跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/25 00:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡雯琪
研究生(外文):Wen-Chi Tsai
論文名稱:釔、鉺金屬薄膜與矽的界面反應之研究
論文名稱(外文):Interfacial reactions of yttrium and erbium metal thin films on silicon
指導教授:陳力俊陳力俊引用關係
指導教授(外文):Lih-Juann Chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:73
中文關鍵詞:界面反應烯土
外文關鍵詞:erbiumyttriuminterfacial reactionrare earth silicide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用掃瞄式電子顯微鏡、穿透式電子顯微鏡、高分辨穿透式電子顯微鏡,研究鐿金屬薄膜與矽晶之界面反應情形。
利用超高真空電子槍蒸鍍系統在(111)矽單晶基材上沈積釔、鉺金屬薄膜再經退火熱處理可以成長磊晶矽化釔、鉺薄膜。經過退火500 oC一分鐘之後,多餘繞射點的出現是歸因於磊晶矽化鐿薄膜內空位有序化的形成,以快速熱退火500-1100 oC之後,多餘繞射點的分裂是對應於兩組滑移式階梯結構的形成,隨著退火溫度的改變,這兩組滑移式階梯分佈的變化對應著空位濃度的改變。電腦模擬被使用來檢測空位有序化的結構,另外配合著平面及橫截面兩個方向,可以作電子繞射分析空位有序化的三維立體結構。在磊晶矽化釔、鉺薄膜內的平面缺陷經分析是疊差,這些疊差可以藉高溫退火而加以消減。在超高真空電子槍蒸鍍系統內以適當方法可以製造出磊晶矽/磊晶矽化鉺/(111)矽晶基材的雙異質磊晶結構,而上層覆蓋磊晶矽層內的主要缺陷是微雙晶。

Interfacial reactions of Y and Er thin films on both (111) and (001)Si have been studied by transmission electron microscopy, high resolution TEM as well as scanning electron microscopy.
Epitaxial YSi2-x thin films were found to form on (111) and (001)Si at a deposition temperature of 500 ℃ in an ultrahigh vacuum (UHV) e-beam evaporation chamber. The orientation relationships between YSi2-x and (111)Si were determined to be [0001]YSi2-x//[111]Si and (10 0)YSi2-x//( 2)Si. On the other hand, the orientation relationships between YSi2-x and (001)Si were determined to be [0001]YSi2-x//[1 0]Si, (1 00)YSi2-x//(001)Si and [0001]YSi2-x//[ 0]Si, (1 00)YSi2-x//(001)Si. Extra diffraction spots with streaking were observed. The extra spots are attributed to the formation of an ordered vacancy superstructure. The streaking of extra spots is resulted from the formation of out-of-step structures with a range of M values. From a combination of studying planview and cross-sectional TEM samples, the 3-dimensional vacancy ordering structures were determined. After annealing at various temperatures for 1 min by rapid thermal annealing, the range of M values was found to narrow down with annealing temperature. On the other hand, the 3-dimensional vacancy ordering structures were found to change with annealing temperature.
Epitaxial ErSi2-x thin films were found to form on (111) and (001)Si by UHV e-beam deposition and subsequent rapid thermal annealing. Similar behaviors of vacancy ordering structures were found to occur in ErSi2-x/(111)Si and ErSi2-x/(001)Si systems as those in YSi2-x/(111)Si and YSi2-x/(001)Si systems.
Planar defects in YSi2-x and ErSi2-x thin films were analyzed to be stacking faults on {10 0} planes with 1/6< 2 3> displacement vectors. The density of stacking faults was found to decrease with the annealing temperature. Double-domain epitaxy was found to form in YSi2-x/(001)Si and ErSi2-x/(001)Si systems. The domain size was found to increase with the annealing temperature. A high density of pinholes was found in epitaxial YSi2-x thin films. The growth of pinhole free epitaxial ErSi2-x thin films on (111)Si was carried out by capping an a-Si layer with appropriate thickness prior to the subsequent annealing. The double heteroepitaxial structures were grown in a UHV e-beam deposition chamber. The major defects in the overgrown Si layer were found to be the microtwins.

Abstract 1
I. Introduction 3
Ⅱ.Experimental Procedures 10
1. Initial wafer cleaning 10
2. Thin film deposition 10
3. In-situ UHV annealing 11
4. Rapid thermal annealing 11
5. Preparation of transmission electron microscopy specimens 11
(1) Planview specimen preparation 11
(2) Cross-sectional specimen preparation 12
6. Transmission electron microscope examination 13
7. Scanning electron microscope observation 13
Ⅲ.Results and Discussion 14
1. Vacancy ordering structures 14
(1) YSi2-x/(111)Si system 14
(2) YSi2-x/(001)Si system 16
(3) ErSi2-x/(111)Si system 18
(4) ErSi2-x/(001)Si system 19
(5) Comparison of the four systems 20
2. Analysis of planar defects 22
(1) YSi2-x/(111)Si system 22
(2) ErSi2-x/(111)Si system 22
3. Analysis of double-domain epitaxy 23
(1) YSi2-x/(001)Si system 23
(2) ErSi2-x/(001)Si system 24
4. The growth of pinhole-free epitaxial RESi2-x thin films 25
5. The growth of double heteroepitaxial structures 26
Ⅳ. Summary and conclusions 28
References 30
List of Tables 36
Figure Captions 49
List of Diagrams 65

1. B. Hoeneisen and C. A. Mead, “Fundamental Limitations in Microelectronics-I. MOS Technology,” Solid State Electronics, 15, 819-830 (1972).
2. E. C. Douglas, “Advanced Process Technology for VLSI Circuits,” Solid State Technology, 24, 65-72 (1981)
3. J. K. Hassan and H.G. Sarkary, “Lithography for VLSI: An overview,” Solid State Technology, 25, 49-54 (1982).
4. J. F. Marshall, “New Applications of Tape Bonding for High Lead Count Devices,” Solid State Technology, 27, 175-179 (1984).
5. J. D. Meindl, “Interconnection Limits on Silicon Ultra Large Scale Integration,” Semiconductor Silicon 1986,86-4, 3-5 (1986).
6. G. Baccarini, M. R. Worddeman, and R. H. Dennard, “Generalized Scaling Theory and its Application to a 1/4 Micrometer MOSFET Design,” IEEE Trans. Electron Devices, Ed-31, 452-453 (1984).
7. P. Burggraaf, “Silicide Technology Spotlight,” Semiconductor International, 11, May, 293-297 (1985).
8. R. T. Tung, J. C. Bean, J. M. Gibson, J. M. Poate, and D. C. Jacobson, “Growth of Single-Crystal CoSi2 on Si(111),” Appl. Phys. Lett. 40, 684-686 (1982).
9. R. T. Tung, J. M. Gibson, J. M. Poate, “Growth of Single-Crystal Epitaxial Silicides on Silicon by the Use of Template Layers,” Appl. Phys. Lett. 42, 888-890 (1983).
10. For a review, see R. T. Tung, J. M. Poate, J. C. Bean, J. M. Gibson, and D.C. Jacobson, “Epitaxial Silicides,” Thin Solid Films 93, 77-80 (1982).
11. L. J. Chen, H. C. Cheng, W. T. Lin, and M. S. Fung, “Epitaxial Growth of Refractory Silicides on Silicon,” Mater. Res. Soc. Symp. Proc. 37, 375-377 (1985).
12. K. N. Tu, R. D. Thompson, and B. Y. Tsaur, “Low Schottky-Barrier Height of Rare-Earth Silicide on n-Si,” Appl. Phys. Lett. 38, 626-628 (1981).
13. H. Norde, J. deSousa Pires, F. d’Heurle, F. Pesavento, S. Petersson, and P. A. Tove, “The Schottky-Barrier Height of the Contacts Btween Some Rare-Earth Metals (and Silicides) and p-type Silicon,” Appl. Phys. Lett. 38, 865-867 (1981).
14. R. D. Thompson and K. N. Tu, “Comparison of the 3-Classes (Rare-Earth, Refractory and Near-Noble) Of Silicide Contacts,” Thin Solid Film, 93, 265-268 (1982).
15. J. A. Knapp and S.T. Picraux, “Epitaxial Growth of Rare-Earth Silicides on (111)Si,” Appl. phys. Lett. 48, 466-468 (1986).
16. F. M. d’Heurle, N. G. Ainslie, A. Grangulee and M. C. Shine, “Activation Energy for Electromigration Failure in Aluminun Films Containing Copper,” J. Vac. Sci Technol. 9, 289-293 (1972).
17. F. A. d’Avitaya, A. Perio, J.-C. Oberlin, Y. Campidelli, and J. A. Chroboczek, “Fabrication and Structure of Epitaxial Er Silicide Films on (111)Si,” Appl. Phys. Lett. 54, 2198-2200 (1989).
18. L. J. Chen and K. N. Tu, “Epitaxial Growth of Transition-Metal Silicides on Silicon,” Mater. Sci. Rep. 6, 53-55 (1991).
19. T. L. Lee, L. J. Chen, and F. R. Chen, “Evolution of Vacancy ordering and Defect Structure in Epitaxial YSi2-x Thin Films on (111)Si,” J. Appl. Phys. 71, 3307-3312 (1992).
20. J. E. Baglin, F. M. d’Heurle, and C. S. Petersson, “The Formation of Silicides from Thin Films of Some Rare-Earth Metals,” Appl. Phys. Lett, 36, 594-596 (1980).
21. R. D. Thompson, B. Y. Tsaur, and K. N. Tu, “Contact Reaction Between Si and Rare Earth Metals,” Appl. Phys. Lett. 38, 535-537 (1981).
22. J. A. Knapp, S. T. Picraux, C.S. Wu, and S.S. Lau, “Kinetics and Morphology of Erbium Silicide Formation,” J. Appl. Phys. 58, 3747-3757 (1985).
23. J. A. Knapp, S. T. Picraux, C. S. Wu, and S. S. Lau, “Erbium Silicide Formation Using A Line-Source Electron Beam,” Appl. Phys. Lett. 44, 747-749 (1984).
24. J. A. Knapp and S. T. Picraux, “Epitaxial Formation of Rare Earth Silicides by Rapid Annealing,” Mater. Res. Soc. Symp. Proc. 54, 261-263 (1981).
25. R. Baptist, S. Ferrer, G. Grenet, and H. C. Poon, “Surface Crystallography of YSi2-x Films Epitaxially Grown on Si(111): An X-Ray Photoelectron Diffraction Study,” Phys. Rev. Lett. 64, 311-314 (1990).
26. E. I. Gladyshersky, Crystal Chemistry of Silicides and Germanides (Metallurgya, 1971).
27. J. E. Baglin, F. M. d’Heurle, and C. S. Petersson, “Diffusion Marker Experiments with Rare-Earth Silicides and Germanides-Relative Mobilities of the 2 Atom Species,” J. Appl. Phys. 52, 2841-2846 (1981).
28. F. H. Kaatz, W. R. Graham, and J. Van der Spiegel, “Modification of the Microstructure in Epitaxial Erbium Silicide,” Appl. Phys. Lett. 62, 1748-1750 (1993).
29. M. P. Siegal, W.R. Graham, and J. J. Santiago-Aviles, “Formation of Epitaxial Yttrium Silicide on (111)Si,” J. Appl. Phys. 68, 574-580 (1990).
30. M. Siegal, L. J. Martinez-Miranda, J. J. Santiago-Aviles, W. R. Graham, and M. P. Siegal, “A Study of Strain in Thin Epitaxial Films of Yttrium Silicide on Si(111),” J. Appl. Phys. 75, 1517-1520 (1994).
31. G. H. Shen, J. C. Chen, C. H. Lou, S. L. Cheng, and L. J. Chen, ”The Growth of Pinhole-free Epitaxial DySi2-x films on atomically clean Si(111),” J. Appl. Phys. 84, 3630-3635 (1998).
32. J. C. Hensel, A. F. J. Levi, R. T. Tung, and J. M. Gibson, “Transistor Action in Si/CoSi2/Si Heterostructures,” Appl. Phys. Lett. 47, 151-153 (1985).
33. S. Saitoh, H. Ishiwara, and S. Furukawa, “Double Heteroepitaxy in the Si/CoSi2/Si Structure,” Appl. Phys.Lett. 37, 203-205 (1980).
34. R. T. Tung, A. F. J. Levi, and J. M. Gibson, “Control of a Natural Permeable CoSi2 Base Transistor,” Appl. Phys. Lett. 48, 635-637 (1986).
35. J. C. Hensel, “Operation of the Si/CoSi2/Si Heterostructure Transistor,” Appl. Phys. Lett. 49, 522-524 (1986).
36. K. Ishibashi and S. Furukawa, “SPE-CoSi2 submicrometer Lines by Lift-Off Using Selective Reaction and Its Application to a Permeable-Base Transistor,” IEEE Trans. Electron Devices, ED-33, 324-326 (1986).
37. E. Rosencher, P. A. Badoz, J. C. Pfister, F. Arnaud d’Avitaya, G. Vincent, and S. Delage, “Study of Ballistic Transport in Si-CoSi2-Si Metal Base Transistors,” Appl. Phys. Lett. 49, 271-273 (1986).
38. F. Arnaud d’Avitaya, J. A. Chroboczek, C. d’Anterroches, G. Glastre, Y. Campidelli, and E. Rosencher, “Silicon Overgroth on CoSi2/Si(111) Epitaxial Structures: Application to Permeable Base Transistor,” J. Cryst. Growth, 81 463-466 (1987).
39. G. Glastre, E. Rosencher, F. Arnaud d’Avitaya, C. Puissant, M. Pons, G. Vincent, and J. C. Pfister, “CoSi2 and Si Epitaxial Growth in <111>Si Submicron Lines with Application to a Permeable Base Transistor,” Appl. Phys. Lett. 52, 898-900 (1988).
40. A. Gruhle and H. Beneking, “Silicon Permeable Base Transistors Fabricated by Selective Epitaxial Growth,” Electron. Lett. 25, 14-15 (1989).
41. T. Ohshima, K. Nakagawa, N. Nakamura, and Y. Shirake, “Self-Aligned NiSi2 Electrode Fabrication by MBE and Its Application to Etched-Groove Permeable Base Transistor (PBT),” J. Cryst. Growth 95, 490 (1989).
42. P. A. Badoz, D. Bensahel, L. Guerin, P. Perret, C. Puissant, and J. L. Regolini, “Selective Silicon Epitaxial Growth on a Submicrometer WSi2 Grating: Application to the Permeable Base Transistor,” J. Electron. Mat. 19, 1123-1127 (1990).
43. P. A. Badoz, D. Bensahel. L. Guerin, C. Puissant, and J. L. Regolini, “Permeable Base Transistor Fabrication by Selective Epitaxial Growth of Silicon on a Submicrometer WSi2 Grid,” Appl. Phys. Lett. 56, 23072309 (1990).
44. A. Gruhle, H. Beneking, “Application of MBE-Grown Epitaxial Si-CoSi2-Si Heterostructure for Overgrown Silicon permeable-Base Transistors,” IEEE Trans. Electron. Devices, 38, 1878-1880 (1991).
45. B. A. Vojak, D. D. Rathman, J. A. Burns, S. M. Cabral, and N. N. Efremow, Appl. Phys. Lett. 44, 223-225 (1984).
46. F. H. Kaatz, M. P. Siegal, W. R. Graham, J. Van der Spiegel, and J. J. Santiago, “Epitaxial-Growth of ErSi2 on (111)Si,” Thin Solid Films, 184, 325-333 (1990).
47. M. P. Siegal, F. H. Kaatz, W. R. Graham, J. Van der Spiegel, and J. J. Santiago, “Formation of Epitaxial Yttrium Silicide on (111) Silicon,” J. Appl. Phys. 66, 2999-3006 (1989).
48. C. H. Luo, G. H. Shen, and L. J. Chen, “Vacancy Ordering Structures in Epitaxial RESi2-x Thin Films on (111) and (001)Si,” Appl. Sur. Sci. 113/114, 457-461 (1997).
49. G. H. Shen, Ph. D. Thesis, National Tsing Hua University, Hsinchu, Taiwan, R.O.C. (1998).
50. K. S. Chi and L. J. Chen, “Evolution of Vacancy Ordering in Epitaxial YbSi2-x thin Films on (111)Si,” Proc. of the Royal Microscopical Society Conference, Oxford University, London, U. K., 453-456 (2001).
51. K. S. Chi, W. C. Tsai, and L. J. Chen, “Evolution of 3-Dimensional Vacancy Ordering Structures in Epitaxial YbSi2-x Thin Films on (001)Si’, Proc. of 22nd R. O. C. Symposium on Microscopy, Hsinchu, Taiwan, R. O. C., MP37-MP38 (2001).
52. J. A. Knapp and S. T. Picranx, “Epitaxial Formation of Rare Earth Silicides by Rapid Annealing,” Mater. Res. Symp. Proc. 54, 261 (1986).
53. R. Sato, H. Doi, B. Ishi, and H. Uchikoshi, “Reduction of U3O8 to U3O8-x in Mode of Crystallographic Out-of-Step,” Acta Cryst. 14, 763-771 (1961).
54. S. Ogawa and D. Watanabe, “The Direct Observation of the Long Period of the Ordered Aloy CuAu (II) by Means of Electron Microscope,” Acta Cryat. 11, 872 (1958).
55. S. Ogawa and D. Watanabe, “Anti-Phase Domains in Gold-Copper-Zinc Ordered Aloys Revealed by Electron Microscope,” J. Phys. Soc. Japan, 14, 936 (1959).
56. M. A. Nicolet and S. S. Lau, in Materials and Process Characterization, edited by N. G. Einspruch and G. B. Larrabee (Academic, New York, 1983). P. 329.
57. A. Iandelli, A. Palenzona, and G. L. Olcese, “Valence Fluctuations of Ytterbium in Silicon-Rich Compounds,” J. Less-Common Met. 64 213-220 (1979).
58. V. N. Eremenko, V. E. Listovnichii, S. P. Luzan, Yu. I. Buyanov, and P. S. Martsenyuk, “Phase-Diagram of the Holmium Silicon Binary-System and Physical-Properties of Holmium Silicides Up to 1050 ℃,” J. Alloys Comp. 219, 181-183 (1995).
59. S. P. Murarka, Metallization (Eds. ), Theory and Practice for VLSI and ULSI, Butterworth-Heinemann, Boston, P 19 (1993).
60. T. L. Lee and L. J. Chen, “Formation of Amorphous Interlayers in Ultrahigh Vacuum Deposited Yttrium Thin Films on (111)Si,” J. Appl. Phys. 73, 5280-5282 (1993).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top