跳到主要內容

臺灣博碩士論文加值系統

(3.238.252.196) 您好!臺灣時間:2022/08/13 23:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施孟君
研究生(外文):Meng-Chun Shih
論文名稱:合金及薄膜之奈米壓痕量測
論文名稱(外文):Nanoindentation Measurements on Alloys and Thin Films
指導教授:林鶴南
指導教授(外文):Heh-Nan Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:奈米壓痕量測硬度值楊氏係數
相關次數:
  • 被引用被引用:9
  • 點閱點閱:345
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用奈米壓痕儀 (Nanoindenter) 研究合金及薄膜在奈米尺度下的機械性質。樣品有合金及薄膜。合金為 2.5 μm 之 WC / 6.5% Co,及 0.4 μm 之WC / 10% Co;薄膜為 TiN 薄膜鍍在 Si 基材上,及 Ti 薄膜鍍在 Sapphire 基材上。實驗分為兩部分,第一部份為量測 WC / Co 合金的硬度,同時探討壓痕深度及 WC 晶粒大小對 WC / Co 合金的硬度之影響。第二部份為量測 TiN 及 Ti 薄膜的硬度及楊氏係數,同時探討基材對薄膜硬度及楊氏係數的影響,並和 Hertz 及 Sneddon 理論值相比較。實驗結果顯示,對 WC / Co 合金樣品,0.4 μm WC / 10% Co之奈米壓痕量測結果較2.5 μm WC / 6.5% Co有局部效應的影響。對 TiN / Si 樣品,當壓痕深度小於膜厚 1/3 時,硬度值約為 30 GPa,楊氏係數約為 306 GPa,並維持定值,但壓痕深度加大時,硬度值及楊氏係數隨壓痕深度增加而減少;對 Ti / Sapphire 樣品,當壓痕深度小於膜厚時,硬度值幾乎維持在 7 GPa,而楊氏係數隨壓痕深度增加而增加。本實驗定量顯示基材效應開始作用的範圍,同時也證實 Ti / Sapphire 受基材效應影響較小。另外,結果顯示 Hertz 及 Sneddon 理論分析不太適用於本實驗的奈米壓痕量測。
In this thesis, mechanical properties of alloys and thin films have been studied by nanoindentation. For WC-Co alloys, WC / 6.5% Co with an average grain size of 2.5 μm and WC / 10% Co with an average grain size of 0.4 μm are investigated. The results reveal variation in hardness values of finer grained WC-Co alloys due to indentations between the binder phase and the hard phase. For a titanium nitride film on silicon, which represents a system of a hard film on a soft substrate, the measured hardness and Young’s modulus remains a value of 30 GPa and 306 GPa respectively until the indentation depth is approximately 1/3 of the film thickness and starts to decrease as the indentation depth increases. For a titanium film on sapphire, which represents a system of a soft film on a hard substrate, the measured hardness maintains a value of 7 GPa and Young’s modulus increases with increasing the indentation depth. Our results are also compared with theoretical values from Hertz mechanics and Sneddon mechanics.
中文摘要………………………………………………………………..Ⅰ
英文摘要………………………………………………………………..Ⅱ
誌謝……………………………………………………………………..Ⅲ
目錄……………………………………………………………………..Ⅳ
圖目錄…………………………………………………………………..Ⅴ
表目錄…………………………………………………………………..Ⅵ
第一章、 前言……………………………………………………………1
第二章、 文獻回顧………………………………………………………3
2.1 硬度及楊氏係數的量測及發展……………………………...3
2.2 接觸力學……………………………………………………...5
2.2.1 彈性接觸力學…………………………………………5
2.2.2 壓痕接觸力學…………………………………………8
2.3 薄膜與基材的形變………………………………………….13
2.4 基材效應…………………………………………………….15
2.5 壓痕大小效應……………………………………………….17
2.6 粗糙度效應…………………………………………….……17
第三章、奈米壓痕量測簡介……………………………………………18
3.1 原子力顯微鏡(AFM)簡介…………………………………..18
3.2 奈米壓痕儀(Nanoindenter)簡介…………………………….22
3.2.1 儀器架構……………………………………………..22
3.2.2 實驗步驟……………………………………………..25
3.2.3 誤差來源……………………………………………..26
3.3 fused quartz 校正…………………………………………...29
3.3.1 壓頭形狀……………………………………………...29
3.3.2 校正方法……………………………………………..31
3.3.3 fused quartz 之奈米壓痕量測………………………31
第四章、WC / Co合金之奈米壓痕量測……………………………….34
4.1 樣品製備…………………………………………………….34
4.2 WC / Co合金之量測結果………………………………….36
4.2.1 壓痕深度對硬度值之影響…………………………..36
4.2.2 晶粒大小對硬度值之影響…………………………..37
第五章、薄膜之奈米壓痕量測…………………………………………40
5.1 樣品製備…………………………………………………….42
5.1.1 基板清洗……………………………………………..42
5.1.2 鍍膜步驟……………………………………………..43
5.2 TiN 薄膜之量測結果……………………………………….44
5.2.1 AFM 表面形貌……………………………………...44
5.2.2 壓痕影像……………………………………………..44
5.2.3 荷重 - 壓痕深度曲線……………………………….46
5.2.4 壓痕深度對硬度與楊氏係數之影響………………..47
5.3 Ti 薄膜之量測結果…………………………………………55
5.3.1 AFM 表面形貌……………………………………...55
5.3.2 壓痕影像……………………………………………..55
5.3.3 荷重 - 壓痕深度曲線……………………………….57
5.3.4 壓痕深度對硬度與楊氏係數之影響………………..58
第六章、結論……………………………………………………………65
參考文獻………………………………………………………………..66
1.H. Hertz, J. Reine. Angew. Math. 92, 156 (1882).
2.J. Boussinesq, Applications des Potentiels a l''etude de equilibre et du mouvement des solides elastiques (Gauthier-Villars, Paris, 1885).
3.J. N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965).
4.G. M. Pharr, W. C. Oliver, and F. R. Brotzen, J. Mater. Res. 7, 613 (1992).
5.D. Tabor, Proc. R. Soc. A 192, 247 (1948).
6.W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992).
7.W. W. Gerberich, W. Yu, D. Kramer, A.Strojny, D. Bahr, E. Lilleodden, and J. Nelson, J. Mater. Res. 13, 421 (1998).
8.P. M. Sargent, in Microindentation Techniques in Materials Science and Engineering, edited by P. J. Blau and B. R. Lawn (American Society for Testing and Materials, Philadelphia, PA, 1986).
9.P. J. Burnett and D. S. Rickerby, Thin Solid Films 148, 41 (1987).
10.P. J. Burnett and D. S. Rickerby, Thin Solid Films 148, 51 (1987).
11.B. D. Fabes, W. C. Oliver, R. A. McKee, and F. J. Walker, J. Mater. Res. 7, 3056 (1992).
12.S. Ranjana and D. N. William, Acta Materialia 50, 23 (2002).
13.T. Ohmura, S. Matsuoka, K. Tanaka, and T. Yoshida, Thin Solid Films 385, 198 (2001).
14.P. J. Burnett and T. F. Page, J. Mater. Sci. 19, 845 (1984).
15.G. M. Pharr and W. C. Oliver, J. Mater. Res. 4, 94 (1989).
16.J. B. Pethica, R. Hutchings, and W. C. Oliver, Philos. Mag. A 48, 593 (1983).
17.T. F. Page, W. C. Oliver, and C. J. McHargue, J. Mater. Res. 7, 450 (1992).
18.D. M. Turlet and L. E. Samuels, Metallography 14, 275 (1981).
19.J. B. Pethica and D. Tabor, Surf. Sci. 89, 182 (1979).
20.Q. Ma and D. R. Clarke, J. Mater. Res. 10, 853 (1995).
21.S. P. Baker, Mater. Res. Soc. Symp. Proc. 308, 209 (1993).
22.B. Bhushan, Handbook of micro/nanotribology, 2nd ed. (CRC Press, Boca Raton, 1999).
23.B. Bhushan, Handbook of micro/nanotribology, 2nd ed. (CRC Press, Boca Raton, 1999).
24.H. Ljungcrantz, M. Oden, L. Hultman, J. E. Greene, and J.-E. Sundgren, J. Appl. Phys. 80, 6725 (1996).
25.W. C. Oliver, C. J. McHargue, and S. J. Zinkle, Thin Solid Films 153, 185 (1987).
26.D. S. Stone, K. B. Yoder, and W. D. Sproul, J. Vac. Sci. Technol. A 9, 2543 (1991).
27.N. A. Travitzky, and V. N. Zhitomirsky, J. Mater. Sci. Lett. 15, 1818 (1996).
28.M. Wittling, A. Bendavid, P. J. Martin, and M. V. Swain, Thin Solid Films 270, 283 (1995).
29.A. Bendavid, P. J. Martin, G. B. Smith, L. Wielunski, and T. J. Kinder, Pergamon 47, 1179 (1996).
30.M. Ben Daia, P. Aubert, S. Labdi, C. Sant, F. A. Sadi, and Ph. Houdy, J. Appl. Phys. 87, 7753 (2000).
31.林鶴南、李龍正、劉克迅, 科儀新知 17 (3), 29 (1995).
32.B. Bhushan, A.V. Kulkarni, W. Bonin, and J. T. Wyrobek, Philos. Mag. A 74, 1117 (1996).
33.S. A. Syed Asif, K. J. Wahl, and R. J. Colton, Rev. Sci. Instrum. 70, 2408 (1999).
34.J. D. Holbery, V. L. Eden, M. Sarikaya, and R.M. Fisher, Rev. Sci. Instrum. 71, 3769 (2000).
35.A.V. Kulkarni and B. Bhushan, Mater. Lett. 29, 221 (1996).
36.M. G. Gee, B. Roebuck, P. Lindahl and H.O. Andren, Mater. Sci. Eng. A209,128 (1996).
37.Yu. V. Milman, S. Luyckx and I.T. Northrop, Int. J. Refract. Met. & Hard Mater. 17, 39 (1999).
38.W. D. Schubert, H. Neumeister, G. Kinger and B. Lux, Int. J. Refract. Met. & Hard Mater. 16, 133 (1998).
39.K. Jia, T.E. Fischer and B. Gallois, Nanostruct. Mater. 10, 875 (1998).
40.G. Zambrano, P. Prieto, F. Perez, C. Rincon, H. Galindo, L. Cota-Araiza, J. Esteve and E. Martinez, Sur. & Coat. Tech. 108-109, 323 (1998).
41.T. S. Srivatsan, R. Woods, M. Petraroli, and T. S. Sudarshan, Powder Technology 122, 54 (2002).
42.W. Acchar, U. U. Gomes, W. A. Kaysser, and J. Goring, materials characterization 43, 27 (1999).
43.A. Parasiris and K. T. Hartwig, Int. J. Refract. Met. & Hard Mater. 18, 23 (2000).
44.M. Leiderman, O. Botstein, and A. Rosen, 4th European Conference on Advanced Materials and Process, Italy , September 1995.
45.D. Han and J. J. Mecholsky, J. Mater. Sci. 25, 4949 (1990).
46.S. K. Bhaumik, G. S. Upadhyaya, and M. L. Vaidya, Mater. Sci. Technology 7, 723 (1991).
47.S. K. Bhaumik, R. Balasubramaniam, G. S. Upadhyaya, and M. L. Vaidya, J. Mater. Sci. Lett. 11, 1457 (1992).
48.M. Xueming and J. I. Gang, J. alloys. Compounds 245, 30 (1996).
49.S. Mi and T. H. Courtney, Scripta Materialia 38, 171 (1998).
50.S. Berger, R. Porat, and R. Rosen, Progess. Mater. Sci. 42, 311 (1997).
51.S. K. Bhaumik, G. S. Upadhyaya, and M. L. Vaidya, J. Mater. Process. Technol. 58, 45 (1996).
52.M. J. Yang and R. M. German, Int. J. Refract. Met. & Hard Mater. 16, 107 (1998).
53.J. Bruhn and B. Terselius, Metal Powder Report 1, 30 (1999).
54.Y. Ding, Z. Farhat, D. O. Northwood, and A. T. Alpas, Surface and Coatings Technology 68, 459 (1994).
55.F. K. Mante, G. R. Baran, and B. Lucas, Biomaterials 20, 1051 (1999).
56.M. S. Bobji, S. K. Biswas, J. Mater. Res. 14, 2259 (1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top