跳到主要內容

臺灣博碩士論文加值系統

(3.239.4.127) 您好!臺灣時間:2022/08/20 06:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游嘉勇
論文名稱:水熱法製備PZT膜之研究
論文名稱(外文):A Study on the Hydrothermal Synthesis of PZT Film
指導教授:林樹均
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:126
中文關鍵詞:鋯鈦酸鉛水熱法
外文關鍵詞:PZThydrothermal synthesis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗使用兩階段製程、單一階段製程水熱法在160 ℃下製備結晶態PZT膜,避免高溫結晶化的過程。實驗探討參數對成核過程的影響,並以成核過程中所得的PZT核進行第二階段成膜製程;並探討兩種製程所得的PZT膜,其微結構、組成與製程之間的關係。
在成核過程中,隨原料濃度、KOH濃度增加,析出晶體越小,且KOH濃度越高會導致晶體聚集;而原料濃度太高或KOH濃度過小則會有a-PbO析出。溫度越高,析出晶體越多且有粗化的現象,但180 ℃會導致枝狀晶成長。持溫時間影響晶體覆蓋基板的程度,12 h以上可成膜,但表面已是PbZrO3。在組成上,PZT的Zr成份隨著原料濃度增加、持溫時間越長、KOH濃度減小、溫度上升而增加;但180 ℃卻會得到成份為富鈦的PZT。
以接近MPB組成的PZT核進行第二階段製程,原料中加入TiCl4水溶液,即使持溫72 h仍可得PZT膜,Zr/Ti比值為53/47;持溫24 h,則可得Zr/Ti比值為51/49的PZT膜。膜厚會隨著持溫時間增長而增加,但TiCl4含量影響並不大。
兩階段的第二階段與單一階段製程中,PZT中的Ti成份均會隨著TiCl4含量增加而增加。兩階段製程會有小晶體析出,微結構不隨著TiCl4含量變化,持溫時間增長,小晶體有成長合併的現象;單一階段合成的微結構則會隨著TiCl4含量變化。

目 錄
摘要..........................................................................................................Ⅰ
誌謝..........................................................................................................Ⅱ
目錄..........................................................................................................Ⅲ
圖目錄......................................................................................................Ⅶ
表目錄...................................................................................................XⅢ壹、緒論....................................................................................................1
貳、文獻回顧............................................................................................3
2.1 PZT材料..............................................................................................3
2.1.1 鈣鈦礦(Perovskite)晶體結構...................................................3
2.1.2 PZT材料與特性應用...............................................................5
2.2 壓電效應...........................................................................................11
2.2.1 壓電原理................................................................................13
2.2.2 壓電方程式............................................................................15
2.2.3 極化與電域............................................................................17
2.2.4 機電耦合因數(Electromechanical Coupling Factor:k)......18
2.2.5 機械品質因數(Mechanical Quality Factor:Qm)與損失(Loss)......................................................................................22
2.2.6 添加劑對電域壁的移動與壓電陶瓷的影響........................22
2.3 厚膜製造技術...................................................................................23
2.3.1 網印(Screen Printing)[21,22].....................................................25
2.3.2 溶凝膠法(Sol-Gel)[23-26].........................................................25
2.3.3有機金屬鹽裂解法(MOD)[27].................................................26
2.3.4微粉-溶凝膠法及微粉-有機金屬鹽裂解法[28-30]...................26
2.3.5 氣體沈積法(Gas Deposition )[31,32] .......................………....27
2.3.6 霧化噴灑法(Nebulized Spray)[33]..........................................27
2.3.7 電泳被覆(Electrophoretic Deposition, EDP)[34,35].................28
2.3.8 水熱法合成(Hydrothermal Method Synthesis)[36-39]….........28
2.4 水熱法...............................................................................................32
2.4.1 水熱長晶分類........................................................................32
2.4.2 水熱合成機制........................................................................35
2.4.3 結晶的理論基礎[43] ...............................................................41
2.5 研究目的...........................................................................................43
參、實驗步驟..........................................................................................45
3.1 Ti基板前處理....................................................................................45
3.2 水熱溶液製備...................................................................................45
3.2.1 實驗藥品................................................................................45
3.2.2 溶液配置................................................................................45
3.3 實驗流程...........................................................................................47
3.3.1 製程參數對第一階段實驗的影響........................................49
3.3.2 兩階段製程合成PZT膜.......................................................53
3.3.3 單一階段製程合成PZT膜...................................................56
3.4 微結構觀察、組成分析與性質量測...............................................58
3.4.1 微結構觀察與組成分析........................................................58
3.4.2 X光繞射分析.........................................................................58
3.4.3 歐傑電子能譜儀(AES)分析..................................................58
肆、結果與討論......................................................................................59
4.1 Ti基板前處理....................................................................................59
4.2 製程參數對第一階段水熱法合成PZT的影響..............................59
4.2.1 原料濃度的影響....................................................................59
4.2.1.1 X光繞射圖分析.......................................................…59
4.2.1.2 微結構觀察.................................................................62
4.2.1.3 組成分析.....................................................................66
4.2.2 持溫時間的影響....................................................................66
4.2.2.1 X光繞射圖分析..........................................................66
4.2.2.2微結構觀察..................................................................69
4.2.2.3組成分析......................................................................71
4.2.3 製程溫度的影響....................................................................74
4.2.3.1 X光繞射圖分析..........................................................74
4.2.3.2 微結構觀察.................................................................74
4.2.3.3 組成分析.....................................................................77
4.2.4 KOH濃度的影響...................................................................80
4.2.4.1 X光繞射圖分析..........................................................80
4.2.4.2 微結構觀察.................................................................80
4.2.4.3 組成分析.....................................................................83
4.2.5 Zr/Ti比值與(110)繞射峰偏移...............................................85
4.3 兩階段合成PZT膜..........................................................................89
4.3.1 第一階段合成PZT核...........................................................89
4.3.2 第二階段合成PZT膜...........................................................89
4.3.2.1 TiCl4水溶液含量對PZT膜的影響............................89
4.3.2.1.1 X光繞射圖分析...............................................89
4.3.2.1.2 微結構觀察......................................................91
4.3.2.1.3 組成分析..........................................................95
4.3.2.1.4 Zr/Ti比值與(110)繞射峰偏移.........................95
4.3.2.2 持溫時間對PZT膜的影響........................................95
4.3.2.2.1 X光繞射圖分析...............................................95
4.3.2.2.2 微結構觀察......................................................99
4.3.2.2.3 組成分析........................................................104
4.3.2.2.4 Zr/Ti比值與(110)繞射峰偏移........................104
4.4 單一階段製程合成PZT膜.............................................................107
4.4.1 X光繞射圖分析....................................................................107
4.4.2微結構觀察............................................................................107
4.4.3組成分析................................................................................111
4.4.4 Zr/Ti比值與(110)繞射峰偏移..............................................114
伍、結論.................................................................................................116
陸、參考文獻.........................................................................................118
柒、未來研究方向.................................................................................125
圖目錄
圖2-1 (a)ABO3鈣鈦礦結構(b)BO6結構[1] ...............................................4
圖2-2 PZT相圖[3] .....................................................................................6
圖2-3 PZT之機電耦合因子(kp)與介電常數(r)對組成關係[4] ..............7
圖2-4 Ti4+距離結構中心位置的位能圖[5] ...............................................9
圖2-5 典型電滯曲線[6] ...........................................................................10
圖2-6 壓電效應(a)正壓電效應(b)逆壓電效應[12] ................................12
圖2-7 應力的六個分量[13] .....................................................................16
圖2-8 電域內偶極矩隨外加電場變化情形[15] .....................................19
圖2-9 圓板狀壓電結構體[16] .................................................................21
圖2-10 平板狀壓電結構體[16] ...............................................................21
圖2-11 圓柱狀壓電結構體[16] ...............................................................21
圖2-12 兩階段製程示意圖[36] ...............................................................30
圖2-13 單一階段製程示意圖[39] ...........................................................30
圖2-14 以圓管狀Ti基板合成PZT膜來製作超音波換能器[39]..........31
圖2-15 超音波馬達[39] ...........................................................................31
圖2-16 水熱成長法示意圖[44] ...............................................................34
圖2-17 溶解-析出機制[50] ......................................................................38
圖2-18 溶液中溶質濃度與時間的關係[51] ...........................................38
圖2-19 原地生成機制[50] .......................................................................40
圖3-1 壓力釜示意圖..............................................................................48
圖3-2 儀器設備示意圖..........................................................................50
圖3-3 製程參數變化實驗流程圖..........................................................51
圖3-4 兩階段製程流程圖......................................................................54
圖3-5 單一步驟製程流程圖..................................................................57
圖4-1 Ti基板高溫處理前後X光繞射圖..............................................60
圖4-2 不同起始原料濃度在160 ℃、持溫時間2 h、KOH濃度為79 g/165 ml水熱環境下的X光繞射圖...........................................61
圖4-3 不同起始原料濃度在水熱環境160 ℃、持溫時間2 h、KOH濃度為79 g/165 ml下的SEM照片(a)濃度A(b)濃度B(c)濃度C(d)濃度D(e)濃度E..........................................................................63
圖4-4 水熱環境160 ℃、持溫時間2 h、KOH濃度為79 g/165 ml下(a)濃度A(b)濃度B的500倍SEM照片.....................................64
圖4-5 不同起始原料濃度在水熱環境160 ℃、持溫時間2 h、KOH濃度為79 g/165 ml下成長PZT中的Zr/Ti比值............................67
圖4-6 不同持溫時間在原料濃度Pb(NO3)2為19.176 g/105 ml、ZrOCl2為8.085 g/30 ml、160 ℃、KOH濃度為79 g/165 ml下的X光繞射圖.........................................................................................68
圖4-7 不同持溫時間在原料濃度Pb(NO3)2為19.176 g/105 ml、ZrOCl2為8.085 g/30 ml、160 ℃、KOH濃度為79 g/165 ml下的SEM照片(a)2 h(b)3 h (c)6 h(d)12 h (e)24 h........................................70
圖4-8不同持溫時間在原料濃度Pb(NO3)2為19.176 g/105 ml、ZrOCl2為8.085 g/30 ml、160 ℃、KOH濃度為79 g/165 ml下成長PZT的Zr/Ti比值................................................................................72
圖4-9 持溫時間(a)2 h(b)6 h(c)12 h試片經濺射10分鐘後的AES分析.................................................................................................73
圖4-10 不同溫度在原料濃度Pb(NO3)2為19.176 g/105 ml、ZrOCl2為8.085 g/30 ml、持溫時間2 h、KOH濃度為79 g/165 ml下的X光繞射圖................................................................................75
圖4-11 不同溫度在原料濃度Pb(NO3)2為19.176 g/105 ml、ZrOCl2為8.085 g/30 ml、持溫時間2 h、KOH濃度為79 g/165 ml下的SEM照片(a)140 ℃(b)150 ℃(c)160 ℃(d)170 ℃(e)180 ℃2000倍(f)180 ℃5000倍....................................................................76
圖4-12 枝晶成長之外觀隨時間與成長速度改變[64] ...........................78
圖4-13 不同溫度在原料濃度Pb(NO3)2為19.176 g/105 ml、ZrOCl2為8.085 g/30 ml、持溫時間2 h、KOH濃度為79 g/165 ml下成長PZT的Zr/Ti比值..................................................................79
圖4-14 不同KOH濃度在原料濃度Pb(NO3)2為19.176 g/105 ml、ZrOCl2為8.085 g/30 ml、160 ℃、持溫時間2 h下的X光繞射圖...........................................................................................81
圖4-15 不同KOH濃度在原料濃度Pb(NO3)2為19.176 g/105 ml、ZrOCl2為8.085 g/30 ml、160 ℃、持溫時間2 h下的SEM照片(a)40 g/165 ml(b)79 g/165 ml (c)118.5 g/165 ml (d)158 g/165 ml 2000倍(e)158 g/165 ml 150倍............................................82
圖4-16 不同KOH濃度在原料濃度Pb(NO3)2為19.176 g/105 ml、ZrOCl2為8.085 g/30 ml、160 ℃、持溫時間2 h下成長PZT的Zr/Ti比值..............................................................................84
圖4-17 第一階段中,(a)不同濃度(b)不同持溫時間的(110)繞射峰.....86
圖4-17 第一階段中,(c)不同溫度(d)不同KOH濃度的(110)繞射峰...87
圖4-18 MOD法製作不同Zr/Ti比值的PZT薄膜其X光繞射圖[66]…..88
圖4-19 兩階段製程中,不同TiCl4水溶液含量在原料濃度Pb(NO3)2為19.176 g/105 ml、ZrOCl2為8.085 g/30 ml、160 ℃、持溫時間24 h、KOH濃度為79 g/165 ml下的X光繞射圖................90
圖4-20 兩階段製程中,不同TiCl4水溶液含量在原料濃度Pb(NO3)2為19.176 g/105 ml、ZrOCl2為8.085 g/30 ml、160 ℃、持溫時間24 h、KOH濃度為79 g/165 ml下的SEM照片(a)8.8 ml試片表面(b)8.8 ml截面(c)11.1 ml試片表面(d)11.7 ml截面….92
圖4-20 兩階段製程中,不同TiCl4水溶液含量在原料濃度Pb(NO3)2為19.176 g/105 ml、ZrOCl2為8.085 g/30 ml、160 ℃、持溫時間24 h、KOH濃度為79 g/165 ml下的SEM照片(e)11.7 ml試片表面(f)11.7 ml截面(g)13.5 ml試片表面(h)13.5 ml截面................................................................................................93
圖4-21 兩階段製程中,不同TiCl4水溶液含量在原料濃度Pb(NO3)2為19.176 g/105 ml、ZrOCl2為8.085 g/30 ml、160 ℃、持溫時間24 h、KOH濃度為79 g/165 ml下成長PZT的膜厚........94
圖4-22 兩階段製程中,不同TiCl4水溶液含量在原料濃度Pb(NO3)2為19.176 g/105 ml、ZrOCl2為8.085 g/30 ml、160 ℃、持溫時間24 h、KOH濃度為79 g/165 ml下成長PZT的Zr/Ti比值...96
圖4-23 兩階段製程中,不同TiCl4水溶液含量在原料濃度Pb(NO3)2為19.176 g/105 ml、ZrOCl2為8.085 g/30 ml、160 ℃、持溫時間24 h、KOH濃度為79 g/165 ml下的(110)繞射峰.............97
圖4-24 兩階段製程中,不同持溫時間在原料濃度Pb(NO3)2為19.176 g/105 ml、ZrOCl2為8.085 g/30 ml、TiCl4水溶液為11.7 ml、160 ℃、KOH濃度為79 g/165 ml下的X光繞射圖............98
圖4-25 兩階段製程中,不同持溫時間在原料濃度Pb(NO3)2為19.176 g/105 ml、ZrOCl2為8.085 g/30 ml、TiCl4水溶液為11.7 ml、160 ℃、KOH濃度為79 g/165 ml下的SEM照片(a1)(a2)24 h試片表面(a3)24 h橫截面.......................................................100
圖4-25 兩階段製程中,不同持溫時間在原料濃度Pb(NO3)2為19.176 g/105 ml、ZrOCl2為8.085 g/30 ml、TiCl4水溶液為11.7 ml、160 ℃、KOH濃度為79 g/165 ml下的SEM照片(b1)(b2)48 h試片表面(b3)48 h橫截面.......................................................101
圖4-25 兩階段製程中,不同持溫時間在原料濃度Pb(NO3)2為19.176 g/105 ml、ZrOCl2為8.085 g/30 ml、TiCl4水溶液為11.7 ml、160 ℃、KOH濃度為79 g/165 ml下的SEM照片(c1)(c2)72 h試片表面(c3)72 h橫截面.......................................................102
圖4-26 兩階段製程中,不同持溫時間在原料濃度Pb(NO3)2為19.176 g/105 ml、ZrOCl2為8.085 g/30 ml、TiCl4水溶液為11.7 ml、160 ℃、KOH濃度為79 g/165 ml下成長PZT的膜厚..........103
圖4-27 兩階段製程中,不同持溫時間在原料濃度Pb(NO3)2為19.176 g/105 ml、ZrOCl2為8.085 g/30 ml、TiCl4水溶液為11.7 ml、160 ℃、KOH濃度為79 g/165 ml下成長PZT的Zr/Ti比值.............................................................................................105
圖4-28 兩階段製程中,72 h試片經濺射10分鐘後的AES分析...106
圖4-29 兩階段製程中,不同持溫時間在原料濃度Pb(NO3)2為19.176 g/105 ml、ZrOCl2為8.085 g/30 ml、TiCl4水溶液為11.7 ml、160 ℃、KOH濃度為79 g/165 ml下的(110)繞射峰..............106
圖4-30 單一階段製程中,不同TiCl4水溶液含量在原料濃度Pb(NO3)2為19.176 g/105 ml、ZrOCl2為8.085 g/30 ml、160 ℃、持溫時間24 h、KOH濃度為79 g/165 ml下的X光繞射圖..........108
圖4-31 單一階段製程中,不同TiCl4水溶液含量在原料濃度Pb(NO3)2為19.176 g/105 ml、ZrOCl2為8.085 g/30 ml、160 ℃、持溫時間24 h、KOH濃度為79 g/165 ml下的SEM照片(a)3.0 ml試片表面(b)3.0 ml截面(c)5.2 ml試片表面(d)5.2 ml截面........109
圖4-31 單一階段製程中,不同TiCl4水溶液含量在原料濃度Pb(NO3)2為19.176 g/105 ml、ZrOCl2為8.085 g/30 ml、160 ℃、持溫時間24 h、KOH濃度為79 g/165 ml下的SEM照片(e)8.7 ml試片表面(f)8.8 ml截面(g)11.7 ml試片表面(h)11.7 ml截面.....110
圖4-32 單一階段製程中,不同TiCl4水溶液含量在原料濃度Pb(NO3)2為19.176 g/105 ml、ZrOCl2為8.085 g/30 ml、160 ℃、持溫時間24 h、KOH濃度為79 g/165 ml下成長PZT的膜厚...........112
圖4-33 單一階段製程中,不同TiCl4水溶液含量在原料濃度Pb(NO3)2為19.176 g/105 ml、ZrOCl2為8.085 g/30 ml、160 ℃、持溫時間24 h、KOH濃度為79 g/165 ml下成長PZT的Zr/Ti比值..............................................................................................113
圖4-34 單一階段製程中,5.2 ml試片經濺射10分鐘後的AES分析.............................................................................................115
圖4-35 單一階段製程中,不同TiCl4水溶液含量在原料濃度Pb(NO3)2為19.176 g/105 ml、ZrOCl2為8.085 g/30 ml、160 ℃、持溫時間24 h、KOH濃度為79 g/165 ml下的(110)繞射峰...............115
表目錄
表2-1壓電陶瓷振諧型、非振諧型應用[13] .............................................14
表2-2 不同添加劑對PZT特性的影響[14] .............................................24
表2-3 各粉末製程的比較[43] .................................................................36
表3-1 實驗藥品詳細資料......................................................................46
表4-1 不同原料濃度所得PZT的Zr/Ti比值.........................................67
表4-2 不同持溫時間所得PZT的Zr/Ti比值.......................................72
表4-3 不同溫度所得PZT的Zr/Ti比值...............................................79
表4-4 不同KOH濃度所得PZT的Zr/Ti比值....................................84
表4-5 不同TiCl4水溶液含量所得PZT的膜厚...................................94
表4-6 不同TiCl4水溶液含量的Zr/Ti比值..........................................96
表4-7 不同持溫時間所得PZT的膜厚...............................................103
表4-8 不同持溫時間所得PZT的Zr/Ti比值......................................105
表4-9 不同TiCl4水溶液含量所得PZT的膜厚..................................112
表4-10 不同TiCl4水溶液含量所得PZT的Zr/Ti比值........................113

1. Y. Xu, “Ferroelectric Materials and Their Applications”, Published by North-Holland, New York, (1997) 104
2. R. D. Shannon, “Effect Ionic Radii Oxides and Fluorides”, Acta Cryst., B25 (1969) 925
3. B. Jaffe, R. S. Roth, and S. Marzullo, “Properties of Piezoelectric Ceramics in the Solid-Solution Series, Lead Titanate-Lead Zirconate-Lead Oxide: Tin Oxide and Lead Titanate-Lead Hafnate”, J. Res. Nat. Bureau. Stand., 55 (1955) 239
4. B. Jaffe, R. S. Roth, and S marzullo, “Piezoelectric Properties of Lead Zirconate-Lead Titanate Solid Solution Ceramic”, J. App. Phys., 25 (1954) 809
5. A. J. Moulson and J. M. Herbert, “Electroceramics”, Published by Chapman & Hall, (1990) 72
6. 曾嘉宏, “以射頻磁控濺鍍法製作鋯酸鉛鋇薄膜之研究”, 國立清華大學碩士論文 (2000)
7. J. F. Scott, C. A. P. de Araujo, L. D. McMillan, H. Yoshimori, H. Watanabe, T. Mihara, M. Azuma, T. Ueda, Tetsuk Ueda, D. Ueda, and G. Kano, “Ferroelectric Thin Films in Integrated Microelectronic Devices”, Ferroelectrics, 133 (1992) 47
8. G. H. Haerting, “Ferroelectric Thin Film for Electronic Applications”, J. Vac. Sci. Technol., A9 (1991) 414
9. L. M. Sheppard, “Advances in Processing of Ferroelectric Thin Film”, Ceramic Bulletin, 71 (1992) 85
10. M. Sayer and K. Sreenivas, “Creamic Thin Film: Fabrication and Applications”, Science, 247 (1990) 1056
11. 林諭男, “強介電陶瓷薄膜的應用”, 工業材料, 107 (1995) 49
12. A. J. Moulson and J. M. Herbert, “Electroceramics”, Published by Chapman & Hall, (1990) 266
13. 鄭世裕, “壓電材料”, 陶瓷技術手冊, 粉末冶金協會出版, (1999) 443
14. B. Jaffe, R. W. Cook, and H. Jaffe, “Piezoelectric Ceramics”, Published by Academic Press, London, (1971) 94
15. D. Berlincourt, “Variation of Electroelastic Constants of Polycrystalline Lead Titanate Zirconate with Thoroughness of Poling”, J. Acoustic Soc. Am., 36 (1964) 515
16. 吳朗, “電子陶瓷:壓電”, 全欣資訊出版, (1994) 7
17. S. Takahashi and M. Takahashi, “Effect of Impurities on Mechanical Quality Factor of Lead Zirconate Titanate Ceramics”, J. App. Phys., 11 (1972) 31
18. S. Takahashi, “Effect of Impurity Doping in Lead Zirante-Titanate Ceramics”, Ferroelectrics, 41 (1982) 143
19. H. Banno and T. Tsunooka, “Piezoelectric Properties and Temperature Depence of Resonate Frequency of WO3-MnO2-Modified Ceramics of Pb(Zr-Ti)O3”, J. App. Phys., 6 (1967) 954
20. H. Adachi, Y. Kuroda, T. Imahashi, and K. Yanagisawaa, “Preparation of Piezoelectric Thick Films using a Jet Printing System”, Jpn. J. Appl. Phys., 36 (1997) 1159
21. R. Mass, M. Koch, N. R. Harris, N. M. White, A. G. R. Evans, “Thick-film printing of PZT onto silicon”, Mater. Lett., 31 (1997) 109
22. J. F. Fernandez, E. Nieto, C. Moure, P. Duran, “Processing and Microstructure of Porous and Dense PZT Thick Films on Al2O3”, J. Mater. Sci., 30 (1995) 5399
23. G. Yi, M. Sayer, “Sol-Gel Processing of Complex Oxide Films”, Ceram. Bull., 70 (1991) 1173
24. J. D. Mackenzie and Y. Xu, “Ferroelectric Materials by the Sol-Gel Method”, J. Sol-Gel Sci. & Tech., 8 (1997) 673
25. B. Xu, N. G. Pai, and Q. M. Wang, “Antiferroelectric Thin and Thick Films for High-Strain Microactuators”, Integrated Ferroelectrics, 22 (1998) 1065
26. S. H. Kim, Y. S. Choi, and C. E. Kim, “Preparation Pb(Zr0.52Ti0.48)O3 Thin Films on Pt/RuO2 Double Electrode by a New Sol-Gel Route”, J. Mater. Res., 12 (1997) 1576
27. R. W. Vest, “Metallo-Organic Decomposition(MOD) Processing of Ferroelectric and Electrooptic Films: A Review”, Ferroelectrics, 102 (1990) 53
28. D. A. Barrow, T. E. Petroff, R. P. Tandon, and M. Sayer, “Characterization of Thick Lead Zirconate Titanate Films Fabricated Using a New Sol Gel Based Process”, J. Appl. Phys., 81 (1997) 876
29. D. A. Barrow, T. E. Petroff, M. Sayer, “Thick Ceramic Coatings Using a Sol Sel Based Ceramic-Ceramic 0-3 Composite”, Surf. & Coat. Tech., 76-77 (1995) 113
30. F. E. Lange, “Chemical Solution Routes to Single-Crystal Thin Films”, Science, 273 (1996) 903
31. M. Ichiki, J. Akedo, A. Schroth, R. Maeda, and Y. Ishikawa, “Some Characteristics of PZT Films Produced by Jet Molding System”, J. Korean Phys. Soci., 32 (1998) 1501
32. M. Ichiki, J. Akedo, A. Schroth, R. Maeda, and Y. Ishikawa, “X-Ray Diffraction and scanning Electron Microscopy Observation of Lead Zirconate Titanate Thick Film Form by Gas Deposition Method”, Jpn. J. Appl. Phys., 36 (1997) 5818
33. A. R. Raju and C. N. R. Rao, “Oriented Ferroelectric Thin Films of PbTiO3, (Pb,La)TiO3, and Pb(Zr,Ti)O3 by Nebulized Spray Pyrolysis”, Appl. Phys. Lett., 66 (1995) 896
34. J. Van Tassel and C.A. Randall, ”Electrophoretic Deposition and Sintering of Thin/Thick PZT Films”, J. Europ. Ceram. Soc., 19 (1999) 955
35. C. Y. Chen, S. Y. Chen, and D. M. Liu, “Electrophoretic Deposition Forming of Porous Alumina Membranes”, Acta. Mater., 47 (1999) 2717
36. K. Shimomura, T. Tsurumi, Y. Ohba, and M. Diamon, “Preparation of Lead Zirconate Titanate Thin Film by Hydrothermal Method”, Jpn. J. Apply. Phys., 30 (1991 ) 2174
37. Y. Ohba, M. Miyauchi, T. Tsurumi, and M. Daimon, ” .Analysis of Bending Displacement of Lead Zirconate Titanate Thin Film Synthesized by Hydrothermal Method”, Jpn. J. Apply. Phys., 32 (1993) 4095
38. Y. Ohba, K. Arita, T. Tsurumi, and M. Daimon, “Analysis of Interfacial Phase between Substrates and Lead Zirconate Titanate Thin Film Synthesized by Hydrothermal Method”, Jpn. J. Apply. Phys., 33 (1994) 5305
39. T. Morita, M. K. Karusawa, and T. Higuchi,” A Cylindrical Micro Ultrasonic Motor Using PZT Thin Film Deposition by Single Process Hydrothermal Method (φ2.4 mm, L = 10 mm) Stator Transducer”, IEEE Transactions On Ultrasonics, Ferroelectrics, and Frequency Control, 45 (1998) 1178
40. S. D. Bernstein, T. Y. Wong, Y. Kisler, and R. W. Tustion, “Fatigue of Ferroelectric PbZrxTiy Capacitors with Ru and RuO2 Electrodes”, J. Mater. Res., 8 (1993) 12
41. G. W. Morey, “Hydrothermal Synthesis”, J. Am. Ceram. Soc., 36 (1953) 279
42. 李光華, “固態化合物之合成”, 吳大猷院長榮退學術研討會論文集, 中央研究院出版, (1994) 25
43. 史宗淮, “水熱合成鋇鐵氧磁粉之研究”, 國立清華大學博士論文(1991)
44. R. A. Laudise and J. W. Nielsen, “Hydrothermal Crystal Growth”, Solid State Phys., 12 (1961) 149
45. W. J. Dawson, “Hydrothermal Synthesis of Advanced Ceramic Powders”, Am. Ceram. Soc. Bull., 67 (1988) 1673
46. Y. C. Zhou and M. N. Rahaman, “Hydrothermal Synthesis and Sintering of Ultrafine BaTiO3 Powders”, J. Mater. Res., 8 (1993) 1680
47. T. Maria, C. Christian, L. Anne, T. Bernard, “Hydrothermal Synthesis of Lead Zirconium Titanate (PZT) Powders and Their Characteristics”, J. Euro. Ceram. Soc., 19 (1999) 1023
48. A. Stein, S. W. Keller, and T. E. Mallouk, “Turning Down the Heat: Design and Mechanism in Solid-State Synthesis”, Science, 259 (1993) 1558
49. D. J. Watson, C. A. Randall, R. E. Newnham, and J. H. Adair, “Hydrothermal Formation Diagram in the Lead Titanate System”, in Ceramic Powder Sci. Ⅱ, Am. Ceram. Soc., 1 (1988) 154
50. J. Moon, J. A. Kerchner, H. Krarup, and J. H. Adaira, “Hydrothermal Synthesis of Ferroelectric Perovskites from Chemically Modified Titanium Isopropoxide and Acetate Salts“, J. Mater. Res., 14 (1999) 425
51. T. Sugimoto, “Preparation of Mono-Dispered Colloidal Particles”, Advances in Colloid and Interface Sci., 25 (1987) 28
52. A. Mattews, “The Crystallization of Anatase and Rutile from Amorphous Titanium Dioxide under Hydrothermal Conditions”, Am. Mineralogist, 61 (1976) 410
53. J. H. Adair, R. P. Denkewiczm, and F. J. Arriagada, “Precipitation and In-Situ Transformation in the Hydrothermal Synthesis of Crystalline Zirconium Dioxide”, in Ceramic Transactions, Am. Ceramic Soc. Inc., 1 (1988) 135
54. J. Y. Choi, C. H. Kim, and D. K. Kim, “Hydrothermal Synthesis of Spherical Perovskite Oxide Powders Using Spherical Gel Powders”, J. Am. Ceram. Soc., 85 (1998) 1353
55. H. Nishizawa, N. Yamasaki, and K. Matsuoka, “Crystallization and Transformation of Zirconia under Hydrothermal Conditions”, J. Am. Ceram. Soc., 65 (1982) 342
56. R. T Knight. and R. N. Sylva, ”Precipitation in Hydrolysed Iron(Ⅲ) Solution,” J. Inorg. Nucl. Chem., 36 (1974) 591
57. R. H Doremus., “Precipitation Kinetics of Ionic Salts from Solution”, J. Phys. Chem., 62 (1958) 1068
58. T. P. Melia, “Crystal Nucleation from Aqueous Solution”, J. Appl. Chem., 15 (1965) 345
59. G. D Parfitt., “Dispersion of Powders in Liquids with Special Reference to Pigments”, 3rd Ed., Published by Applied Science Publishers, London and New Jersey, (1985) 203
60. J. Nyvlt, “The Kinetics of Industrial Crystallization”, Published by Elsevier, New York, (1985) 21
61. J. W Mullin., “Crystallization”, 2nd Ed., Published by Butterworth-Heinemann, London , (1972) 137
62. J. Moon, M. L. Carasso, H. G. Krarup, J. A. Kerchner, and J. H. Adair, “Particle-Shape Control and Formation Mechanisms of Hydrothermally Derived Lead Titanate”, J. Mater. Res., 14 (1999) 866
63. W. S. Kyung and G. K. Hyun, “Low-Temperature Preparation of Hydrothermal Lead Zirconate Titanate Thin Films”, Korean J. Chem. Eng., 17 (2000) 455
64. A. A. Chernov, “Crystal Growth Forms and their Kinetic Stability”, Soviet Phys. Crystal., 8 (1977) 63
65. 市原高史, 鶴見敬章, 淺賀喜, 李卿喜, 大門正機, “Hydrothermal Synthesis of PZT Crystalline Powders and Piezoelectric Properties of Ceramics”, 日本窯業協會學術論文誌, 98 (1990) 150
66. 許文東, “有機金屬鹽裂解法製備Pb(Zr1-xTix)O3薄膜及其鐵電性”,國立清華大學碩士論文 (1998)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top