跳到主要內容

臺灣博碩士論文加值系統

(3.238.252.196) 您好!臺灣時間:2022/08/14 00:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭政彰
研究生(外文):Cheng-Chang Guo
論文名稱:鍺或銥中間層薄膜對鎳矽化物之生成與熱穩定性之研究
論文名稱(外文):The Study of Formation and Thermal Stability of Nickel Silicides with a Thin Interlayer of Ge or Ir
指導教授:蔡哲正
指導教授(外文):Cho-Jen Tsai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:107
中文關鍵詞:鎳矽化物中間層熱穩定性臨場曲率量測
外文關鍵詞:Nickel SilicidesInterlayerThermal StabilityIn-Situ Curvature MeasurementGeIr
相關次數:
  • 被引用被引用:3
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用電子槍蒸鍍系統,室溫真空下沈積鍺(Ge)或銥(Ir)中間層與鎳(Ni)薄膜於(001)矽晶圓上。綜合臨場(In Situ)觀測試片之曲率變化(固定升溫速率5℃/min)、X光繞射分析(XRD)、歐傑質譜儀(AES)縱深分析、四點探針片電阻量測、高分辨電子顯微鏡(HRTEM)與附有能量分析質譜儀(EDS)之穿透式電子顯微鏡(TEM)分析結果,用以研究Ge或 Ir中間層對鎳矽化物之生成與熱穩定性。
證實中間層對於鎳矽化反應之應力調節具一定的影響。隨著Ge中間層厚度增加,NiSi所存在的溫度區間增廣,最終相NiSi2成核反應受到延遲;而Ir中間層則使NiSi相存在區間縮短。Ge中間層為3.0 nm時明顯較單純Ni/Si反應之NiSi熱穩定溫度提昇約+133℃,且延遲NiSi2成核反應亦達+95℃。
「Ni (30 nm)/Ir/ Si (001)」系統中,Ir中間層使Ni擴散反應受到抑制,使得多鎳矽化物Ni2Si易於升溫過程快速轉變至NiSi相,以致於實驗中未能觀察到該相。而NiSi相存在時高片電阻值乃因NiSi薄膜發生團聚,使得Si基材部分裸露出所致。
「Ni (30 nm)/Ge/ Si (001)」系統中,低溫Ni2Si相生成時,存在Ge原子固溶其中;當NiSi生成,適量之Ge存在於NiSi相的晶界或缺陷等低能量位置,高溫處理時SixGe1-x偏析之發生、乃至於NiSi2成核反應之前均亦需提供多餘的能量將Ge排出,故能有效增加NiSi相熱穩定之溫度區間。

A thin interlayer of Ge (1.5, 3.0, 6.0 nm) or Ir (1.5, 3.0 nm) and the Ni thin film (30 nm) are deposited by the electron beam evaporation system on (001)Si substrates at room temperature. The formation and thermal stability of Ni silicides are characterized by in-situ curvature measurement, X-ray diffraction (XRD), Auger electron spectroscopy (AES), four-point probe method, high-resolution transmission electron microscopy (HRTEM), and transmission electron microscopy (TEM) with energy dispersive X-ray spectrometry (EDS).
The maximum difference of force per width (F/W) in the film, during the reaction process of the nickel silicides, is reduced by the presence of the interlayer. With increasing thickness of the Ge interlayer, the process window for NiSi phase is increased and the NiSi2 nucleation is retarded. However, the process window for NiSi phase is shortened by the thin interlayer of Ir. With a 3 nm thick Ge interlayer, the thermal stability of NiSi is widened and the temperature for NiSi2 nucleation is delayed by 133℃and 95℃, respectively.
In the case of Ni (30 nm)/Ir/ Si (001), we didn’t observe the Ni2Si phase. At high temperature annealing, the NiSi films which are unstable and agglomerative cause an increase in the values of sheet resistance.
In the case of Ni (30 nm)/Ge/ Si (001), the Ni2Si phase is formed at lower temperature with Ge solubility in the phase. With increasing annealing temperature, the NiSi films is formed and Ge atoms probably stay at the defect sites or grain boundary of NiSi. The increase in thermal stability of NiSi can be explained by the fact that energy is required to expel Ge from newly nucleated NiSi2 phase.

總目錄
致謝
摘要
Abstract
表目錄
圖目錄
第一章 矽化物於極大型積體電路(ULSI)之應用
1.1 矽化物之應用
1.2 矽化物之發展沿革
1.3 矽化物之製程
1.3.1 SALICIDE製程
1.3.2 POLYCIDE製程
1.4 常用矽化物之性質
1.4.1 Ti/Si系統
1.4.2 Co/Si系統
1.4.3 Ni/Si系統
1.5 研究動機與目標
第二章 實驗方法與步驟
2.1晶圓清洗
2.2薄膜沈積
2.3 In Situ曲率量測之試片製備
2.4 In Situ曲率量測
2.4.1薄膜應力的產生與影響
2.4.2薄膜應力量測理論
2.4.3掃瞄雷射光學系統
2.5片電阻電性量測
2.6 X光繞射分析
2.7歐傑電子能譜儀
2.8穿透式電子顯微鏡之試片製備
2.8.1平面式電子顯微鏡試片製備
2.8.2截面式電子顯微鏡試片製備
2.9穿透式電子顯微鏡
2.10能量散佈光譜儀
第三章 結果與討論
3.1 Ni/Si系統
3.1.1升溫對In Situ曲率之變化
3.1.2曲率變化與相生成之關係
3.1.3熱穩定性之研究
3.2 Ni/Ir/Si系統
3.2.1升溫對In Situ曲率之變化
3.2.2曲率變化與相生成之關係
3.2.2.1 「Ni (30 nm)/ Ir (1.5 nm)/ Si (001)」
3.2.2.1 「Ni (30 nm)/ Ir (3.0 nm)/ Si (001)」
3.2.3熱穩定性之研究
3.3 Ni/Ge/Si系統
3.3.1升溫對In Situ曲率之變化
3.3.2曲率變化與相生成之關係
3.3.2.1 「Ni (30 nm)/ Ge (1.5 nm)/ Si (001)」
3.3.2.2 「Ni (30 nm)/ Ge (3.0 nm)/ Si (001)」
3.3.2.3 「Ni (30 nm)/ Ge (6.0 nm)/ Si (001)」
3.3.3熱穩定性之研究
第四章 結論
參考文獻



參考文獻
【1.1】 M. G. Mendez, F. F. Castillon, G. A. Hirata, M. H. Farias, and G. Beamson, “XPS and HRTEM Characterization of Cobalt-Nickel Silicide Thin Films”, Applied Surface Science 161, 61-73 (2000).
【1.2】 T. Morimoto, T. Ohguro, H. S. Momose, T. Iinuma, I. Kunishima, K. Suguro, I. Katakabe, H. Nakajima, M. Tsuchiaki, M. Ono, Y. Katsumata, and H. Iwai, “Self-Aligned Nickel-Mono-Silicide Technology for High-Speed Deep Submicrometer Logic CMOS ULSI”, IEEE Transactions on Electron Devices, 42(5), 915-922 (1995).
【1.3】 F. L. Via, F. Roccaforte, A. Makhtari, V. Raineri, P. Musumerci, and L. Calcagno, “Structural and Electrical Characterization of Titanium and Nickel Silicide Contacts on Silicon Carbide”, Microelectronic Engineering, 60, 269-282 (2002).
【1.4】 G. Curello, R. Gwilliam, M. Harry, K. J. Reeson, B. J. Sealy, T. Rodriguez, and A. Almendra, “Interface Reaction between Ir Films and Relaxed SiGe MBE Layers by Rapid Thermal Annealing”, J. Crystal Growth, 157, 236-241 (1995).
【1.5】 J. P. Gambino and E. G. Colgan, “Silicides and Ohmic Contacts”, Materials Chemistry and Physics, 52, 99-146 (1998).
【1.6】 H. Iwai, T. Ohguro, and S. I. Ohmi, “NiSi Salicide Technology for Scaled CMOS”, Microelectronic Engineering, 60, 157-169 (2002).
【1.7】 S. K. Saha, R. S. Howell, and M. K. Hatalis, “Silicidation Reactions with Co-Ni Bilayers for Low Thermal Budget Microelectronic Applications”, Thin Solid Films, 347, 278-283 (1999).
【1.8】 P. S. Lee, K. L. Pey, D. Mangelinck, J. Ding, D. Z. Chi, and L. Chan, “New Salicidation with Ni(Pt) Alloy for MOSFETs”, IEEE Electron Device Letters, 22(12), 568-570 (2001).
【1.9】 A. Lauwers, A. Steegen, M. D. Potter, R. Lindsay, A. Satta, H. Bender, and K. Maex, “Materials Aspects, Electrical Performance, and Scalability of Ni Silicide towards Sub-0.13mm Technologies”, J. Vac. Sci. Technol. B 19(6), 2026-2037 (2001).
【1.10】 A. Alberti, F. L. Via, S. Ravesi, and E. Rimini, “Improvement of CoSi2 Thermal Stability by Cavity Formation”, Applied Physics Letters, 79(21), 3419-3421 (2001).
【1.11】 O. Chamirian , A. Steegen, H. Bender, A. Lauwers, A. D Potter, F. Marabelli, and K. Maex, “Study of CoSi2 Formation from a Co-Ni Alloy”, Microelectronic Engineering, 60, 221-230 (2002).
【1.12】 X. P. Qu, G. P. Ru, Y. Z. Han, B. L. Xu, B. Z. Li, N. Wang, and P. K. Chu, “Epitaxial Growth of CoSi2 Film by Co/a-Si/Ti/Si(100) Multilayer Solid State Reaction”, J. Applied Physics, 89(5), 2641-2648 (2001).
【1.13】 D. X. Xu, S. R. Das, C. J. Peters, and L. E. Erickson, “Material Aspects of Nickel Silicide for ULSI Applications”, Thin Solid Films, 326, 143-150 (1998).
【1.14】 http://public.itrs.net/Home.htm, International Technology Roadmap for Semiconductors, Semiconductor Industry Association, Austin, TX (2001).
【1.15】 Q. Xing, C. Woo, E. Paton, J. Foster, B. Yu, M. R. Lin, “Deep sub-100 CMOS with Ultra Low Gate Sheet Resistance by NiSi”, Symp. VLSI Tech. Dig. Tech., 76-77 (2000).
【1.16】 Q. Xing, B. Yu, H. Wang, M. R. Lin, “High Performance sub-50 nm CMOS wuth advanced gate stack”, Symp. VLSI Tech. Dig. Tech., 23-24 (2001).
【1.17】 R. Chau, J. Kavalieros, B. Roberda, R. Schenker, D. Lionberger, D. Barkage, B. Doyle, R. Arghavani, A. Murtht, G. Deewy, “30 nm Physical Gate Length CMOS Transistors with 1.0 ps n-MOS and 1.7 ps p-MOS Gate Delays”, IEDM Tech. Dig. 45-48 (2000).
【1.18】 R. Chau, “30 nm and 20 nm Physical Gate Length CMOS Transistors”, Abst. Silicon Nanoelectronics Workshop, 2-3 (2001).
【1.19】 S. Song, J. H. Yi, S. kim, J. S. Lee, K. I. Fujiwara, H. K. Kang, J. T. Moon, M. Y. Lee, “CMOS Device Scaling beyond 100 nm ”, IEDM Tech. Dig., 235-238 (2000).
【1.20】 C. J. Choi, J. H. Ku, S. Choi, K. Fujiwara, J. T. Moon, “Ni Salicide Technology for Deep Sub-Quarter Micron”, Proc. ESC Symp. ULSI Process Integration, PV-2001-2, 76-77 (2000).
【1.21】 J. H. Ku, C. J. Choi, S. Song, S. Choi, K. Fujiwara, H. K. Kanhg, and S. I. Lee, “High Performance pMOSFETs with Ni(SixGe1-x)/poly-Si0.8Ge0.2 Gate”, Symp. VLSI Tech. Dig. Tech. 76-77 (2000).
【1.22】 S. Wolf, “Silicon Processing for the VLSI Era: Vol. 2, Process Integration”, Lattice Press, (1990).
【1.23】 E. G. Colgan, J. P. Gambino, B. Cunningham, “Nickel Silicide Thermal Stability on Ploycrystalline and Single Crystalline Silicon”, 46, 209-214 (1996).
【1.24】 S. P. Murarka, “Metallization: Theory and Practice for VLSI and ULSI”, Butterworth-Heinemann, (1993).
【1.25】 S. P. Murarka, “Silicides for VLSI Applications”, Academic Press, (1983).
【1.26】 K. Maex and M. V. Rossum, “Properties of Metal Silicides”, Short Run Press, (1995).
【1.27】 S. L. Zang, C. Lavoie, C. Cabral, J. M. E. Harper, F. M. d’Heurle, and J. J. Sweet, “In Situ Characterization of Titanium Silicide Formation: the Effect of Mo Interlayer, Temperature Ramp-Rate, and Annealing Atmosphere”, J. Applied Physics, 85(5), 2617-2626 (1999).
【1.28】 A. Mouroux, S. L. Zhang, and C. S. Petersson, “Enhancement of the Formation of the C54 Phase of TiSi2 through the Introduction of an Interposed Layer of Tantalum”, Physics Review B, 56(16), 10614-10620 (1997).
【1.29】 R. W. Mann, G. L. Miles, T. A. Knotts, D. W. Rakowski, L. A. Clevenger, J. M. E. Harper, F. M. d’Heurle, and C. Cabral, “Reduction of the C54-TiSi2 Phase-Transformation Temperature Using Refractory-Metal Ion-Implantation”, Applied Physics Letter, 67, 3729-3731 (1995).
【1.30】 F. L. Via, S. Privitera, F. Mammoliti, and M. G. Grimaldi, “Effects of a Ta Interlayer on the Titanium Silicide Reaction: C40 Formation and Scalability of TiSi2 Process”, Microelectronic Engineering, 60, 197-203 (2002).
【1.31】 H. Jeon, B. Jung, Y. D. Kim, W. Yang, and R. J. Nemanich, “Effects of a Ta Interlayer on the Phase Transition of TiSi2 on Si(111)”, J. Applied Physics, 88(5), 2467-2471 (2000).
【1.32】 H. Kuwano, J. R. Phillips, and J. W. Mayer, “Resistivity and Morphology of TiSi2 Formed on Xe+-implanted Polycrystalline Silicon”, Applied Physics Letters, 56, 440-442 (1990).
【1.33】 Q. X. Xu and C. M. Hu, “New Ti-SALICIDE Process Using Sb and Ge Preamorphization for Sub-0.2 mm CMOS Technology”, IEEE Trans. Electron Devoce, ED-45, 2002-2009 (1998).
【1.34】 A. Kittl, Q. Z. Hong, M. Rodder, and T. Breedijk, “Novel One-Step RTP Ti SALICIDE Process with Low Sheet Resistance 0.06 mm Gates and High Drive Current”, IEEE IEDM Tech. Dig. 111-114 (1997).
【1.35】 C. Detavernier, R.L. Van Meirhaeghe, F. Cardon, K. Maex, “CoSi2 Formation through SiO2”, Thin Solid Films, 386, 19-26 (2001).
【1.36】 C. Detavernier, R.L. Van Meirhaeghe, F. Cardon, K. Maex, “CoSi2 Nucleation in the Presence of Ge”, Thin Solid Films, 384, 243-250 (2001).
【1.37】 C. Detavernier, R.L. Van Meirhaeghe, F. Cardon, K. Maex, H. Bender, B. Brijs, and W. Vandervorst, “Formation of Epitaxial CoSi2 by Cr or Mo Interlayer: Comparison with a Ti Interlayer”, J. Applied Physics, 89(4), 2146-2150 (2001).
【1.38】 C. Detavernier, R.L. Van Meirhaeghe, F. Cardon, and K. Maex, “Influence of Mixing Entropy on the Nucleation of CoSi2”, Physical Review B, 62(18), 12045-12051 (2000).
【1.39】 C. Detavernier, R.L. Van Meirhaeghe, F. Cardon, K. Maex, W. Vandervorst and B. Brijs, “Influence of Ti on CoSi2 Nucleation”, Applied Physics Letters, 77(20), 3170-3172 (2000).
【1.40】 K. N. Tu and J. W. Mayer, “Silicide Formation”, in “Thin Films-Interdiffusion and Reactions”, edited by J. M. Poate, K. N. Tu, and J. M. Mayer, Wiley, New York, (1978).
【1.41】 J. C. Ciccariello, S. Poize, and P. Gas, “Lattice and Grain Boungary Self-Diffusion in Ni2Si: Comparison with Thin-Film Formation”, J.Applied Physics, 67(7), 3315-3322 (1990).
【1.42】 M. Qin, M. C. Poon, and C.Y. Yuen, “A Study of Nickel Silicide Film as a Mechanical Material”, Sensors and Actuators, 87, 90-95 (2000).
【1.43】 T. Ohguro, S. I. Nakamura, M. Koike, T. Morimoto, A. Nishuyama, Y. Ushiku, T. Yoshitomi, M. Ono, M. Saito, and H. Iwai, “Analysis of Resistance Behavior in Ti- and Ni-Salicided Polysilicon Films”, IEEE Trans. Electron Devices, 41(12), 2305-2317 (1994).
【1.44】 D. Z. Chi, D. Mangelinck, S. K. Lahiri, P. S. Lee, and K. L. Pey, “Comparative Study of Current-Voltage Characteristics of Ni and Ni(Pt)-Alloy Silicided p+/n Diodes”, Applied Physics Letters, 78(21), 3256-3258 (2001).
【1.45】 D. Z. Chi, D. Mangelinck, J. Y. Dai, S. K. Lahiri, K. L. Pey, and C. S. Ho, “Nickel-Platinum Alloy Monosilicidation Induced Defects in n-type Silicon”, Applied Physics Letters, 76(23), 3385-3387 (2000).
【1.46】 P. S. Lee, D. Mangelinck, K. L. Pey, J. Ding, D. Z. Chi, T. Osipowicz, J. Y. Dai, and A. See, “Enhanced Stability of Ni Monosilicide on MOSFETs on Poly-Si Gate Stack”, 60, 171-181 (2002).
【1.47】 P. S. Lee, D. Mangelinck, K. L. Pey, Z. X. shen, J. Ding, T. Osipowicz, and A. See, “Micro-Raman Spectroscopy Investigation of Nickel Silicides and Nickel (Platinum) Silicides”, Electrochemical and Solid-State Letters, 3(3), 153-155 (2000).
【1.48】 D. Mangelinck, P. Gas, J. M. Gay, B. Pichaud, and O. Thomas, “Effect of Co, Pt, and Au Additions on the Stability and Epitaxy of NiSi2 Films on (111)Si”, J. Applied Physics, 84(5), 2583-2590 (1998).
【1.49】 D. Mangelinck, J. Y. Dai, J. S. Pan, and S. K. Lahiri, “Enhancement of Thermal Stability of NiSi Films on (100)Si and (111)Si by Pt Addition”, Applied Physics Letters, 75(12), 1736-1738 (1999).
【1.50】 J. F. Liu, J. Y. Feng, and J. Zhu, “Film Thickness Dependence of the NiSi-to-NiSi2 Transition Temperature in the Ni/Pt/Si(100) System”, Applied Physics Letters, 80(2), 270-272 (2002).
【1.51】 L. W. Cheng, S. L. Cheng, L. J. Chen, H. C. Chien, H. L. Lee, and F. M. Pan, “Formation of Ni Silicides on (001)Si with a Thin Interposing Pt Layer”, J. Vac. Sci. Technolo. A 18(4), 1176-1179 (2000).
【1.52】 J. F. Liu, H. B. Chen, and J. Y. Feng, “Enhanced Thermal Stability of NiSi Films on Si(111) Substrates by a Thin Pt Interlayer”, J. Crystal Growth, 220, 488-493 (2000).
【1.53】 J. F. Liu, H. B. Chen, J. Y. Feng, and J. Zhu, “Improvement of the Thermal Stability of NiSi Films by Using a Thin Pt Interlayer”, Applied Physics Letters, 77(14), 2177-2179 (2000).
【1.54】 J. S. Maa, Y. Ono, D. J. Tweet, F. Zhang, and S. T. Hsu, “Effect of Interlayer on Thermal Stability of Nickel Silicide”, J. Vac. Sci. Technol. A. 19(4), 1595-1599 (2001).
【1.55】 T. H. Hou, T. F. Lei, and T. S. Chao, “Improvement of Junction Leakage of Nickel Silicided Junction by a Ti-Capping Layer”, IEEE Electron Device Letters, 20(11), 572-573 (1999).
【1.56】 W. L. Tan, K. L. Pey, S. Y. M. Chooi, J. H. Ye, and T. Osipowicz, “Effect of a Titanium Cap in Reducing Interfacial Oxides in the Formation of Nickel Silicide”, J. Applied Physics, 91(5), 2901-2909 (2002).
【1.57】 L. W. Chen, S. L. Cheng, J. Y. Chen, L. J. Chen, and B. Y. Tsui, “Effects of Nitrogen Ion Implantation on the Formation of Nickel silicide Contacts on Shallow Junctions”, Thin Solid Films, 355-356, 412-416 (1999).
【1.58】 P. S. Lee, K. L. Pey, D. Mangelinck, J. Ding, A. T. S. Wee, and L. Chan, “Improved NiSi Salicide Process Using Presilicide N2+ Implant for MOSFETs”, IEEE Electron Device Letters, 21(12), 566-568 (2000).
【1.59】 E. M. Schaller, B. I. Boyanov, S. English, and R. J. Nemanich, “Role of the Substrate Strain in the Sheet Resistance Stability of NiSi Deposited on Si(100)”, J. Applied Physics, 85(7), 3614-3618 (1999).
【1.60】 C. J. Tsai and K. H. Yu, “Stress Evolution during Isochronal Annealing of Ni/Si System”, Thin Solid Films, 350, 91-95 (1999).
【1.61】 C. J. Tsai, P. L. Chung, and K. H. Yu, “Stress Evolution of Ni/Pd/Si Reaction System under Isochronal Annealing”, Thin Solid Films, 365, 72-76 (2000).
【1.62】 R. D. Thompson, K. N. Tu, J. Angillelo, S. Delage, and S. S. Lyer, “Interfacial Reaction between Ni and MBE-Grown SiGe Alloy”, J. Electrochem. Soc.: Solid-State Science and Technology, 135(12), 3161-3163 (1988).
【1.63】 G. Sarcona, S. K. Saha, and M. K. Hatalis, “Nickel Silicides Grown on Amorphous Silicion and Silicon-Germanium Thin Films”, Electrochemical and Solid-State Letters, 1(5), 233-234 (1998).
【1.64】 J. S. Luo, W. T. Lin, C. Y. Chang, and W. C. Tsai, “Pulsed KrF Laser Annealing of Ni/Si0.76Ge0.24 Films”, J. Applied Physics, 82(7), 3621-3623 (1997).
【2.1】 C. J. Tsai and K. H. Yu, “Stress Evolution during Isochronal Annealing of Ni/Si System”, Thin Solid Films, 350, 91-95 (1999).
【2.2】 C. A. Volkert, “Stress and Plastic Flow in Silicon during Amorphization by Ion Bombardment”, J. Applied Physics, 70(7), 3521-3527 (1991).
【2.3】 J. F. Jongste, P. F. A. Alkemade, G. C. A. M. Janssen, and S. Radelaar, “Kinetics of the Formation of C49 TiSi2 from Ti-Si Multilayers as Observed by In Situ Stress Measurements”, J. Applied Physics, 74(6), 3869-3879 (1993).
【2.4】 P. Gudmundson and A. Wikstrom, “Stresses in Thin Films and Interconnect Lines”, Microelectronic Engineering, 60, 17-29 (2002).
【2.5】 A. L. Shull and F. Spaepen, “Measurements of Stress during Vapor Deposition of Copper and Silver Thin Films and Multilayers”, J. Applied Physics, 80(11), 6243-6256 (1996).
【2.6】 O. Chamirian , A. Steegen, H. Bender, A. Lauwers, A. D Potter, F. Marabelli, and K. Maex, “Study of CoSi2 Formation from a Co-Ni Alloy”, Microelectronic Engineering, 60, 221 (2002).
【2.7】 S. P. Murarka, “Metallization: Theory and Practice for VLSI and ULSI”, Butterworth-Heinemann, (1993).
【2.8】 R. W. Hoffman, “Physics of Thin Films:Vol. 3”, Academic, New York, (1966).
【2.9】 P. P. Buaud, F. M. d’Heurle, E. A. Irene, B. K. Patmaik, and N. R. Parikh, “In Situ Strain Measurements during the Formation of Platinum Silicide Films”, J. Vac. Sci. Technolo. B 9(5), 2536-2541 (1991).
【2.10】 J. F. Jongste, O. B. Loopstra, G. C. A. M. Janssen, and S. Radelaar, “Elastic Constants and Thermal Expansion Coefficient of Metastable C49 TiSi2”, J. Applied Physics, 73(6), 2816-2820 (1993).
【2.11】 J. T. Pan and I. Blech, “In Situ Measurement of Refractory Metal Silicides during Sintering”, J. Applied Physics, 55(8), 2874-2880 (1984).
【2.12】 K. Maex and M. V. Rossum, “Properties of Metal Silicides”, Short Run Press, (1995).
【2.13】R. E. Hummel, “Electronic Properties of Materials”, Spring-Verlag, 98-110 (1993).
【2.14】 S. M. Sze, “Semiconductor Devices: Physics and Technology”, Wiley, 30-40 (1985).
【2.15】 S. M. Sze, “VLSI Technology”, McGraw-Hill, 300-302 (1983).
【2.16】 B. D. Cullity, “Elements of X-Ray Diffraction”, Addison Wesley, Reading, (1978).
【2.17】 D. J. O’Connor, B. A. Sexton, and R St. C. Smart, “Surface Analysis Methods in Materials Science”, Spring-Verlag. (1992).
【2.18】 G. Thomas and M. J. Goringe, “Transmission Electron Microscopy of Materials”, New York: Wiley, (1979).
【3.1】 C. J. Tsai and K. H. Yu, “Stress Evolution during Isochronal Annealing of Ni/Si System”, Thin Solid Films, 350, 91-95 (1999).
【3.2】 C. J. Tsai, P. L. Chung, and K. H. Yu, “Stress Evolution of Ni/Pd/Si Reaction System under Isochronal Annealing”, Thin Solid Films, 365, 72-76 (2000).
【3.3】 J. F. Jongste, O. B. Loopstra, G. C. A. M. Janssen, and S. Radelaar, “Elastic Constants and Thermal Expansion Coefficient of Metastable C49 TiSi2”, J. Applied Physics, 73(6), 2816-2820 (1993).
【3.4】 K. Maex and M. V. Rossum, “Properties of Metal Silicides”, Short Run Press, (1995).
【3.5】 M. Qin, M. C. Poon, and C.Y. Yuen, “A Study of Nickel Silicide Film as a Mechanical Material”, Sensors and Actuators, 87, 90-95 (2000).
【3.6】 J. F. Liu, H. B. Chen, J. Y. Feng, and J. Zhu, “Improvement of the Thermal Stability of NiSi Films by Using a Thin Pt Interlayer”, Applied Physics Letters, 77(14), 2177-2179 (2000).
【3.7】 D. Mangelinck, J. Y. Dai, J. S. Pan, and S. K. Lahiri, “Enhancement of Thermal Stability of NiSi Films on (100)Si and (111)Si by Pt Addition”, Applied Physics Letters, 75(12), 1736-1738 (1999).
【3.8】 C. Detavernier, R.L. Van Meirhaeghe, F. Cardon, and K. Maex, “Influence of Mixing Entropy on the Nucleation of CoSi2”, Physical Review B, 62(18), 12045-12051 (2000).
【3.9】 P. S. Lee, K. L. Pey, D. Mangelinck, J. Ding, D. Z. Chi, and L. Chan, “New Salicidation with Ni(Pt) Alloy for MOSFETs”, IEEE Electron Device Letters, 22(12), 568 (2001).
【3.10】 T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak, “Binary Alloy Phase Diagrams”, 2 nd, Materials Park, (1990).
【3.11】 J. S. Maa, Y. Ono, D. J. Tweet, F. Zhang, and S. T. Hsu, “Effect of Interlayer on Thermal Stability of Nickel Silicide”, J. Vac. Sci. Technol. A. 19(4), 1595-1599 (2001).
【3.12】 J. B. Lai and L. J. Chen, “Effects of Composition on the Formation Temperatures and Electrical Resistivities of C54 Titanium Germanosilicide in Ti-Si1-xGex Systems”, J. Applied Physics, 86(3), 1340-1345 (1999).
【3.13】 R. A. Donaton, K. Maex, A. Vantomme, G. Langouche, Y. Morciaux, A. St. Amour, and J. C. Sturm, “Co Silicide Formation on SiGeC/Si and SiGe/Si Layers”, Applied Physics Letters, 70(10), 1266-1268 (1997).
【3.14】 H. J. Huang, K. M. Chen, C. Y. Chang, T. Y. Huang, L. P. Chen, and G. W. Huang, “Study on Ge/Si Ratio, Silicidation, and Strain Relaxation of High Temperature Sputtered Co/Si1-xGex Structures”, J. Applied Physics, 88(4), 1831-1837 (2000).
【3.15】 C. Detavernier, R.L. Van Meirhaeghe, F. Cardon, K. Maex, “CoSi2 Nucleation in the Presence of Ge”, Thin Solid Films, 384, 243-250 (2001).
【3.16】 M. Qin, V. M. C. Poon, and C. Y. Yuen, “Structure and Thermal Stability of Ni/Si1-xGex Contacts for VLSI Applications”, Electronics Letters, 26(21), 1819-1821 (2000).
【3.17】 J. S. Luo, W. T. Lin, C. Y. Chang, and W. C. Tsai, “Pulsed KrF Laser Annealing of Ni/Si0.76Ge0.24 Films”, J. Applied Physics, 82(7), 3621-3623 (1997).
【3.18】 J. S. Luo, W. T. Lin, C. Y. Chang, P. S. Shin, and F. M. Pan, “Annealing Effects on the Interfacial Reactions of Ni on Si0.76Ge0.24 and Si1-x-yGexCy”, J. Vac. Sci. Technol. A. 18(1), 143-148 (2000).
【3.19】 R. D. Thompson, K. N. Tu, J. Angillelo, S. Delage, and S. S. Lyer, “Interfacial Reaction between Ni and MBE-Grown SiGe Alloy”, J. Electrochem. Soc.: Solid-State Science and Technology, 135(12), 3161-3163, (1988).
【3.20】 G. Sarcona, S. K. Saha, and M. K. Hatalis, “Nickel Silicides Grown on Amorphous Silicion and Silicon-Germanium Thin Films”, Electrochemical and Solid-State Letters, 1(5), 233-234 (1998).
【3.21】 F. R. Deboer, R. Boom, W. C. Mattens, A. R. Miedema, and A. K. Niessen, “Cohesion in Metal: Transition Metal Alloy”, North Holland, Amsterdam, (1988).
【3.22】 D. B. Aldrich, F. M. d’Heurle, D. E. Sayers, and R. J. Nemanich, “Interface Stability of Ti(SiGe)2 and SiGe Alloys: Tie Lines in the Ternary Equilibrium Diagram”, Physical Review B, 53(24), 16279-16282 (1996).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top