跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/09/29 14:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:闕華君
論文名稱:PECVD法製備氟化非晶碳膜之研究
論文名稱(外文):A Study on Fluorinated Amorphous Carbon Films Prepared by PECVD
指導教授:林樹均
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:126
中文關鍵詞:氟化非晶碳膜
外文關鍵詞:PECVD
相關次數:
  • 被引用被引用:1
  • 點閱點閱:614
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文使用電漿輔助化學氣相沈積技術,採用CF4混合C2H2作為前驅物,沈積氟化非晶碳膜。結果顯示氟碳膜組成為碳、氟兩元素,氧雜質在表面含量小於1 at%;薄膜表面2~3 nm具有氟含量較多的特性,薄膜內部氟碳比率依製程參數不同約為0.08~0.51,且分布均勻。若增加CF4含量,則薄膜沈積速率有先升後降之趨勢,並提升薄膜氟碳比率且使折射率下降。製程壓力與電漿功率增加對沈積速率有正面助益,但電漿功率過大可能導致蝕刻效應;而功率越大,薄膜折射率也越低;基板溫度越高,則沈積速率下降,薄膜氟碳比率下降且折射率提高。選擇氣體流量比CF4/ C2H2 = 15(CF4 = 93.8 %)、製程壓力為500 mTorr、電漿功率為180 W、基板溫度為100 ℃之參數,可得高氟碳比率(F/C~0.51)的氟碳膜;此條件沈積速率可達83 nm/min,折射率可低至1.35,在高頻的電場下其介電常數經由折射率換算,可得介電常數k = 1.82 ( k = n2 ),粗糙度僅為0.31 nm。高氟碳比率的薄膜,硬度及彈性模數皆較低;400 ℃熱處理後,薄膜氟碳比率會下降;Ar電漿前處理有助於附著性的提升,若經3分鐘Ar電漿前處理後,Si3N4基材鍍上高氟碳比的薄膜,即可完全通過剝離測試。沈積完成後的薄膜,經過Ar電漿處理,表面成份會改變,但整體性質(折射率、機械性質)沒有太大變化。整體而言,本製程之氟化非晶碳膜,在層間介電材料之應用上,極具潛力。
目 錄
摘要…………………………………………………………………..…Ⅰ
誌謝……………………………………………………………………Ⅱ
目錄……………………………………………………………………Ⅲ
圖目錄…………………………………………………………………..Ⅶ
表目錄………………………………………………………………XI
壹. 前 言………………………………………………………..….1
貳. 文 獻 回 顧………………………………………………………...3
2-1積體電路技術現況及未來發展……………………………………..3
2-1-1阻容延遲效應( RC Delay )……………………………….....3
2-2內連線的選擇……………………………………………………..…5
2-3銅金屬內連線製作之主要製程……………………………………..5
2-4層間介電薄膜(IMD)之性質要求[9]……………………..………….7
2-5主要的低介電常數材料製程…………………………………..……7
2-5-1氣相沈積法[10-13]………………………………...………….9
2-5-2旋轉塗佈法( Spin Coating )………………………….……….9
2-5-2-1溶凝膠法( Sol-Gel )……………………………...……11
2-5-3其他技術[16-18]…………………………………….……….11
2-6低介電材料之介紹………………………………...……………….13
2-6-1氟化二氧化矽( Fluorinated SiO2,SiOF)[19-21]………….....13
2-6-2多孔性二氧化矽(Porous Silica )[22-23]…………………….13
2-6-3無機矽氧烷類高分子………………………………………..14
2-6-4 Benezocyclobutene ( BCB ) [26]……………….……………16
2-6-5氟化聚亞醯胺( Fluorinated Polyimide,FPI )………………..16
2-6-6 Parylene[28]………………………………………………….16
2-6-7聚亞芳香醚高分子…………………………………………..17
2-6-8氟化非晶碳膜簡介[30-45]……………………..………….17
2-7化學氣相沈積法[46-53]……………………………………………20
2-7-1簡介…………………………………………………….…….21
2-7-2 CVD基本原理……………………………………………….22
2-8電漿簡介………………………………………………………..…..23
2-8-1交流式電漿…………………………………..………………25
2-8-1-1電漿原理[50,54-56]………………………..………….25
2-8-1-2電漿電位………………………………………………29
2-8-2電漿聚合膜[62]…………………………………...…………29
2-8-3電漿處理[54-55, 62-63]………………………………..…….32
2-8-3-1高分子材料的表面改質[62, 65-66]…………………..34
2-8-3-2高分子材料表面的電漿作用[54, 62, 67]…………….35
2-9折射率[69-70]………………………………………………………35
2-10介電性質[53, 70]……………………………………..……………36
2-11研究目的……………………….………………………………….38
參. 實驗步驟……………………………………………………..…….39
3-1基材清洗……………………………….…………………………...39
3-2前驅物的選擇………………………….…………...………………39
3-3電漿輔助化學氣相沈積系統…………………………………...….39
3-4實驗流程……………………………….………………………..….40
3-5氟化非晶碳膜的性質分析…….…………………………...………45
3-5-1化學分析電子儀(ESCA)……………….……………..……..45
3-5-2歐傑電子能譜儀(AES)…………………………………...….45
3-5-3傅立葉轉換紅外光譜儀(FTIR)…………………...…………46
3-5-4掃描式電子顯微鏡(SEM)…………………………...………46
3-5-5原子力顯微鏡(AFM)…………………………………….…..46
3-5-6橢圓測試儀…………………………………………………..47
3-5-7黏著性測試…………………………………………………..47
3-5-8機械性質測試…………………………………………….….48
肆. 結果與討論……………………………………………………...…51
4-1薄膜成份分析…………………………………………………..…..51
4-1-1薄膜表面成份分析……………………………………….….51
4-1-2薄膜整體成份分析及均勻性……………………………..…54
4-1-3傅立葉轉換紅外光譜儀分析………………………………..56
4-1-4 表面氟化現象……………………………………………….63
4-1-5 氟化非晶碳膜成份總結………………………………...…..64
4-2氣體流量比效應……………………………………………………64
4-2-1沉積速率……………..……………………………………....64
4-2-2薄膜氟碳比…………………………………………………..68
4-2-3薄膜折射率…………………………………………………..68
4-3製程壓力效應………………………………………………………71
4-3-1沈積速率………………………………………….………….71
4-3-2薄膜氟碳比…………………………………………………..74
4-3-3薄膜折射率…………………………………………………..74
4-4電漿功率效應……………………………………………………....77
4-4-1沈積速率……………………………………………………..77
4-4-2薄膜氟碳比……………………………………………..……79
4-4-3薄膜折射率…………………………………………………..79
4-5基板溫度效應…………………………………………………..…..83
4-5-1沈積速率………………………………………………..……83
4-5-2薄膜氟碳比…………………………………………………..85
4-5-3薄膜折射率…………………………………………………..85
4-6製程參數的總結……………………………………………………88
4-7氟化非晶性碳膜之性質………………………………………...….89
4-7-1不同氟碳比率ESCA鍵結分析……………………...………89
4-7-2熱穩定性……………………………………………………..93
4-7-3附著性測試…………………………………..………………93
4-7-3-1 Ar電漿前處理對基材附著性之影響…………..…….93
4-7-3-2 高低氟碳比薄膜對基材附著性之影響……………..96
4-7-4機械性質量測…………………………………………….….98
4-7-5表面形態與粗糙度………………………………………..…98
4-7-6 氟化非晶性碳膜之性質總結………………………..…….102
4-8電漿處理……………………………………………………….….105
4-8-1電漿處理功率對薄膜成份及粗糙度的影響………………105
4-8-2電漿處理時間對薄膜表面成份及粗糙度的影響…………109
4-8-3 Ar電漿處理後氟碳膜性質…………...…………………....109
伍. 結論……………………………………………………………….117
陸. 參考文獻………………………………………………………….118
柒. 未來研究方向…………………………………………………….126
圖目錄
圖2-1 多層金屬內連線結構[3]………………………………...……….4
圖2-2 元件尺寸與時間延遲的關係圖[4]………………………………4
圖2-3 雙大馬士革製程[8]………………………………………..……..8
圖2-4 旋轉塗佈法( Spin Coating)之步驟[14]…………………….…..10
圖2-5 溶劑添加有機高分子後之成膜收縮現象[15]…………………12
圖2-6 HSQ薄膜經熱處理步驟後之結構變化[24]…………………....15
圖2-7 BCB之單體結構[3]…………………………………..…………15
圖2-8 Pareylene F及Pareylene N之結構[13]……………………...…..18
圖2-9 FLARETM1.0及2.0之結構[29]………………………………….18
圖2-10 化學氣相沈積的主要沈積步驟[48]…………………………..24
圖2-11 電漿內部各物種之行為[54]……………………………..……26
圖2-12 顯示AC電漿產生器的應用。(a)硬體配置(b)~(d)分別顯示AC電漿內帶電粒子在不同狀態下的運動行為(e)RF電漿的整體行為[50]………………………………………………………27
圖2-13顯示不同RF電漿產生器的電極板板面設計對RF電漿的影響。(a)A1<<A2 (b)A1=A2 (c)A1>>A2。右側曲線顯示電漿的電漿電壓Vp及RF電壓V(t)對時間t的操作關係[60]……...….30
圖2-14 顯示RF電漿因電極板面積不等所衍生自偏壓現象。(a)偏壓發生前(b) 偏壓發生後[61]…………………………….……31
圖2-15 高分子材料表面的電漿作用形態[64]………………………..33
圖2-16 材料四種極化機構之示意圖[70]……………………....……..37
圖2-17 介電常數隨頻率變化之示意圖[70]…………………….…….37
圖3-1 PECVD之操作系統示意圖……………...…………..………..41
圖3-2 PECVD機台外觀(a)鍍膜腔體與操作面板(b)混合箱部份…..42
圖3-3 質量控制器(MFC)內部結構示意圖……………………….…..43
圖3-4 實驗流程圖………………………………………………….….44
圖3-5 附著性量測示意圖………………………………………..……49
圖3-6 毫微刻痕測試標準的負荷─壓痕位移關係圖[71]…….………50
圖4-1 一般氟化非晶碳膜表面掃描圖譜,製程條件為氣體流量比CF4/C2H2=16,製程壓力300 mTorr,電漿功率110 W、基板溫度100 ℃…..................................................................................52
圖4-2 一般氟化非晶碳膜之表面化學位移分析圖譜 (a)表面C1s圖譜 (b)表面F1s圖譜。製程條件為氣體流量比CF4/C2H2=16,製程壓力300 mTorr,電漿功率110 W、基板溫度100 ℃……..…...53
圖4-3 一般氟化非晶碳膜之內部化學位移分析圖譜 (a)內部C1s圖譜 (b)內部F1s圖譜。製程條件為氣體流量比CF4/C2H2=16,製程壓力300 mTorr,電漿功率110 W、基板溫度100 ℃………….55
圖4-4 濺射時間對氟含量的影響(a) 0~430 s (b) 0~120s,薄膜厚度為62.5 nm…....................................................................................57
圖4-5 濺射時間對氟含量的影響(a)0~1200 s (b) 0~180s,薄膜厚度為283 nm………….........................................................................58
圖4-6 AES縱深分析,薄膜厚度為(a)83 nm(b)62.5 nm……...……......59
圖4-7 AES表面掃描圖譜………………………………………….…..60
圖4-8 不同氟碳比例氟碳膜的FTIR光譜 (a) F/C~0.08 (b) F/C~0.22 (c) F/C~0.33 (d) F/C~0.51…………………………………………61
圖4-8 不同氟碳比例氟碳膜的FTIR光譜 (a) F/C~0.08 (b) F/C~0.22 (c) F/C~0.33 (d) F/C~0.51……………………………………..…..62
圖4-9 CF4氣體百分比對沈積速率的影響……………………….……65
圖4-10 CFx自由基與高能粒子隨CF4百分比變化之定性示意圖..…..67
圖4-11 綜合高能粒子與CFx自由基變化所得沈積速率趨勢示意圖.69
圖4-12 CF4氣體百分比對氟碳比的影響…………………….………..70
圖4-13 CF4氣體百分比對折射率的影響…………………………..….72
圖4-14 製程壓力對沈積速率的影響……………………………...….73
圖4-15 製程壓力對氟碳比的影響………………………………..…..75
圖4-16 製程壓力對折射率的影響……………………………………76
圖4-17 電漿功率對沈積速率的影響………………………………....78
圖4-18 電漿功率對自偏壓的影響………………………………...….80
圖 4-19 電漿功率對薄膜氟碳比的影響………………………...……81
圖4-20 電漿功率對折射率的影響………………………………....…82
圖4-21 基板溫度對沈積速率的影響……………………………..…..84
圖4-22 基板溫度對氟碳比的影響………………………………...….86
圖4-23 基板溫度對折射率的影響……………………………………87
圖4-24 不同氟碳比率之C1s 曲線吻合圖譜 (a) 0.51 (b) 0.33 (c) 0.22 (d) 0.08……………………………………………………………90
圖4-24 不同氟碳比率之C1s 曲線吻合圖譜 (a) 0.51 (b) 0.33 (c) 0.22 (d) 0.08…………………………………………………...…….…91
圖4-25 F/C~0.45試片退火前後之FTIR圖譜退火前(b)退火後….......95
圖4-26 典型氟化非晶碳膜的橫截面SEM照片……………………100
圖4-27 條件為500 mTorr,75 W,CF4/C2H2=14,100 ℃,沈積速率約為124 nm/min之AFM立體圖…………………...………101
圖4-28 條件為700 mTorr,75 W,CF4/C2H2=14,100 ℃,沈積速率約為130 nm/min之AFM立體圖……………………….…..103
圖4-29 條件為500 mTorr,180 W,CF4/C2H2=14,100 ℃,沈積速率約為95 nm/min之AFM立體圖………………………….....104
圖4-30 不同電漿處理功率對薄膜氟碳比(F/C)的影響……………108
圖4-31 不同電漿處理功率對薄膜表面氧碳比(O/C)的影響……….108
圖4-32 50 W Ar電漿處理後之AFM立體圖…………………………110
圖4-33 100 W Ar電漿處理後之AFM立體圖……………………..…111
圖4-34 不同電漿處理時間對薄膜氟碳比(F/C)的影響………….….112
圖4-35 不同電漿處理時間對薄膜表面氧碳比(O/C)的影響…...…..112
圖4-36 Ar電漿處理5秒後之AFM立體圖……...………………...…113
圖4-37 Ar電漿處理60秒後之AFM立體圖…………………………114
圖4-38 不同電漿處理時間對薄膜折射率的影響……………..……116
圖4-39 不同電漿處理功率對薄膜折射率的影響…………………..116
表目錄
表2-1 鋁、銀、金、銅內連線材料相關性質的比較[6]…………………..6
表4-1 不同氟碳比例的鍵結分析比例……………..…………...…….92
表4-2 修利法與曲線吻合法所得氟含量之比較………………..……94
表4-3 熱處理之後薄膜成份比較……………………………………..94
表4-4 Ar電漿前處理的條件……………….………....………….…..97
表4-5 膠帶測試附著性之結果………………………………….…….97
表4-6 微硬度儀測試條件……………………………………………..99
表4-7 微硬度儀測試結果………………………………………..……99
表4-8 電漿處理條件…………………………………………………106
陸. 參考文獻
1. R. V. Joshi, R. S. Blewer, and S. Murarka, “Metallization forIntegrated Circuit Manufacturing,” MRS BULLETIN, November, 1995, pp. 33-34.
2. H. Yasuda, Plasma Polymerization, Academic Press, New York, 1985.
3. 劉志宏,低介電常數材料製備與蝕刻製程之研究,中原大學碩士論文,1999年。
4. S. P. Jeng, R. H. Havemann and M. C. Chang, “Process Integration and Manufacturability Issues for High Performance Multilevel Interconnect,” in Advanced Manufacturability for Devices and Circuits-Science, Technology and Manufacturability Symposium, 1994, p. 25.
5. 陳來助,“ULSI超大型積體電路之銅導線技術”,電子與材料,10月號,1999年。
6. H. S. Rathore and D. Nguyen, “Effect of Scaling of Interconnection,”Copper Metallization for Sub-Micro Integrated Circuit, Vol. 14, No. 5, 1998, pp. 29-44.
7. F. B. Kaufman and D. B. Thompson, “Chemical-Mechanical Polishing for Fabricating Patterned W Metal Feature as Chip Interconnects,” J. Electrochem. Soc., Vol. 138, 1991, pp. 3460-3467.
8. C. S. Ryu PhD Thesis, Mater. Sci. Eng., Stanford University, 1998.
9. T. Homma, “Low Dielectric Constant Materials and Methods for Interlayer Dielectric Film in Ultralarge-Scale Integrated Circuit Multilevel Interconnections,” Mater. Sci. Eng. R-Rep., Vol. R 23 (6), 1998, pp. 243-285.
10. 陳力俊,微電子材料與製程,中國材料科學學會,2000年。
11. 楊正杰,張逸鳳,張鼎張,鄭晃忠, “低介電常數材料與製程”,電子月刊,十月號,2000年。
12. K. Endo and T. Tatsumi, “Plasma Deposition of Low Dielectric Constant Fluorinated Amorphous Carbon,” J. Appl. Phys., Vol. 86, 1999, pp. 2739-2744.
13. H. Treichel, G. Ruhl, P. Ansmann, R. Wurl, Ch. Muller, and M. Dietlmeier, “Low Dielectric Constant Materials for Interlayer Dielectric,” Microelect. Eng., Vol. 40, 1998, pp. 1-19.
14. 林秀珊,溶凝膠法製備ITO透明導電膜及其性質之研究,國立清華大學碩士論文,1999年。
15. 王敬龍,溶凝膠法製備ITO薄膜之製成研究研究,國立成功大學碩士論文,1996年。
16. D.M. Smith, J. Anderson, C.C. Cho, G.P. Johnston, and S.P. Jeng, Mater. Res. Soc. Symp. Proc., Vol. 381, 1995, p. 261.
17. L.W. Hrubesh, Mater, Res. Soc. Symp. Proc., Vol. 381, 1995, p. 267.
18. K. M. Chang, J. Y. Yang, L. W. Chen, and M. H. Tseng, “A novel Process and Thermodynamic of Air Gap Formation for ULSI Application,” Thin Solid Films, Vol. 376, 2000, pp. 124-130.
19. S. Lee and, J. W. Park, “Effect of Fluorine on Moisture Absorption and Dielectric Properties of SiOF Films,” Mater. Chem. and Phys., Vol. 53, 1998, pp. 150-154.
20. D. J. Boer, H. Fukuda, and J. Helmig, “SiOF and SiO2 Deposition in a HDP Reactor,” Microelectron. Reliab., Vol. 38, 1998, pp. 281-286.
21. M. K. Bhan, J. Huang, and D. Chang, “Deposition of Stable, Low K and High Deposition Rate SiF4 Doped TEOS Fluorinated Silicon Dioxide (SiOF) Film,” Thin Solid Films, Vol. 308-309, 1997, pp. 507-511.
22. M. Morgan, E. T. Ryan, J. H. Zhao, C. Hu, T. Cho, and P. S. Ho, “Low Dielectric Constant Materials for Advanced Interconnects,” JOM, Vol. 51, 1999, pp. 36-40.
23. 鄭建星,陳貞夙, “應用於先進積體電路之低介電材料”,電子月刊,十月號,2000年。
24. M. J. Loboda, and G. A. Toskey, “Understanding Hydrogen Silsesquioxane-Based Dielectric Film Processing,” Solid State Technol., Vol. 41, 1998, p. 99.
25. P. T. Liu, T. C. Chang, and S. M. Sze, “The Effect of Plasma Treatment for Low Dielectric Constant Hydrogen Silsesquioxane(HSQ),” Thin Solid Film, Vol. 332, 1998, pp. 345-350.
26. M. E. Mills, and P. Townsend, “Benezocyclobutene(DVS-BCB) Polymer as an Interlayer Dielectric Materials,” Microelect. Eng., Vol. (1-4), 1997, pp. 327-334.
27. K. W. Lee, and A. Viehbeck, “Wet-Process Surface Modification of Dielectric Polymers-Adhesion Enhancement and Metallization,” IBM J. RES. DEV., Vol. 38, 1994, pp. 457-474.
28. P. K. Wu, G. R. Yang, L. You, “Deposition of High Purity Parylene-F Using Low Pressure Low Temperature Chemical Vapor Deposition,” J. Elect. Mater., Vol. 26, 1997, pp. 949-953.
29. 張鼎張,周美芬, “有機高分子低介電材料簡介”,奈米通訊,第六卷第一期,1999年2月。
30. K. Endo, and T. Tatsumi, “Fluorinated Amorphous Carbon Thin Films Grown by Helicon Plasma Enhanced Chemical Vapor Deposition for Low Dielectric Constant Interlayer Dielectrics,” Appl. Phys. Lett., Vol. 68, 1996, pp. 2864-2866.
31. G. Cunge and J. P. Booth, “CF2 Production and Loss Mechanisms in Fluorine-Poor Conditions and Polymerization,” J. Appl. Phys., Vol. 85, 1999, pp. 3952-3959.
32. H. Yokomichi, T. Hayashi, T. Amano, and A. Masuda, “Preparation of Fluorinated Amorphous Carbon Thin Film,” J. Non-Cryst. Solids, Vol. 227, 1998, pp. 641-644.
33. R. d’Agostino, F. Cramarossa, V. Colaprico, and R. d’Ettole, “Mechanisms of Etching and Polymerization in Radiofrequency Discharge of CF4-H2, CF4-C2F4, C2F6-H2, C3F8-H2,” J. Appl. Phys., Vol. 54, 1983, pp. 1284-1288.
34. J. W. Yi, Y. H. Lee, and B. Farouk, “Low Dielectric Constant Fluorinated Amorphous Carbon Thin Films Grown from C6F6 and Ar Plasma,” Thin Solid Film, Vol. 374, 2000, pp. 103-108.
35. T. Shirafuji, A. Kamisawa, T. Shimasaki, Y. Hayashi, and S. “Nishino, Plasma Enhanced Chemical Vapor Deposition of Thermal Stable and Low Dielectric Constant Fluorinated Amorphous Carbon Using Low-Global-Warming-Potential Gas C5F8,” Thin Solid Film, Vol. 374, 2000, pp. 256-261.
36. L. Sandrin, M. S. Silverstein, and E. Sacher,“Fluorine Incorporation in Plasma-Polymerization Octofluorocyclobutane, Hexafluoropropylene and Trifluoroethylene,”Polymer, Vol. 42, 2001, pp. 3761-3769.
37. K. Endo and T. Tatsumi, “Nitrogen Doped Fluorinated Amorphous Carbon Thin Films Grown by Plasma Enhanced Chemical Vapor Deposition for Low Dielectric Constant Interlayer Dielectrics,” Appl. Phys. Lett., Vol. 68, 1996, pp. 3656-3658.
38. H. Yokomichi and A. Masuda, “Effect of Nitrogen Incorporation on Structure Properties Fluorinated Amorphous Carbon Films,” J. Non-Cryst. Solids, Vol. 271, 2000, pp. 147-151.
39. N. Ariel, M. Eizenberg, Y. Wang, and S. P. Murarka, “Deposition Temperature Effect on Thermal Stability Fluorinated Amorphous Carbon Films Utilized as Low-K Dielectrics,” Material Science in Semiconductor Processing, Vol. 4, 2001, pp. 383-391.
40. K. S. Kim, Y. C. Jang, H. J. Kim, Y. C. Quan, and N. E. Lee, “The Interface Formation and Adhesion of Metals (Cu, Ta, and Ti)and Low Dielectric Constant Polymer-Like Organic Thin Films Deposited by Plasma-Enhanced Chemical Vapor Deposition Using Para-Xylene Precursor,” Thin Solid Film, Vol. 377-378, 2000, pp. 122-128.
41. K. Endo and T. Tatsumi, “Deposition of Silicon Dioxide Films on Amorphous Carbon Films by Plasma Enhanced Chemical Vapor Deposition for Low Dielectric Constant Interlayer Dielectrics,” Appl. Phys. Lett., Vol. 70, 1997, pp. 1078-1079.
42. J. P. Chang, H. W. Krautter, W. Zhu, R. L. Opila, and C. S. Pai, “Integration of Fluorinated Amorphous Carbon Films as Low-K Dielectrics:Effects of Heating and Deposition of Tantalum Nitride,” J. Vac. Sci. Technol. A, Vol. 17, 1999, pp. 2969-2974.
43. J. M. Shieh, S. C. Suen, K. C. Tsai, and P. T. Dai, “Characteristic of Fluorinated Amorphous Carbon Films and Implementation of 0.15 mm Cu/a-C:F Damascence Interconnection,” J. Vac. Sci. Technol. B, Vol. 19, 2001, pp. 780-787.
44. T. W. Mountiser, and J. A. Samuels, “Adhesion of Fluorinated Amorphous Carbon Films to Various Materials,” IEEE Trans. Electron Devices, 1998, pp. 280-282.
45. N. Ariel, M. Eizenberg, Y. Wang, and H. Bakhru, “The Interface of Fluorinated Amorphous Carbon with Copper Metallization,” Mater. Sci. Eng., A302, 2001, pp. 26—30.
46. M. L. Hitchman, and K. F. Jensen, Chemical Vapor Deposition, Principles and Applications, Academic Press Inc., New York, 1993.
47. A. Sherman, Chemical Vapor Deposition for Microelectronics, Noyes Publications, New York, 1987.
48. H. O. Pierson, Handbook of Chemical Vapor Deposition, Principles, Technology and Applications, Noyes Publications, New York, 1992.
49. S. Sivaram, Chemical Vapor Deposition, Thermal and Plasma Deposition of Electronic Materials, Van Nostrand Reinhold, New York, 1995.
50. 莊達仁,VLSI製造技術,1994年。
51. 張俊彥,施敏,半導體元件物理與製作技術,1997年。
52. 陳陪麗,化學氣相沈積法,1992年。
53. 張志祥,利用低壓化學氣相沈積法製作動態隨機存取記憶體應用之(Ta2O5)1-x-(TiO2)x介電薄膜的研究,2000年。
54. A. Grill, Cold Plasma in Materials Fabrication, IEEE PRESS, New York, 1994.
55. A. Lieberman and J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, John Wiley&Sons, INC., 1994.
56. H. O. Pierson, “Handbook of Chemical Vapor Deposition, Principles, Technology and Applications,” Noyes Publications, New York, 1992.
57. Koyama, et al., “Proceeding of 3rd Symposium on Plasma,” ESC, Vol. 82-6.
58. F. Jansen, “AVS Short Course:PECVD,” American Vacuum Society, 1990.
59. Matsuda, Jpn. J. Appl. Phys., Vol. 23, 1984, p. 567.
60. K. Kohler, “Plasma Potentials of 13.56 MHz RF Argon Glow Discharge in a Planar System,” J. Appl. Phys., Vol. 57, 1985, p. 59.
61. H. S. Butler, and G. S. Kino, Physics Fluids, Vol. 6, 1963, p. 1346.
62. M. Konuma, Film Deposition by Plasma Techniques, Springer-Verlag, 1992.
63. 高正雄,電漿化學,復漢出版社,1999年,第38頁。
64. 高正雄,電漿化學,復漢出版社,1999年,第52頁。
65. 高正雄,電漿化學,復漢出版社,1999年,第55-57頁。
66. S. Vallon, “Improvement of the Adhesion of Silica Layers toPolypropylene Induced by Nitrogen Plasma Treatment,” Thin Solid Film, 290-291, 1996, pp. 68-73.
67. N. Sprang, “Surface Modification of fluoropolymers by Microwave Plasma:FTIR Investigations,” Surf. Coat. Tech., Vol. 98, 1998, pp. 865-871.
68. D. Duca, and L. Plosceanu, “Surface Modification of Polyvinylidene Fluoride(PVDF) under Ar Plasma,” Polymer Degradation and Stability, 61, 1998, pp. 65-72.
69. 李雅明,固態電子學,1995年。
70. A. J. Moulson, and J. M. Herbet, “Electroceramics-Materials、Properties、Applications,” Chapman and Hall, 1990.
71. 劉繼文、賴明志、戴寶通,“低介電常數材料機械性質之研究”,奈米通訊,第七卷第二期,2000年。
72. P. Graham, M. Stone, A. Thorpe, T. G. Nevell, and J. Tsibouklis, “Fluoropolymers with Very Low Surface Energy Characteristics,” J. of Fluor. Chem., Vol. 104, 2000, pp. 29-36.
73. R. d’Agostino, F. Cramarossa, and F. Llluzzi, “Mechanisms of Deposition and Etching of Thin Film of Plasma-Polymerized in Radiofrequency Discharges Fed with C2F6-H2, and C2F6-O2,” J. Appl. Phys., Vol. 61, 1987, pp. 2754-2762.
74. R. A. Swalin, Thermodynamics of Solid, John Wiley&Sons, New york, 1972.
75. Y. Ma, and H. Yang, “Structural and Electronic Properties of Low Dielectric Constant Fluorinated Amorphous Carbon Films,” Appl. Phys. Lett., Vol. 72, 1998, pp. 3353-3355.
76. H. Yang, D. J. Tweet, Y. Ma, and T. Nguyen, “Deposition of Highly Crosslinked Fluorinated Amorphous Carbon Films and Structural Evolution during Thermal Annealing,” Appl. Phys. Lett., Vol. 73, 1998, pp. 1514-1516.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top