, Appl. Phys. Lett. 63 (13), 1754 (1993).
[4] M. Avrami, J. Chem. Phys. 7, 1103 (1939).
[5] M. Tomellini, R. Polini, and V. Sessa, J. Appl. Phys. 70 (12), 7573 (1991).
[6] X. Jiang, K. Schiffmann, and C. —P. Klages, Physcal Review B 50 (12), 8402 (1994).
[7] M. Meléndez-Lira, J. Menéndez, K. M. Kramer, M. O. Thompson, N. Cave, R. Liu, J. W. Christiansen, N. D. Theodore, and J. J. Candelaria, J. Appl. Phys. 82 (9), 4246 (1997).
[8] X. L. Wu, G. G. Siu, X. Y. Yuan, N. S. Li, Y. Gu, X. M. Bao, S. S. Jiang, and D. Feng, Appl. Phys. Lett. 73 (11), 1568 (1998).
[9] S. —L. Zhang, X. Wang, K. —S. Ho, J. Li, P. Diao, and S. Cai, J. Appl. Phys. 76 (5), 3016 (1994).
[10] Z. C. Feng, W. J. Choyke, and J. A. Powell, J. Appl. Phys. 64 (12), 6827 (1988).
[11] P. Stöckel, M. Stammler, K. Janischowsky, L. Ley, M. Albrecht, and H. P. Strunk, J. Appl. Phys. 83 (1), 531 (1998).
[12] S. P. McGinnis, M. A. Kelly, and S. B. Hagström, Appl. Phys. Lett. 66 (23), 3117 (1995).
[13] H. K. Woo, C. S. Lee, I. Bello, and S. T. Lee, K. W. Wong, and N. B. Wong, J. Appl. Phys. 83 (8), 4187 (1998).
[14] T. Y. Seong, D. G. Kim, K. K. Choi, and Y. J. Balk, Appl. Phys. Lett. 70 (25), 3368 (1997).
[15] P. Reike and P. Oelhafen, Phys. Rev. B 56 (4), 2183 (1997).
[16] Y. Hayashi, X. Li, and S. Nishino, Appl. Phys. Lett. 71 (20), 2913 (1997).
[17] J. Gerber, S. Sattel, H. Ehrhardt, J. Robertson, P. Wurzinger, and P. Pongratz, J. Appl. Phys. 79 (8), 4388 (1996).
[18] X. Jiang, and C. —P. Klages, Appl. Phys. Lett. 61 (14), 1629 (1992).
[19] O. A. Louchev, C. Dussarrat, and Y. Sato, J. Appl. Phys. 86 (3), 1736 (1999).
[20] B. W. Sheldon, R. Csencsits, J. Rankin, R. E. Boekenhauer, and Y. Shigesato, J. Appl. Phys. 75 (10), 5001 (1994).
[21] J. Bernholc, A. Antonelli, T. M. Del Sole, Y. Bar-Yam, and S. T. Pantelides, Physical Review Letter, 61 (23), 2689 (1988).
[22] Y. Bar-Yam, and T. D. Moustakas, Nature, 342, 786 (1989).
[23] H. H. Hsieh, Y. K. Chang, W. F. Pong, M. —H. Tsai, F. Z. Chien, P. K. Tseng, I. N. Lin, and H. F. Cheng, Appl. Phys. Lett. 75 (15), 2229 (1999).
[24] Y. D. Cheng, A. P. Chiu, W. F. Pong, M. -H. Tsai, Y. K. Chang, Y. Y. Chen, J. W. Chiou, C. J. Jan, P. K. Tseng, R. T. Wu, S. C. Chung, K. L. Tsang, I. N. Lin, and H. F. Cheng, Appl. Phys. Lett., submitted.
[25] A. N. Obraztsov, I. Pavlovsky, A. P. Volkov, E. D. Obraztsova, A. L. Chuvilin, and V. L. Kuznetsov, J. Vac. Sci. Technol. B 18 (2), 1059 (2000).
[26] W. L. Wang, M. C. Polo, G. Sánchez, J. Cifre, and J. Esteve, J. Appl. Phys. 80 (3), 1846 (1996).
[27] M. N. —Gamo, I. Sakaguchi, K. P. Loh, H. Kanda, and T. Ando, Appl. Phys. Lett. 73 (6), 765 (1998).
chapter 5:
[1] W. Zu, G. P. Kochanski, S. Jin, and L. Seibles, J. Vac. Sci. Technol. B 14 (3), 2011 (1996).
[2] Y. Show, F. Matsuoka, M. Hayashi, H. Ito, M. Iwase, and T. Izumi, J. Appl. Phys. 84 (11), 6351 (1998).
[3] P. Gonon, E. Gheeraert, A. Deneuville, F. Fontaine, L. Abello, and G. Lucazeau, J. Appl. Phys. 78 (12), 7059 (1995).
[4] R. Zeisel, C. E. Nebel, and M. Stutzmann, J. Appl. Phys. 84 (11), 6105 (1998).
[5] C. F. Shih, K. S. Liu, and I. N. Lin, Diamond Relat. Mater. 9, 1591 (2000).
[6] N. Jiang, and T. Ito, J. Appl. Phys. 85 (12), 8267 (1999).
[7] E. Boettger, A. Bluhm, X. Jiang, L. Scha’’fer, and C. —P. Klages, J. Appl. Phys. 77 (12), 6332 (1995).
[8] A. T. Sowers, B. L. Ward, S. L. English, and R. L. Nemanich, J. Appl. Phys. 86 (7), 3973 (1999).
chapter 6:
[1] S. Barrat, S. Saada, I. Dieguez, and E. Bauer-Grosse, J. Appl. Phys. 84, 1870 (1998).
[2] B. R. Stoner, G. J. Tessmer, and D. L. Dreifus, Appl. Phys. Lett. 62, 1803 (1993).
[3] J. S. Lee, K. S. Liu, and I-N Lin, Appl. Phys. Lett. 67, 1555 (1995).
[4] R. Stockel, K. Janischowsky, S. Rohmfeld, J. Ristein, M. Hundhausen, and L. Ley, J. Appl. Phys. 79, 768 (1996).
[5] R. Stockel, M. Stammler, K. Janischowsky, L. Ley, M. Albrecht, and H. P. Strunk, J. Appl. Phys. 83, 531 (1998).
[6] Q. Chen, and Z. Lin, Appl. Phys. Lett. 68, 2450 (1996).
[7] Q. Chen, and Z. Lin, J. Appl. Phys. 80, 797 (1996).
[8] M. D. Irwin, C. G. Pantano, P. Gluche, and E. Kohn, Appl. Phys. Lett. 71, 716 (1997).
[9] W. Zu, G. P. Kochanski, S. Jin, and L. Seibles, J. Vac. Sci. Technol. B 14 (3), 2011 (1996).
[10] Y. Show, F. Matsuoka, M. Hayashi, H. Ito, M. Iwase, and T. Izumi, J. Appl. Phys. 84 (11), 6351 (1998).
[11] A. T. Sowers, B. L. Ward, S. L. English, and R. L. Nemanich, J. Appl. Phys. 86 (7), 3973 (1999).
[12] A. A. Rouse, J. B. Bernhard, E. D. Sosa, and D. E. Golden, Appl. Phys. Lett. 75 (21), 3417 (1999).
[13] J. Y. Shim, H. K. Baik, and K. M. Song, J. Appl. Phys. 87 (10), 7508 (2000).
[14] P. W. May, S. Höhn, M. N. R. Ashfold, W. N. Wang, N. A. Fox, T. J. Davis, and J. W. Steeds, J. Appl. Phys. 84(3), 1618 (1998).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top