跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.251) 您好!臺灣時間:2022/08/11 22:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡慧嫈
研究生(外文):Tsai Hui-Ying
論文名稱:新溶凝膠法製作低介電多孔性SiO2薄膜之研究
論文名稱(外文):A New Sol-gel Process for Fabricating Low-K Porous SiO2 Film
指導教授:葉均蔚
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:98
中文關鍵詞:溶凝膠法多孔性低介電常數
相關次數:
  • 被引用被引用:0
  • 點閱點閱:366
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有鑑於傳統溶凝膠法製作多孔性SiO2薄膜繁複耗時等缺點,本研究開發新的溶凝膠法,不但可一階段加熱燒成SiO2薄膜,且可降低添加劑成本、延長溶液存放壽命。此新溶凝膠法係以矽酸乙酯為主劑,無水乙醇為溶劑,添加具有膠化效果的火棉膠為生孔劑,以形成孔洞。
實驗結果顯示溶液長時間靜置,可使溶液中的添加劑混合均勻;若將溶液施予加熱處理,則更可使添加劑擴散完全,有利於團聚及孔洞之分布。添加5毫升與7毫升火棉膠的SiO2溶液,經過70℃加熱2小時後,可得團聚顆粒與孔洞尺寸最細、分布最均勻的多孔性SiO2薄膜。由FTIR吸收光譜圖可知,本實驗所得的多孔性二氧化矽薄膜無吸附水氣的問題。在介電常數方面,以火棉膠添加量為7毫升所得的多孔性SiO2薄膜具有最低的介電常數值,約為2.5~2.6,折射率為1.248,分別由介電常數與折射率可推算求得本實驗多孔性薄膜之孔隙度約為50%。

摘要…………………………………………………………………….....I
誌謝……………………………………………………………………...II
目錄………………………………………………………………….….III
圖目錄…………………………………………………………………...V
表目錄……………………………………………………………...…...IX
壹、 前言………………………………………………………….....….1
貳、 文獻回顧…………………………………………………………..3
2-1 介電常數簡介…………………………………………..……...3
2-1-1 物質的極化現象…………………………………..……..3
2-1-2 介電常數…………………………………………..…….5
2-2 低介電常數材料的需求…………………………………...…10
2-3 低介電常數材料的特性.…………………………………..…17
2-4 低介電常數材料的種類……………………………………...23
2-4-1 聚亞胺…………………………………………………..23
2-4-2 聚四氟乙烯………………………..……………………23
2-4-3 芳香族碳氫化物…………………..……………………27
2-4-4 非晶氟化碳膜……………………..……………………29
2-4-5 矽酸鹽類…………………………..……………………29
2-4-6 氟化二氧化矽……………………..……...…………….31
2-4-7 多孔性材料………………………..…………………....33
2-5 多孔性二氧化矽………………………………………..…….34
2-6 溶凝膠法製作多孔性SiO2低介電常數薄膜之研究現況…...40
參、 實驗方法…..……………………………………………………..42
3-1 實驗流程……………………………………………………...42
3-2 實驗步驟………………………………………………..…….43
3-3-1 基材準備…………………………………………..……43
3-3-2 SiO2試液配置……………………………………...…...43
3-3-3 旋轉塗佈成膜……………………………..……………43
3-3-4 熱處理成膜………………………………..……….…...44
3-3 薄膜性質量測與分析……………………………..………….47
3-3-1 表面型態觀察………………………………..…………47
3-3-2 薄膜結構分析…………………………………………..47
3-3-3 薄膜鍵結分析………………………………..…………47
3-3-4 介電常數量測………………………………..…………47
3-3-5 折射率量測……………………………………………..48
肆、 結果與討論…………………………………………….………...49
4-1 多孔性SiO2薄膜之製作法比較……………………..……….49
4-2 火棉膠添加量對薄膜結構之影響……………………..…….51
4-3 多孔性SiO2薄膜形成機制……………………………..…….56
4-4 靜置時間對薄膜結構之影響……………………………..….62
4-5 溶液加熱對薄膜結構之影響………………………………...65
4-6 薄膜之X光繞射分析…………………………………………76
4-7 薄膜鍵結及吸水性…………………………………………...80
4-8 介電常數與折射率………………………………………...…86
4-9 最佳化條件之孔隙度推算…………………………………...91
伍、 結論………………………………………………………………93
陸、 參考文獻……………………………………………...………….95

1. 鄭建星,陳貞夙,“應用於先進積體電路之低介電常數材料“,電子月刊,第六卷第十期.
2. N. Awaya and Y. Arita, Thin Solid Films, 262 (1995) 12.
3. J. Wang, R. B. Little, W. G. Lai, and G. L. Griffin, Thin Solid Films, 262 (1995) 31.
4. The National Technology Roadmap for Semiconductors, Semiconductor Industry Association, San Jose, CA (1997).
5. H. Treichel, G. Ruhl, P. Ansmann, R. Wurl, Ch. Muller and M. Dietlmeier, Microelectronic Engineering, 40 (1998) 1.
6. The International Technology Roadmap for Semiconductors, Semiconductor Industry Association, San Jose, CA (1999).
7. J. Cluzel, F. Mondon, Y. Loquet, Y. Morand and G. Reimbold, Microelectronics Reliability, 40 (2000) 675.
8. Jung-Ho Kim, Sang-Bae Jung, Hyung-Ho Park, and Sang-Hoon Hyun, Thin Solid Films, 377-378 (2000) 467.
9. S. V. Nitta, V. Pisupatti, A. Jain, P. C. Wayner, Jr., W. N. Gill, and J. L. Plawsky, Journal of the Vacuum Science Technology B, 17(1) (1999) 205.
10. Cheng, David K., Field and Wave Electromagnetics, 2nd Edition, Addison Wesley, 1989.
11. A. J. Moulson and J. M. Herbert, Electroceramics Materials · Properties · Application, Chapman and Hall, London, 1990.
12. David J. Griffiths, Introduction to Electrodynamics, 3rd Edition, Prentice Hall, 1989.
13. 陳力俊,盧火鐵,微電子材料與製程,陳力俊 主編,中國材料科學學會,中華民國89年.
14. Chiu H. Ting and Thomas E. Siedel, Mat. Res. Soc. Symp. Proc., 381 (1995) 3.
15. W.W. Lee and P.S. Ho, MRS Bulletin, 22 (1997) 19.
16. S. P. Murarka and S. W. Hayes, Critical Review on Solid State and Material Sciences, 20 (1995) 87.
17. 李偉,低介電質(Low K)材料於超大型積體電路的應用,科學園區管理局國立交通大學次微米人才培訓中心,中華民國90年.
18. A. McKerrow and P. Ho, Proceeding of the Low Dielectric Constant Materials and Interconnects Workshop, (1996) SEMATECH.
19. Chuan Hu, Michael Morgen, Paul Ho, Anurag Jain, William N. Gill, Joel L. Plawsky and Peter C. Wayner, Jr., Applied Physics Letters, 77 (2000) 145.
20. K. R. Carter, Proceeding from the Ninth Meeting of the Symposium on Polymers for Microelectronics, Wilmington DE (2000).
21. A. M. Wilson, Thin Solid Films, 83 (1981) 145.
22. R. Ginsburg and J. R. Susko, IBM Journal of Research and Development, 28 (1984) 735.
23. Boong-Joo Lee, Hyeong-Gweon Kim and Duck-Chool Lee, Surface and Coatings Technology, 150 (2002) 182.
24. Michael Morgen, Jie-Hua Zhao, Michael Hay, Taiheui Cho, and Paul S. Ho, Mat. Res. Soc. Symp. Proc. 565 (1999) 69.
25. T. Rosenmayer, Proceedings from the Ninth Meeting of the Symposium on Polymers for Microelectronics, (2000) Wilmington DE.
26. N. Hacker, MRS Bulletin, 22 (1997) 33.
27. J. Golden, Semiconductor International, 24 (2001) 79.
28. P. H. Townsend and S. J. Martin, Mat. Res. Soc. Symp. Proc. 476 (1997) 9.
29. H. Tsai and D. B.Bogy, Journal of Vacuum Science and Technology, A5 (1987) 3287.
30. R. d’Agostino, F. Cramarossa, and F. Illuzzi, Journal of Applied Physics 61 (1987) 2754.
31. Sang-Soo Han and Byeong-Soo Bae, Journal of the Electrochemical Society, 148 (2001) F67.
32. Sang-Soo Han, Hun Rae Kim, and Byeong-Soo Bae, Journal of the Electrochemical Society, 146 (1999) 3383.
33. M. Laboda, Solid State Technology, May (1998)
34. R. K. Laxman, Semiconductor International, May (1995) 71.
35. H. Igarashi, H. Oyamatus, M. Kodera, N. Kaji, T, Matusno, I. Shibata, M. Kinugawa, and M. Kakumu,, VLSI Technology, (1996) 84.
36. H. Kitoh, M. Muroyama, M. Sasaki, M. Iwasawa, and H. Kimura, Japanese Journal of Applied Physics, Part 1, 35 (1996) 1464.
37. T. Tamura, Y. Inoue, M. Satoh, H. Yoshitaka, and K. Sakai, Japanese Journal of Applied Physics, Part 1, 35 (1996) 2526.
38. H. Miyajima, R. Katsumata, Y. Nakasaki, Y. Nishiyama, and N. Hayasaka, Japanese Journal of Applied Physics, Part 1, 35 (1996) 6217.
39. 張鼎張,劉伯村,”NDL在無機類低介電常數材質的研發簡介”奈米通訊,第五卷第四期.
40. R. Landauer, AIP Conference Proceedings, 40 (1978) 2.
41. Agnes M. Padovani, Larry Rhodes, Laura Riester, Gregory Lohman, Barbara Tsuie, James Conner, Sue Ann Bidstrup Allen, and Paul A. Kohl, Electrochemical and Solid-State Letters, 4 (2001) F25.
42. Robert D. Miller, Science, 286 (1999) 421.
43. Lawrence W. Hrubesh, Mat. Res. Soc. Symp. Proc. 381 (1995) 267.
44. 徐國鈞,“多孔性低介電常數材料之特性研究“,國立交通大學電子工程研究所碩士論文,2000年.
45. C. J. Brinker, and G. W. Scherer, Sol-gel science, New York, 1990.
46. S. Henning, and L. Svensson, Physica Scripta. 23 (1981) 697.
47. C. Jin, S. List, S. Yamanaka, W. W. Lee, K. Taylor, and W. Y. Hsu, Mat. Res. Soc. Symp. Proc. 443 (1997) 99.
48. Moon-Ho Jo, Hyung-Ho Park, Dong-Joon Kim, Sang-Hoon Hyun, Se-Young Choi, and Jong-Tae Paik, Journal of Applied Physics, 82 (1997) 1299.
49. Suresh Baskaran, Jun Liu, Karel Domansky, Nathan Kokler, Xiahong Li, Christopher Coyle, Glen E. Fryxell, Suntharampillai Thvuthasan, and Ralph E. Williford, Advance Materials, 12 (2000) 291.
50. J. Buckingham and F. Macdonald., Dictionary of organic compounds, 6th edition, Chapman and Hall, New York, 1996.
51. P. Mezza, J. Phalippou, and R. Sempere, Journal of Non-Crystalline Solids, 243 (1999) 75.
52. Hee-Sun Yang, Se-Young Choi, Sang-Hoon Hyun, Hyung-Ho Park, and Jung-Kyun Hong, Journal of Non-Crystalline Solids, 221 (1997) 151.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top