跳到主要內容

臺灣博碩士論文加值系統

(18.208.126.232) 您好!臺灣時間:2022/08/12 01:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡孟諺
研究生(外文):Meng-Yen Tsai
論文名稱:矽及含氧矽量子點之光激發光特性研究
論文名稱(外文):Photoluminescence of Si and Oxygen-Containing Si Nanoparticles
指導教授:彭 宗 平
指導教授(外文):Tsong-Pyng Perng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:134
中文關鍵詞:獨立矽奈米晶含氧矽量子點光激發光X光繞射穿透式電子顯微鏡高分辨電子顯微鏡傅氏轉換紅外線光譜電子能譜化學分析穿透光譜
外文關鍵詞:SiISNsOCSNsPLXRDTEMHRTEMFTIRESCATransmission spectra
相關次數:
  • 被引用被引用:1
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
近幾年來,基於在基礎科學的探討動機以及在光電元件的發展潛力,矽基發光奈米結構已引起廣大的注意與研究。然而時至今日,大部分矽基奈米發光材料的發光機制仍不夠清楚明確。本實驗利用熱蒸鍍技術製備獨立矽奈米晶(ISNs)及含氧矽量子點(OCSNs),對這兩種材料的光激發光特性與機制作一探討。
獨立矽奈米晶是在純氬氣下製備。由X光繞射(XRD)及穿透式電子顯微鏡(TEM)分析得知,其晶粒尺寸隨工作氣壓的下降而減小。而從傅氏轉換紅外線光譜(FTIR)及電子能譜化學分析(ESCA)得知,晶粒表面的化學吸附物主要為氧和氫,且其吸附量隨晶粒尺寸的減小而增加。獨立矽奈米晶的光激發光為亮橙色,光譜的峰值在800 nm。當晶粒尺寸減小時,光激發光的強度增加,但峰值並沒有任何變化。此外,光激發光的強度亦會隨著試樣在空氣中時效時間的增長而增強。以上提到的光激發光皆在真空環境下測得,若晶粒表面物理吸附一定量的空氣或氫氣,此光激發光會完全消失。這些獨立矽奈米晶的光激發光性質,可以用一與氧相關的表面態模型(surface state model)解釋之。
本實驗的第二部份,主要在探討含氧矽量子點的光激發光特性。含氧矽量子點的工作氣氛是氬氣和氧氣的混合氣體,其粒徑尺寸亦隨工作氣壓的下降而減小。含氧量較低的矽量子點仍發亮橙光,其光激發光性質與在獨立矽奈米晶中所觀察到的類似。而含氧量較高的矽量子點則發較強的藍綠光。由X光繞射、高分辨電子顯微鏡(HRTEM)、傅氏轉換紅外線光譜及電子能譜化學分析的結果顯示,所有發藍綠光的含氧矽量子點都是非晶結構,且其主要之組成分為氧化矽。再者,從穿透光譜(Transmission spectra)的實驗結果發現,當含氧矽量子點的含氧量增加時,其吸收邊緣(absorption edge)呈明顯的藍移。顯示含氧量對含氧矽量子點的能帶結構有相當大的影響。
在此藍綠光的光激發光譜中,有兩個主要的發光帶:強度較強的發光帶其峰值在520 nm;而強度較弱的發光帶其峰值在800 nm。除了這兩個主要發光帶之外,還有一微小的尖峰處於450 nm。此藍綠光的強度會隨著含氧矽量子點之含氧量的增加而提升,而且峰值的位置並不會隨著粒徑尺寸大小的不同而變化。另外值得一提的是,此藍綠光的強度對周遭的氛圍非常敏感。綜合以上的實驗結果,此藍綠光應來自一由氧引發的發光源。而此含氧矽量子點在氣體的物理吸附過程中,所產生的表面電荷重新分佈,則可用來解釋周遭氛圍對此藍綠光強度的影響。

Abstract
Si-based luminescent nanostructures have attracted much attention in recent years based on the fundamental physical interests and potential applications in optoelectronic devices. However, the luminescence mechanisms for most of these luminescent materials are not clear and definitive till now. In this experiment, isolated Si nanocrystallites (ISNs) and oxygen-containing Si nanoparticles (OCSNs) are successfully fabricated by thermal evaporation technique, and the related photoluminescence (PL) properties and mechanisms are studied and discussed.
The ISNs are prepared in pure argon and the particle size decreases with decreasing the working pressure, based on the XRD and TEM analyses. According to the FTIR and ESCA spectra, there are oxygen and hydrogen absorbed on the surface of the ISNs and the amount of absorbates increases as the particle size decreases. The ISNs exhibit a bright orange PL with a maximum position at 800 nm. The PL intensity increases with decreasing of the particle size, and no peak shift is detected. Moreover, the PL intensity increases after the specimens have been aged in air, and this orange light emission is quenched when hydrogen or air is adsorbed on the surface of the ISNs. These PL properties are interpreted in terms of the oxygen-related surface state model.
In the second part of this experiment, the OCSNs are prepared in a mixed atmosphere composed of argon and oxygen, and the particle size also decreases with decreasing the working pressure. The OCSNs with a lower oxygen content exhibit orange PL which is similar to that of the ISNs, while an intense blue-green PL is observed from those with a higher oxygen content. From the XRD, HRTEM, FTIR and ESCA analyses, the OCSNs exhibiting blue-green PL have an amorphous structure and consist mainly of Si oxide. In addition, an obvious blueshift of the absorption edge is observed in the transmission spectra when the oxygen content of the OCSNs is increased, implying that the band structure of the OCSNs is dominated by the oxygen content.
Two primary PL bands are observed in the blue-green PL spectra: the peak position of high energy band (HEB) with a stronger PL intensity is at 520 nm, while the low energy band (LEB) has a peak at 800 nm. Besides the two primary bands, there is a tiny peak at 450 nm. The intensity of PL increases with increasing the oxygen content of the OCSNs, and no peak shift is observed when the particle size is varied. Furthermore, the PL intensity is very sensitive to the ambient atmosphere. A mechanism of the oxygen-induced luminescent center is proposed to be responsible for the blue-green PL in this study, and the ambient effect could be explained by surface charge redistribution during the gas adsorption and desorption process.

摘要
Abstract
誌謝
Table of contents
Chapter I Introduction 1
1. Materials with nanosized fine structures 1
2. Applications of nanostructured materials 3
3. Preparation of nanostructured materials 5
4. Photoluminescence of silicon-based nanostrucured materials 5
Chapter II Literature Review 9
1. Si-based luminescent nanostructures 9
A. Porous Si 9
B. Nanostructured Si films 12
C. Isolated Si nanoparticles 14
2. PL mechanisms for Si-based nanostructures 14
A. Quantum confinement effect 14
B. Surface state mechanism 20
C. Molecular agents 23
3. PL from Si-based nanostructures 26
A. Low energy band (LEB) 26
(a). Porous Si 26
(b). a-Si and nc-Si films 29
(c). Isolated Si nanoparticles 32
B. High energy band (HEB) 32
(a). Porous Si 32
(b). nc-Si and SiO2 films 35
(c). Isolated Si nanoparticles 40
4. Gas adsorption effect on PL performance 43
Chapter III Experimental Procedures 45
1. Preparation of nanoparticles 45
2. Characterization and analysis of nanoparticles 45
A. X-ray diffraction 45
B. Transmission electron microscopy 48
C. Fourier transform infrared spectrum 48
D. UV-visible spectroscopy 49
E. Energy spectroscopy for chemical analysis 49
3. Photoluminescence measurement of nanoparticles 50
Chapter IV Results and Discussion 55
A. Isolated Silicon Nanocrystallites (ISNs) 55
1. XRD and TEM analyses of the ISNs 55
2. FTIR and ESCA analyses 55
3. UV-visible transmission spectroscopy 65
4. Photoluminescence (PL) 65
(1). Size effect 65
(2). Aging effect 65
(3). Ambient effect 68
5. Surface state mechanism 68
B. Oxygen-containing Silicon Nanoparticles (OCSNs) 72
(B-1). Oxygen-containing Si nanoparticles prepared at various
total working pressures with 5% fixed oxygen content
in argon (OCSNs-A) 73
1. XRD and TEM analyses of the OCSNs-A 73
2. FTIR and ESCA analyses 79
3. Transmission spectra 85
4. Photoluminescence spectra 85
(1). Bright orange PL 85
(2). Intense blue-green PL 87
(B-2). Oxygen-containing Si nanoparticles prepared at a fixed
total working pressure of 25 torr but with different
oxygen contents in argon (OCSNs-B) 96
1. XRD and TEM analyses of the OCSNs-B 98
2. FTIR and ESCA analyses 98
3. Transmission spectra 98
4. Photoluminescence spectra 106
(B-3). Other properties of the blue-green PL 106
1. Vacuum effect 106
2. Ambient effect 114
(B-4). Mechanism for the blue-green PL 120
Chapter V Conclusions 122
References 127

References
1. R. W. Siegel, Nanostruct. Mater., 3, 1 (1993).
2. A. P. Alivisatos, Science, 271, 933 (1996).
3. P. M. Fauchet, J. Lumin., 80, 53 (1999).
4. P. Normand, D. Tsoukalas, E. Kapetanakis, J. A. Van Den Berg, D. G. Armour, and J. Stoemenos, Microelectronic Eng., 36, 79 (1997).
5. E. H. Nicollian and R. Tsu, J. Appl. Phys., 74, 4020 (1993).
6. Y. Arakawa and H. Sakaki, Appl. Phys. Lett., 40, 939 (1982).
7. H. I. Hanafi, S. Tiwari, and I. Khan, IEEE Trans. on Electron Devices, 43 (9), 1553 (1996).
8. G. Belomoin, J. Therrien, A. Smith, S. Rao, R. Twesten,, S. Chaieb, M. H. Nayfeh, L. Wagner, and L. Mitas, Appl. Phys. Lett., 80, 841 (2002).
9. G. Belomoin, J. Therrien, and M. Nayfeh, Appl. Phys. Lett., 77, 779 (2000).
10. P. T. Tran, E. R. Goldman, G. P. Anderson, J. M. Mauro, and H. Mattoussi, Phys. Stat. Sol. (b), 229 (1), 427 (2002).
11. D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos, J. Phys. Chem. B, 105, 8861 (2001).
12. S. J. Fonash, Z. Li, and M. J. O’Leary, J. Appl. Phys., 58, 4415 (1985).
13. G. Williams, G. S. V. Coles, H. Ferkel, and W. Riehmann, Inter. Conf. on Solid State Sensors and Actuators, 2C3.02, 551 (1997).
14. C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, Sensors and Actuators B, 3, 147 (1991).
15. H. M. Lin, C. M. Hsu, H. Y. Yang, P. Y. Lee, and C. C., Yang, Sensor Actuators B, 22, 63 (1994).
16. M. T. Kelly, A. B. Bocarsly, Coordination Chemistry Reviews, 171, 251 (1998).
17. H. M. Lin, T. Y. Hsu, C. Y. Tung, and C. M. Hsu, Nanostruct. Mater., 6, 1001 (1995).
18. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Science, 295, 2425 (2002).
19. Y. C. Shen, H. Deng, J. Fang, and Z. Lu, Colloids and Surfaces A, 175, 135 (2000).
20. M. L. Trudeau and J. Y. Ying, NanoStructured Mater., 7, 245 (1996).
21. D. H. Li, W. X. Wang, Z. C. Liu, and X. Wei, Physica B, 193, 201 (1994).
22. Z. Zhang, Y. Zhu, and L. Hu, Nanostruct. Mater., 7, 453 (1996).
23. W. F. Egelhoff, Jr. P. J. Chen, and M. D. Stile, IEEE Trans. Magn., 33, 3580 (1997).
24. H. Sakakima, E. Hirota, and Y. Kawawake, J. Magn. Magn. Mat., 184, 49 (1998).
25. R. W. Siegel, Mater. Sci. Eng., A168, 189 (1993).
26. Y. Kawamura, M. Takagi, and M. Akai, Mater. Sci. Eng., 98, 449 (1988).
27. C. G. Granqvist, and R. A. Buhrman, J. Appl. Phys., 47, 2200 (1967).
28. J. D. Eversole and H. P. Broida, J. Appl. Phys., 45, 596 (1974).
29. D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, H. T. Zhou, S. Q. Feng, Appl. Phys. Lett., 72, 3458 (1998).
30. K. H. Chae, J. H. Son, G. S. Chang, H. B. Kim, J Y. Jeong, S. Im, J. H. Song, K. J. Kim, H. K. Kim, and C. N. Whang, NanoStructured Mater., 11, 1239(1999).
31. P. J. Ventura, M. F. Cerqueira, M. C. Carmo, and J. A. Ferreira, Thin Solid Films, 296, 126 (1997).
32. C. Lam, Y. F. Zhang, Y. H. Tang, C. S. Lee, I. Bello, and S. T. Lee, J. of Crystal Growth, 220, 466(2000).
33. F. Papadimitrakopoulos, P. Wisniecki, and D. E. Bhagwagar, Chem. Mater., 9, 2928 (1997).
34. H. J. Fecht, NanoStruct. Mater., 6, 33 (1995).
35. H. J. Fecht, E. Hellstern, Z. Fu, and W. L. Johnson, Metall. Trans. A, 21A, 2333 (1990).
36. H. P. Wu, A. Okano, and K. Takayanagi, Appl. Phys. A, 71, 643 (2000).
37. D. Das, J. Farjas, P. Roura, G. Viera, and E. Bertran, Appl. Phys. Lett., 79, 3705 (2001).
38. Z. X. Tang, C. M. Sorenson, K. J. Klabunde, and G. C. Hadjipanayis, J. Colloid Interface Sci., 146, 38 (1991).
39. S. Aihara, R. Ishii, M. Fukuhara, N. Kamata, D. Terunuma, Y. Hirano, N. Saito, M. Aramata, and S. Kashimura, J. Non-Cryst. Solids, 296, 135 (2001).
40. L. Zhang and J. L. Coffer, J. of Sol-Gel Science and Technology, 11, 267 (1998).
41. E. Borsella, M. Falconieri, S. Botti, S. Martelli, F. Bignoli, L. Costa, S. Grandy, L. Sangaletti, B. Allieri, and L. Depero, Mater. Sci. Eng., B79, 55 (2001).
42. D. B. Mawhinnney, J. A. Glass, Jr., and J. T. Yates, Jr., J. Phys. Chem. B, 101, 1202 (1997).
43. Z. Mouffak, H. Aourag, J. D. Moreno, and J. M. Martinez-Duart, Microelectronic Eng., 43-44, 655 (1998).
44. T. Suzuki, T. Sakai, L. Zhang, and Y. Nishiyama, Appl. Phys. Lett., 66, 215 (1995).
45. L. T. Canham, Appl. Phys. Lett., 57, 1046 (1990).
46. A. Uhlir, Bell Syst. Tech. J., 35, 333 (1956).
47. V. Lehmann, H. Cerva, and L. Ley, Solid State Commun., 39, 625 (1984).
48. V. Lehmann and U. Gösele, Appl. Phys. Lett., 58, 856 (1991).
49. F. Yun, B. J. Hinds, S. Hatatani, S. Oda, Q. X. Zhao, and M. Willander, Thin Solid Films, 375, 137 (2000).
50. K. J. Price, L. E. McNeil, A. Suvkanov, E. A. Irene, P. J. MacFarlane, and M. E. Zvanut, Appl. Phys. Lett., 86, 2628 (1999).
51. S. Furukawa and T. Miyasato , Jpn J. Appl. Phys., 27, L2207 (1988).
52. Q. Zhang, S. C. Bayliss, and D. A. Hutt, Appl. Phys. Lett., 66, 1977 (1995).
53. S. Guha, S. B. Qadri, R. G. Musket, M. A. Wall, and T. Shimizu-Iwayama, J. Appl. Phys., 88, 3954 (2000).
54. T. Shimizu-Iwayama, D. E. Hole, and P. D. Townsend, Nucl. Instr. and Meth. in Phys. Res. B, 147, 350 (1999).
55. X. Zhao, O. Schoenfeld, J. Kusano, Y. Aoyagi, and T. Sugano, Jpn J. Appl. Phys., 33, L649 (1994).
56. T. Oku, T. Nakayama, M. Kuno, Y. Nozue, L. R. Wallenberg, K. Niihara, and K. Suganuma, Mater. Sci. Eng., B74, 242 (2000).
57. H. Morisaki, Nanotechnol., 3, 196 (1992).
58. T. Kawaguchi, and S. Miyazima, J. Appl. Phys., 32, L215 (1993).
59. H. Morisaki, H. Hashimoto, F. W. Ping, H. Nozawa, and H. Ono, J. Appl. Phys., 74 (4), 2977 (1993).
60. S. Veprek, Thin Solid Films, 297, 145 (1997).
61. B. Delley and E. F. Steigmeter, Phys. Rev., B 47 1397 (1993).
62. T. Takagahara and K. Takeda, Phys. Rev., B 46 15578 (1992).
63. C. Tsai, K. H. Li, D. S. Kinosky, R. Z. Qian, T. C. Hsu, J. T. Irby, S. K. Banerjee, A. F. Tasch, and Joe C. Campbell, Appl. Phys. Lett., 60(14), 1700 (1992).
64. Y. Kanemitsu, J. Lumin., 83-84, 283 (1999).
65. Y. Kanemitsu and S. Okamoto, Mater. Sci. Eng., B48, 108 (1997).
66. F. Koch, V. Petrova-Koch, and T. Muschik, J. Lumin., 57, 271 (1993).
67. Y. Kanemitsu, Phys. Rev., B 49, 16 845 (1994).
68. Y. Kanemitsu, Phys. Rep., 263, 1 (1995).
69. Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, Phys. Rev., B 48, 2827 (1993).
70. Y. Kanemitsu, T. Futagi, T. Matsumoto, and H. Mimura., Phys. Rev., B 49, 14732 (1994).
71. P. Li, G. Wang, Y. Ma, and R. Fang, Phys. Rev., B 58, 4057 (1998).
72. L. Brus, J. Phys. Chem., 98, 3575 (1994).
73. S. M. Prokes, O. J. Glembocki, V. M. Bermudez, R. Kaplan, L. E. Friedersdorft, and P. C. Searson, Phys. Rev., B 45, 13788 (1992).
74. M. S. Brandt, H. D. Fuchs, M. Stutzmann, J. Weber, and M. Cardina, Solid State Commun., 81, 307 (1992).
75. M. Rucksckloss, Th. Wirschem, H. Tamura, G. Ruhl, J. Oswald, and S. Veprek, J. Lumin., 63, 279 (1995).
76. H. Tamura, M. Rucksckloss, Th. Wirschem, and S. Veprek, Appl. Phys. Lett., 65, 1537 (1994).
77. P. O’Keeffe, S. Komuro, T. Morikawa, and Y. Aoyagi, Appl. Surf. Sci., 113/114, 135 (1997).
78. Y. Kanemitsu, T. Matsumoto, and H. Mimura, J. Non-Cryst. Solids, 198-200, 977 (1996).
79. D. I. Kovalev and I. D. Yaroshetzkii, Appl. Phys. Lett., 64, 214 (1994).
80. T. Makino, Y. Yamada, N. Suzuki, and T. Yoshida, J. Appl. Phys., 90, 5075 (2001).
81. S. Tong, X. N. Liu, T. Gao, H. Yin, Y. J. Chen, and X. M. Bao, J. Non-Cryst. Solids, 227-230, 498 (1998).
82. H. Morisaki, F. W. Ping, H. Ono, and K. Yazawa, J. Appl. Phys., 70 (3), 1869 (1991).
83. Y. D. Glinka, S. H. Lin, and Y. T. Chen, Appl. Phys. Lett., 75, 778 (1999).
84. I. Coulthard, W. J. Antel, Jr., J. W. Freeland, T. K. Sham, S. J. Naftel, and P. Zhang, Appl. Phys. Lett., 77, 498 (2000).
85. Y. H. Xie, W. L. Wilson, F. M. Ross, J. A. Mucha, E. A. Fitzgerald, J. M. Macaulay, and T. D. Harris, J. Appl. Phys., 71(5), 2403 (1992).
86. M. V. Wolkin, J. Jorne, P. M. Pauchet, G. Allen, and C. Delerue, Phys. Rev. Lett., 82, 197 (1999).
87. S. M. Prokes and O. J. Glembocki, Phys. Rev., B 49, 2238 (1994).
88. S. M. Prokes, Appl. Phys. Lett., 62, 3244 (1993).
89. Y. Fukuda, K. Furuya, N. Ishikawa, and T. Saito, J. Appl. Phys., 82(11), 5718 (1997).
90. Y. Xiao, M. J. Heben, J. M. McCullough, Y. S. Tsuo, J. I. Pankove, and S. K. Deb, Appl. Phys. Lett., 62, 1152 (1993).
91. M. Ruckschloss, B. Landkammer, and S. Veprek, Appl. Phys. Lett., 63 (11), 1474 (1993).
92. H. Takapi, H. Ogawa, Y. Yamazaki, A. Ishizaki, and Nakagirl, Appl. Phys. Lett., 56, 2379 (1990).
93. H. Mimura, T. Futagi, T. Matsumoto, T. Nakamura, and Y. Kanemitsu, Jpn J. Appl. Phys., 33, 586 (1994).
94. M. K. Lee and K. R. Peng, Appl. Phys. Lett., 62, 3159 (1993).
95. A. J. Kontkiewicz, A. M. Kontkiewicz, J. Siejka, S. Sen, G. Nowak, A. M. Hoff, P. Sakthivel, K. Ahmed, P. Mukherjee, S. Witanachchi, and J. Lagowski, Appl. Phys. Lett., 65, 1436 (1994).
96. L. Tsybeskov, Ju. V. Vandyshev, and P. M. Fauchet, Phys. Rev., B 49, 7821 (1994).
97. T. Nakamura, H. Omoya, K. Sasaki, N. Azuma, and H. Mimura, Appl. Surf. Sci., 113/114, 145 (1997).
98. S. Komuro, T. Kato, T. Morikawa, P. O’Keeffe, and Y. Aoyagi, Appl. Phys. Lett., 68, 949 (1996).
99. A. Kux, D. Kovalev, and F. Koch, Appl. Phys. Lett., 66, 49 (1995).
100. A. Loni, A. J. Simons, P. D. J. Calcott, and L. T. Canham, J. Appl. Phys., 77, 3557 (1995).
101. X. Wang, G. Shi, F. L. Zhang, H. J. Chen, W. Wang, P. H. Hao, and X. Y. Hou, Appl. Phys. Lett., 63, 2363 (1993).
102. X. Y. Hou, G. Shi, W. Wang, F. L. Zhang, P. H. Hao, D. M. Huang, and X. Wang, Appl. Phys. Lett., 62, 1097 (1993).
103. M. Zhu, G. Chen, P. Chen, Appl. Phys. A, 65, 195 (1997).
104. J. G. Wan, M. Han, J. Zhou, and G. Wang, Phys. Lett. A, 280, 357 (2001).
105. H. Tamura, M. Ruckschloss, T. Wirschem, and S. Veprek, Appl. Phys. Lett., 65, 1537 (1994).
106. K. S. Seol, Y. Ohki, H. Nishikawa, M. Takiyama, and Y. Hama, J. Appl. Phys., 80, 6444 (1996).
107. S. Sato, H. Ono, S. Nozaki, and H. Morisaki, Nanostruct. Mater., 5, 589 (1995).
108. T. Dittrich, E. A. Konstantinova, and V. Yu. Timoshenko, Thin Solid Films, 255, 238 (1995).
109. E. A. Konstantinova, T. Dittrich, V. Yu. Timoshenko, and P. K. KashKarov, Thin Solid Films, 276, 265 (1996).
110. T. Dittrich, V. Y. Timoshenko, M Schwartzkopff, E. Hartmann, J. Rappich, P.K. Kashkarov, and F. Koch, Microelec. Eng., 48, 75 (1999).
111. B. C. Moshe, A. Kux, and I. Schechter, Appl. Phys. Lett., 64, 481 (1994).
112. A. S. Grove and E. H. Snow, Proc. IEEE, 54, 894 (1966).
113. J. J. Chiu, Master’s Thesis, National Tsing Hua University (1999).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 吳復新,「應用激勵理論提高員工工作意願與績效之研究」,人事月刊,第一一四期,台北市:人事月刊雜誌社,1995年2
2. 城仲模,「公務員懲處制度之研究」,月旦法學雜誌,第三十二期,台北市:月旦法學雜誌社,1998年1月。
3. 周金芳,「論公務員考績懲處制度」,軍法專刊,1996年9月。
4. 杜時誾,「如何發揮考核獎懲的功能」,人事行政季刊,第四五期,台北市:中國人事行政學會出版委員會,1978年4月。
5. 朱石炎,「公務員懲戒制度之探討」,月旦法學雜誌,第三十二期,台北市:月旦法學雜誌社,1998年1月。
6. 王德馨,「如何酬庸與獎勵部屬」,人事行政季刊,第七十二期,台北市:中國人事行政學會出版,1982年12月。
7. 王欽福,「現行公務人員考績制度之研究」,人事行政季刊,第六十期,台北市:中國人事行政學會出版委員會,1972年6月。
8. 張金鑑,「行政督導與考核要義」,人事行政季刊,第七十二期。台北市:中國人事行政學會出版委員會,1985年。
9. 楊百島。「政府機關與民營企業有關獎懲停復職及申訴等作法之比較研究」,人事月刊,第27卷第6期。
10. 楊百島,「推動政府再造的激勵培訓策略與作法」,人事月刊,第一四九期,台北市:中國人事行政學會出版委員會,1998年1月。
11. 葉長明,「試擬激勵公務人員士氣、提高服務品質及工作績效方案草」,公務人員月刊,第5期。台北市:公務人員月刊社,1996年。.
12. 羅開仁,「如何改進公務人員平時考核以落實建立完善考績制度之研究」,人事行政季刊,第114期,台北市:中國人事行政學會出版委員會,1996年。.