( 您好!臺灣時間:2022/08/19 18:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Hui-Ling Lai
論文名稱(外文):Lead-Free Sn-Ag and Sn-Ag-Bi Solder Powders Fabricated by Mechanical Alloying
指導教授(外文):Jenq-Gong Duh
外文關鍵詞:mechanical alloyinglead-free solder alloymilling mechanisminterfacial reaction
  • 被引用被引用:0
  • 點閱點閱:250
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在電子構裝技術中,銲錫(solder)在矽晶片的組裝及連接上扮演了相當重要的角色。本研究即以機械合金方法(Mechanical Alloying Technique)製備Sn-3.5Ag及Sn-3.5Ag-4Bi系統之無鉛銲錫粉末。
為了深入了解Sn-Ag及Sn-Ag-Bi粉末之研磨機制,本文首先分別探討在不同研磨時間下粉末顆粒之形態變化。在Sn-Ag系統中,由於粉末較具延展性,因此會先被壓平成薄片狀。待繼續研磨至粉末被加工硬化後,原先形成之薄片開始被破碎成較小顆粒。隨著研磨時間增長,冷銲的效應也慢慢增大,因此被破碎之小顆粒開始形成較大的合金粒或錠狀。然而,在Sn-Ag-Bi系統中,所添加之4wt%鉍使得粉末間之銲接及合金作用受到限制。粉末在研磨之後開始聚集成球,但其顆粒與顆粒之間仍是呈現相互分離的狀態。因此,在此系統中,另外使用二階段研磨方式,先將錫、銀粉末進行研磨後再加入鉍,以進一步了解添加鉍對研磨機制所造成的影響。藉由二段式研磨,可得到顆粒更小之Sn-Ag-Bi粉末。實驗結果也發現,在研磨過程中不同粉末外貌與其結晶方向性(crystal orientation)有相當大的影響。其關聯可由XRD分析之(101)/(200)面強度比加以量化及討論。

In the practice of package system, solder plays a crucial role in the assembly and interconnection of silicon die. In this study, mechanical alloying (MA) process was used to produce the lead free solder pastes of Sn-3.5Ag and Sn-3.5Ag-4Bi.
To understand the milling mechanism of Sn-3.5Ag and Sn-3.5Ag-4Bi powders during mechanical alloying, the particle morphology of MA powders milled for various time was observed and discussed. In the Sn-Ag system, the ductile powders were first flattened to thin slices, and then fractured to small particles caused by the work-hardening. With further milling, the fractured particles would cold weld to larger alloy ingots. However, in the Sn-Ag-Bi system, even 4wt% addition of Bi powder made the alloying and welding limited. Instead, “agglomeration” phenomenon was found. Another method of two-stage milling was also used to further understand the effect of addition of brittle components, in which the Sn-Ag-Bi powders were fractured to even smaller particles by the trapped Bi. It was found that the crystal orientation was affected by the particle morphology after various milling time. The intensity ratio of (101)/(200) Sn was calculated and plotted to correlate with the observed powder morphology discussed earlier.
Due to the induced high energy by repeated fracturing and welding, the grinding media play an important role during MA process. Ceramic container was used to provide stronger impact force, which could induce the phase transformation, than the Teflon container. In addition, it’s found that 1cm balls could fracture Bi particles and promote it dissolved into Sn matrix. On the contrary, the mixing effect was much predominant when using 3mm balls. MA powders after milling with 3mm balls showed a small endothermic peak from the DSC profile at 138C, which was the eutectic temperature of Sn-Bi. The melting points of MA powders in ceramic container were measured to be 221˚C and 203˚C, respectively, for Sn-3.5Ag and Sn-3.5Ag-4Bi from the DSC curves. The reduced melting point ensured the complete melting during reflow with a peak temperature of 240C. The formation of Ag3Sn was also observed from the X-ray diffraction peaks, indicating successful alloying by mechanical alloying. The solder pastes could thus be produced by adding flux into the MA powders. The wetting property of the solder joint was also evaluated. The as-prepared solder pastes on electroless Ni-P/Cu/Si exhibited sufficient metallurgical bonding with contact angles less than 20.

List of Tables IV
Figure Captions V
Abstract IX
Chapter I Introduction 1
Chapter II Literature Review 5
2.1 Electronic Package 5
2.1.1 Industry Trend 5
2.1.2 Solder Joint 9
2.2 Joint Materials 12
2.2.1 Solder Materials 12
2.2.2 Sn-Pb Solder 14
2.2.3 Lead-Free Solder 16
2.2.4 Metallization Layer 20
2.3 Mechanical Alloying 22
2.3.1 Introduction 22
2.3.2 Milling Mechanism 23
2.3.3 Solid Solubility 27
2.3.4 Diffusion in Mechanical Alloying 27
2.4 Joint Properties 31
2.4.1 Melting Temperature 31
2.4.2 Interfacial Reaction 31
2.4.3 Wettability 36
Chapter III Experimental Procedures 42
3.1 Fabrication of Lead Free Solder Pastes 42
3.1.1 Mechanical Alloying 42
3.1.2 Solder Pastes 42
3.2 Characterization of Powders 44
3.2.1 X-ray Diffraction 44
3.2.2 SEM and EPMA 44
3.2.3 Differential Scanning Calorimetry (DSC) 44
3.2.4 Wettability Test 45
3.3 Metallization Layer 45
3.4 Reflow Process 49
3.5 Microstructural Characterization 49
Chapter IV Results and Discussion 53
4.1 Milling Mechanism of Sn-Ag and Sn-Ag-Bi Solder Powders 53
4.1.1 Sn-Ag System 53
4.1.2 Sn-Ag-Bi System 55
4.1.3 Two-Stage Milling (Sn-Ag-Bi System) 56
4.1.4 Evolution of Morphology During MA Process 58
4.1.5 Milling-Induced Crystal Orientation 61
4.2 Sn-Ag and Sn-Ag-Bi Solder Powders Prepared by Mechanical Alloying 65
4.2.1 Process Parameters (Sn-Ag-Bi system) 65
4.2.2 Milling-Induced Phase Transformation and Dissolution 69
4.2.3 Wettability Test 76
4.3 Interfacial Reaction 79
4.3.1 As-Reflowed Sn-3.5Ag Solder Joints (Commercial Pastes) 79
4.3.2 As-Reflowed Sn-3.5Ag-4Bi Solder Joints 83
4.3.3 Phosphorus-Rich Layer 83
Chapter V Conclusions 90
References 92

1. M. Abtew and G. Selvaduray, ‘‘Lead-free Solders in Microelectronics’’, Mat. Sci. Eng.: R: Reports, vol.27, 2000, pp.95-141.
2. H. Reichl, A. Schubert and M. Töpper, ‘‘Reliability of Flip Chip and Chip Size Packages’’, Micro. Rel., vol. 40, 2000, pp.1243-1245.
3. S. Topani, S. Gopakumar, P. Borgesen and K. Srihari, ‘‘Reliability of Lead-Free Solder Interconnections-A Review’’, 2002 annual reliability and maintainability symposium, (Piscataway, NJ: IEEE, 2002), pp.423-428.
4. T.Y. Lee, W.J. Choi, K.N. Tu, J.W. Jang, S.M. Kuo, J.K. Lin, D.R. Frear, K.Zeng and J.K. Kivilahti, “Morphology, Kinetics, and Thermodynamics of Solid-State Aging of Eutectic SnPb and Pb-Free Solders (Sn-3.5Ag, Sn-3.8Ag-0.7Cu and Sn-0.7Cu) on Cu”, J. Mat. Res., Vol.17, No.2, 2002, pp.291-301.
5. D.R. Frear, J.W. Jang, J.K. Lin and C. Zhang, “Pb-Free Solders for Flip-Chip Interconnects”, JOM, Vol.53, No.6, 2001, pp.28.
6. W.H. Tao, C. Chen, C.E. Ho, W.T. Chen and C.R. Kao, “Selective Interfacial Reaction between Ni and Eutectic BiSn Lead-Free Solder”, Chem. Mat., Vol.13, No.3, 2001, pp.1051-1056.
7. S.K. Kang, D.Y. Shih, K. Fogel, P. Lauro, M.J. Yim, G. Advocate, M. Griffin, C. Goldsmith, D.W. Henderson, T. Gosselin and D. King, J. Konrad, A. Sarkhel and K.J. Puttlitz, ‘‘Interfacial Reaction Studies on Lead(Pb)-Free Solder Alloys’’, 51st Electronic Components and Technology Conference, (Piscataway, NJ: IEEE, 2001), pp.448-454.
8. S.K. Kang, H. Mavoori, S. Chada, et al., “Special Issue on Lead-Free Solder Materials and Soldering Technologies - Foreword”, J. Elec. Mat., Vol.30, No.9, 2001, pp.1049.
9. J.W. Jang, D.R. Frear, T.Y. Lee and K.N. Tu, ‘‘Morphology of Interfacial Reaction between Lead-Free Solders and Electroless Ni-P Under Bump Metallization’’, J. Appl. Phy., Vol.88, No.11, 2000, pp.6359-6363.
10. P.T. Vianco, S.N. Burchett, M.K. Nielsen, et al., “Properties of ternary Sn-Ag-Bi solder alloys: Part I - Thermal properties and microstructural analysis”, J. Elec. Mat., Vol.28, No.10, 1999, pp.1127-1137.
11. R.S. Rai, S.K. Kang and S. Purushothaman, ‘‘interfacial reactions with Lead(Pb)-Free solder’’, 45th Electronic Components and Technology Conference, (Piscataway, NJ: IEEE, 1995), pp.1197-1202.
12. L.L. Ye, Z. Lai, J. Liu and A. Thölén, ‘‘Microstructural Coarsening of Lead Free Solder Joints During Thermal Cycling’’, 50th Electronic Components and Technology Conference, (Piscataway, NJ: IEEE, 2000), pp.134-137.
13. M.E. Loomans and M.E. Fine, ‘‘Tin-Silver-Copper Eutectic Temperature and Composition’’, Metal. Mat. Trans. A, Vol.31A, 2000, pp.1155-1162.
14. T.M. Korhonen, P. Su, S.J. Hong, M.A. Korhonen and C.-Y. Li, ‘‘Reactions of Lead-Free Solders with CuNi Metallizations’’, J. Elec. Mat., Vol.29, No.10, 2000, pp.1194-1199.
15. J.R. Oliver, J. Liu and Z. Lai, ‘‘Effect of Thermal Ageing on the Shear Strength of Lead-Free Solder Joints’’, International Symposium on Advanced Packaging Materials, (Piscataway, NJ: IEEE, 2000), pp.152-157.
16. W.R. Lewis, Notes on Soldering, Tin Research Institute, 1961, pp.66.
17. J.W. Morris, Jr., J.L. Freer Goldstein and Z. Mei, ‘‘Microstructure and Mechanical Properties of Sn-In and Sn-Bi solder’’, JOM, 1993, pp.25-27.
18. Y.Y. Chen, J.G. Duh and B.S. Chiou, “The Effect of Substrate Surface Roughness on Wettability of Sn-Bi Solders”, J. Mat. Sci.: Mat. in Elec., Vol.11, 2000, pp.279-283.
19. H.W. Miao and J.G. Duh, “Microstructure Evolution in Sn-Bi and Sn-Bi-Cu Solder Joints under Thermal Aging”, Mat. Chem. Phy., Vol.71, No.3, 2001, pp. 255-271.
20. H.W. Miao, J.G. Duh and B.S. Chiou, “Thermal Cycling Test in Sn-Bi and Sn-Bi-Cu Solder Joints”, J. Mat. Sci.: Mat. in Elec., Vol.11, 2000, pp.609-618.
21. Y.Y. Wei and J.G.Duh, “Effect of Thermal Aging on (Sn-Ag, Sn-Ag-Zn)/Pt-Ag, Cu/Al2O3 Solder Joints”, J. Mat. Sci.: Mat. in Elec., Vol.9, 1998, pp.373-381.
22. S.L. Chen, “Wettability Evaluation and Microstructure Analysis of Ternary Sn-Ag-Bi Solder alloys”, M.S. thesis, 1998, National Tsing Hua University, Hsinchu, Taiwan.
23. T.Y. Lee, W.J. Choi and K.N. Tu, “Morphology, Kinetics, and Thermodynamics of Solid-State Aging of Eutectic SnPb and Pb-Free Solders (Sn-3.5Ag, Sn-3.8Ag-0.7Cu and Sn-0.7Cu) on Cu”, J. Mat. Res., Vol. 17, No.2, 2002, pp.291-301.
24. M. McCormack, S. Jin, G.W. Kammlott and H.S. Chen, ‘‘New Pb-free solder alloy with superior mechanical properties’’, Appl. Phys. Lett., Vol.63, No.1, 1993, pp.15-17.
25. Y. Kariya, Y. Hirata and M. Otsuka, ‘‘Effect of Thermal Cycles on the Mechanical Strength of Quad Flat Pack Leads/Sn-3.5Ag-X (X=Bi and Cu) Solder Joints’’, J. Elec. Mat., Vol.28, No.11, 1999, pp.1263-1269.
26. K. Habu, N. Takeda, H. Watanabe, H. Ooki, J. Abe, T. Saito, Y. Taniguchi and K. Takayama, ‘‘Development of New Pb-free Solder Alloy of Sn-Ag-Bi System’’, International Symposium on Electronics and the Environment, (Piscataway, NJ: IEEE, 1999), pp.21-24.
27. Vianco et al., ‘‘Tin-Silver-Bismuth Solders for Electronics Assembly’’, United States Patent, Patent Number: 5439639, 1995.
28. K. Suganuma, ‘‘Interface Phenomena in Lead-Free Soldering’’, Environmentally Conscious Design and Inverse Manufacturing, (Piscataway, NJ: IEEE, 1999), pp.620-625.
29. C. Chen, C.E. Ho, A.H. Lin, G.L. Luo and C.R. Kao, ‘‘Long-Term Aging Study on the Solid-State Reaction Between 58Bi42Sn Solder and Ni Substrate’’, J. Elec. Mat., Vol.29, No.10, 2000, pp.1200-1206.
30. J.S. Hwang, Modern Solder Technology for Competitive Electronics Manufacturing, McGraw-Hill, New York, ISBN 0-07-031749-6, 1996, pp.209-223.
31. C. Suryanarayana, ‘‘Mechanical Alloying and milling’’, Pro. in Mat. Sci., Vol.46, 2001, pp.1-184.
32. D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, Van Nostrand Reinhold (UK), New York, ISBN 0-44-230439-0, 1981.
33. L. Lu, M.O. Lai and S. Zhang, ‘‘Diffusion in Mechanical Alloying’’, J. Mat. Pro. Tech.,Vol.67, 1997, pp.100-104.
34. M.L. Huang, C.M.L. Wu and J.K.L. Lai, ‘‘Lead Free Solder Alloys Sn-Zn and Sn-Sb Prepared by Mechanical Alloying’’, J. Mat. Sci.: Mat. in Elec., Vol.11, 2000, pp.57-65.
35. J.S. Benjamin, ‘‘Mechanical Alloying’’, Sci. Amer., 1976, Vol.234, No.5, pp.40-48.
36. E.Y. Ivanov and T.F. Grigorieva, “Reaction of Nanocrystalline Mechanically alloyed Cu-Sn alloyed Cu-Sn alloy with Ga-In-Sn eutectic”, Solid State Ionics, Vol.101-103, Part 1, 1997, pp.235-241.
37. V.M. López-Hirata and E.M. Arce-Estrada, “Characterization of Co--Cu mechanical alloys by linear sweep voltammetry”, Elec. Acta, Vol.42, Issue 1, 1997, pp.61-65.
38. J. Eckert, “Relationships governing the grain size of nanocrystalline metals and alloys”, Nano. Mat., Vol. 6, Issue 1-4, 1995, pp.413-416.
39. D. Oleszak and H. Matyja, “Nanocrystalline Fe-based alloys obtained by mechanical alloying”, Nano. Mat., Vol. 6, Issue 1-4, 1995, pp.425-428.
40. J.J. Jiang and M. Gasik, “An electrochemical investigation of mechanical alloying of MgNi-based hydrogen storage alloys”, J. Power Sources, Vol. 89, Issue 1, 2000, pp.117-124.
41. N.H. Goo and K.S. Lee, “The electrochemical hydriding properties of Mg—Ni—Zr amorphous alloy”, Inter. J. Hydrogen Energy, Vol. 27, Issue 4, 2002, pp.433-438.
42. L. Bolin, “Hardening and softening in mechanically alloyed iron-copper nanocrystalline solutions”, Metal Powder Report, Vol. 53, Issue 5, 1998, pp.38.
43. C.M.L. Wu, M.L. Huang, J.K.L. Lai and Y.C. Chan, ‘‘Developing a Lead-Free Solder Alloy Sn-Bi-Ag-Cu by Mechanical Alloying’’, J. Elec. Mat., Vol.29, No.8, 2000, pp.1015-1020.
44. M.L. Huang, C.M.L. Wu, J.K.L. Lai and Y.C. Chan, ‘‘Microstructural Evolution of a Lead-Free Solder Alloy Sn-Bi-Ag-Cu Prepared by Mechanical Alloying during Thermal Shock and Aging’’, J. Elec. Mat., Vol.29, No.8, 2000, pp.1021-1026.
45. V.M. Lopez Hirata, M. Saucedo Muñoz, J.C. Rodriguez Hernandez and Y.H. Zhu, ‘‘Milling Characteristics of Extruded Eutectoid Zn-Al Alloy’’, Mat. Sci. Eng., Vol.A247, 1998, pp.8-14.
46. C.A. Harper, ‘‘Electronic Packaging and Interconnection Handbook’’, McGraw-Hill, New York, 2nd Ed., 1997.
47. R.E. Reed-Hill, Physical Metallurgy Principles, PWS, Massachusetts, ISBN 0-53-492173-6, 1994, pp.306-307.
48. H.D. Blair, T. Y. Pan and J.M. Nicholson, ‘‘Intermetallic Compound Growth on Ni, Au/Ni and Pd/Ni Substrates with Sn/Pb, Sn/Ag and Sn Solders’’, Electronic Components and Technology Conference, 1998, pp.259-267.
49. S. Ahat, L. Du, M. Sheng, L. Luo, W. Kempe and J. Freytag, ‘‘Effect of Aging on the Microstructure and Shear Strength of SnPbAg/Ni-P/Cu and SnAg/Ni-P/Cu Solder Joints’’, J. Elec. Mat., Vol.29, No.9, 2000, pp.1105-1109.
50. P. Nash, Phase Diagrams of Binary Nickel Alloys, ASM, Metals Park, OH, 1991.
51. R.C. Agarwala and S. Ray, ‘‘Variation of Structure in Electroless Ni-P Films with Phosphorus Content’’, Z. Metallkunde, Vol.79, 1988, pp.472.
52. J.H. Yeh, ‘‘Interfacial Reactions and Wetting Porperty between Electroless Ni in the Under Bump Metallurgy(UBM) and Sn-37Pb Solder’’, Master Thesis, National Tsing Hua University, Hsinchu, Taiwan, 2000.
53. J.W. Jang, P.G. Kim, K.N. Tu, D.R. Frear and P. Thompson, ‘‘Solder reaction-assisted crystallization of electroless Ni-P under bump metallization in low cost flip chip technology’’, American Institute of Physics, 1999, pp.8456-8463.
54. P.Y. Lee, J.L. Yang and H.M. Lin, ‘‘Amorphization behaviour in mechanically alloyed Ni-Ta powders’’, J. Mat. Sci., Vol.33, 1998, pp.235-239.
55. M.E. Glicksman, Diffusion in Solids, John Wiley & Sons, New York, ISBN 0-471-23972-0, 2000.
56. J.Y. Park, C.W. Yang, J.S. Ha, C.-U. Kim, E.J. Kwon, S.B. Jung and C.S. Kang, ‘‘Investigation of Interfacial Reaction between Sn-Ag Eutectic Solder and Au/Ni/Cu/Ti Thin Film Metallization’’, J. Elec. Mat., Vol.30, No.9, 2001, pp.1165-1170.
57. L.E. Murr, ‘‘Interfacial Phenomena in Metals and Alloys’’, Addison-Wesley, ISBN 0-201-04884-1.
58. M.E. Loomans, S. Vaynman, G. Ghosh and M.E. Fine, ‘‘Investigation of Multi-Component Lead-Free Solders’’, J. Elec. Mat., Vol.23, No.8, 1994, pp.741-746.
59. T. Komiyama, Y. Chonan, J. Onuki and T. Ohta, “The Influence of Phosphorus Concentration of Electroless Plated Ni-P Film on Interfacial Structures in the Joints between Sn-Ag Solder and Ni-P Alloy Film”, Mat. Trans., Vol.43, No.2, 2002, pp.227-231.
60. N. Torazawa, S.Arai, K. Shimoyama, Y. Takase and H. Saka, “Transmission Electron Microscopy of Joints between the Sn-Ag Solder and the Electroless Ni-P of an Electronic Device”, J. Japan Inst. Metals, Vol. 66, No.2, 2002, pp.47-52.
61. T. B. Massalski., Binary alloy phase diagrams, ASM, Metals Park, OH, 1990.

第一頁 上一頁 下一頁 最後一頁 top