跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/22 22:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳中豪
研究生(外文):Chung-Hao Chen
論文名稱:鋰離子固態電解質的離子導電機制與薄膜製程研究
論文名稱(外文):Mechanism of Ionic Conduction and Thin Film Process of Lithium Ion Solid Electrolytes
指導教授:陳建瑞陳建瑞引用關係
指導教授(外文):Jiann-Ruey Chen, Ph.D.
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:112
中文關鍵詞:固態薄膜鋰系二次電池固態電解質固態反應性燒結射頻磁控濺鍍離子導電率
外文關鍵詞:Solid State Thin Film Lithium-based Secondary BatterySolid ElectrolyteSolid-state Reactive SinteringRF Magnetron SputteringIonic Conductivity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1095
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以固態反應燒結製程,合成鋰離子固態電解質Li1+x(AlxTi2-x)(PO4)3、Li1+x(InxTi2-x)(PO4)3、Li1+x(AlxZr2-x)(PO4)3及Li1+x(InxZr2-x)(PO4)3(其中x = 0.2、0.3、0.4、及0.5)的塊材試片。由EIS測量離子導電率的結果得知Li1+x(AlxTi2-x)(PO4)3(x = 0.3)的組成具有1.69074 10-3S/cm的離子傳導特性。本文以XRPD及Rietveld精算法探討改變雜質原子半徑及組成比例對晶體結構造成的改變,並研究晶體結構與離子導電率之間的關聯。本文提出可能的缺陷化學理論以解釋摻入雜質原子導致大幅提高離子導電率的機制;並由熱力學的觀點解釋為何在此類固溶體中只有特定的鋰離子含量會具有最佳離子導電率。除了定性的理論說明之外,本研究並輔以定量的實驗佐證。應用ICP-AES分析化學組成並計算鋰離子濃度,同時以NMR及XRPD的分析結果估算鋰離子的擴散係數,從而計算其理論離子導電率,並與實驗值比較,藉此證明本文的理論解釋是否正確。
此外,依照具有最佳離子導電率的組成Li1+x(AlxTi2-x)(PO4)3(x = 0.3)研製直徑2in.的濺鍍靶材,應用射頻磁控濺渡製程,調整氣體組成及流率,在矽晶圓上逐層沉積鈷(用以增進附著性之緩衝層)、鉑(電性量測電極)及固態電解質薄膜,並以ICP-MS分析薄膜組成;比較經高溫退火處理的複晶質薄膜與未經退火之非晶質薄膜的離子導電率及晶相差異。另外,鑑別塊材與薄膜在退火前後的的FT-IR吸收光譜差異,辨識鋰離子與周圍環境的鍵結變化。
Lithium ion solid electrolytes with different compositions”Li1+x(AlxTi2-x)(PO4)3, Li1+x(InxTi2-x)(PO4)3, Li1+x(AlxZr2-x)(PO4)3 and Li1+x(InxZr2-x)(PO4)3 (x = 0.2, 0.3, 0.4 and 0.5)” were synthesized in bulk form by solid-state reactive sintering method in this paper. The ionic conductivity of Li1+x(AlxTi2-x)(PO4)3 (x = 0.3) is 1.69074 10-3 S/cm measured by EIS. The change of crystal structure resulted from different atomic radii of doping and compositions have been studied by XRPD and Rietveld method, and the relationship between crystal phase and ionic conductivity is presented. Possible defect chemistry and thermodynamic aspect in explanation of why ionic conductivity being increased dramatically by doping these solid solutions are also proposed in this paper. The ionic conductivity was calculated theoretically with the data of lithium ion concentration by ICP-AES, longitudinal relaxation time by NMR, and jumping distance of lithium ion by XRPD and Rietveld method. These theoretical values of ionic conductivity were compared with the experimental values from EIS.
Besides, the sputtering target of 2 in. diameter for Li1+x (AlxTi2-x)(PO4) 3(x = 0.3) with optimized ionic conductivity was made by solid-state reactive sintering method. The thin films of solid electrolyte on Si wafer were deposited by RF magnetron sputtering. The composition, ionic conductivity, crystal phase and vibrational spectroscopy of these electrolyte films with and without annealing at 700℃ were identified by ICP-MS, EIS, XRPD and FT-IR.
摘要
Abstract
誌謝辭
第一章 導論
第二章 理論與文獻回顧
2-1 固態離子學
2-2 電化學電池
2-2.1 電池原理
2-2.2 鋰系二次電池
2-2.3 正極材料
2-2.4 負極材料
2-2.5 液態有機電解質
2-2.6 膠態或固態高分子電解質
2-2.7 非晶質無機固態電解質
2-2.8 晶質無機固態電解質
2-2.9 固態薄膜鋰系二次電池的發展
第三章 實驗方法與步驟
3-1 陶瓷固態電解質塊材的離子導電機制研究
3-1.1 晶質固態電解質的塊材製程
3-1.2 化學組成分析
3-1.3 晶體結構分析
3-1.4 離子躍遷頻率分析
3-1.5 離子導電率分析
3-1.6 表面微結構分析
3-2 陶瓷固態電解質薄膜的製程與特性研究
第四章 數據分析與討論
4-1 陶瓷固態電解質塊材的離子導電機制研究
4-1.1 離子導電率的理論模擬
4-1.2 鋰離子的體積Mole濃度
4-1.3 擴散係數的模擬與計算
4-1.4 以Rietveld結構精算法計算活性鋰離子的躍遷距離
4-1.5 鋰離子的室溫躍遷頻率
4-1.6 離子導電率理論值與實際值的比較
4-1.7 離子導電機制的理論解釋
4-2 陶瓷固態電解質薄膜的製程與特性研究
第五章 結論與建議
5-1 陶瓷固態電解質塊材的離子導電機制研究
5-2 陶瓷固態電解質薄膜的製程與特性研究
附錄(A) 圖目次
附錄(B) 表目次
附錄(C) 參考文獻
(1) J. Hajek, French Patent, 8, 10, 1949.
(2) D. W. Murphy, J. Broadhead and B. C. H. Steele(ed.), Materials for Advanced Batteries, Plenum Press, 1980.
(3) David Linden, Handbook of Batteries, 2nd ed., McGraw-Hill Inc., 1995.
(4) G. Pistoia(ed.), Lithium Batteries: New Materials, Developments, and Perspectives, Elsevier Science B. V., 1994.
(5) J rgen, O. Besenhard(ed.), Handbook of Battery Materials, WILEY-VCH, 1999.
(6) P. J. Gellings and H. J. M. Bouwmeester(ed.), The CRC Handbook of Solid State Electrochemistry, CRC Press, Inc., 1997.
(7) Peter G. Bruce, Solid State Electrochemistry, Cambridge University Press, 1995.
(8) T. Kudo and K. Fueki, Solid State Ionics, Kodansha Ltd., 1990.
(9) S. Chandra, Superionic Solids: Principles and Application, North-Holland Publishing Company, 1981.
(10) M. Z. A. Munshi(ed.), Handbook of Solid State Batteries & Capacitor, World Scientific Publishing Co. Pte. Ltd., 1995.
(11) Tetsuya Osaka and Madhav Datta(ed.), Energy Storage Systems for Electronics, Gordon and Breach Science Publishers, 2000.
(12) Li Shi-Chun and Lin Zu-Xiang, Solid State Ionics 9 & 10 (1983) 835-838.
(13) S. Hamdoune and D. Tran Qui, Solid State Ionics 18 & 19 (1986) 587-591.
(14) V. V. Kravchenko, V. I. Michailov and S. E. Sigaryov, Solid State Ionics 50 (1992) 19-30.
(15) Kazunori Takada, Masataka Tansho, Ikuo Yanase, Taro Inada, Akihisa Kajiyama, Masaru Kouguchi, Shigeo Kondo and Mamoru Watanabe, Solid State Ionics139 (2001) 241-247.
(16) A. S. Best, M. Forsyth, D. R. MacFarlane, Solid State Ionics 136-137 (2000) 339-344.
(17) H. Perthuis, G. Velasco and Ph. Colomban, Japanese Journal of Applied Physics, Vol. 23, No. 5, pp. 534~543, 1984.
(18) O. L. Anderson and D. A. Stuart, Journal of the American Ceramic Society, Vol. 37, No. 12, pp. 573-580.
(19) N. Bloembergen, E. M. Purcell and R. V. Pound, Physical Review, Vol. 73, No. 7, pp. 679~712, (1948).
(20) N. Bloembergen, Nuclear Magnetic Relaxation:A Reprint Volume, W. A. Benjamin, Inc., (1961).
(21) P. Mansfield, Progress in Nuclear Magnetic Resonance Spectroscopy, Vol. 8, Part 1, Pergamon Press Ltd., (1971).
(22) R. A. Young, ed, The Rietveld Method, Oxford University Press, 1993.
(23) Anthony R. West, Solid State Chemistry and its Applications, John Wiley & Sons, Ltd., 1986.
(24) Giorgio Rizzoni, Principles and Applications of Electrical Engineering, 2nd ed., Richard D. Irwin, Inc. Company, 1996.
(25) C. Jeffrey Brinker and George W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, Inc., 1990.
(26) Brian Cowan, Nuclear Magnetic Resonance and Relaxation, Cambridge University Press, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top