跳到主要內容

臺灣博碩士論文加值系統

(3.238.252.196) 您好!臺灣時間:2022/08/13 23:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許玉青
研究生(外文):Yu-Ching Hsu
論文名稱:覆晶技術中銅/無電鍍鎳與銅/無電鍍鎳/錫鉛銲錫接點經退火後之擴散行為
論文名稱(外文):Elemental Diffusion Behavior in the Cu/Electroless Ni and Cu/Electroless Ni/Sn-37Pb Solder Joints During Annealing
指導教授:杜正恭杜正恭引用關係
指導教授(外文):Jenq-Gong Duh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:86
中文關鍵詞:交互擴散通量無電鍍鎳擴散介金屬生成物擴散屏障層
外文關鍵詞:interdiffusion fluxelectroless Nidiffusionintermetallic compound (IMC)diffusion barrier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:370
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
銅現已廣泛地應用在電子構裝中,且銅/無電鍍鎳是最常被用來作為UBM結構以應用在覆晶技術中的一種組成。所以銅在不同金屬化層間的擴散便是一項重要的議題。本實驗在銅基板上鍍覆不同厚度的無電鍍鎳後沾錫鉛銲錫球於240oC下進行退火處理以探討銅的擴散行為。本實驗藉由EPMA在銅/無電鍍鎳界面定量分析得到濃度-距離分佈圖,之後藉由這些結果進而計算得到銅、鎳及磷三者之交互擴散通量及交互擴散係數。此外,退火處理後,在無電鍍鎳及錫鉛銲錫球界面處有Ni3P析出相及Ni3Sn4介金屬生成物的生成。銅在銅/無電鍍鎳(7.5 m)/錫鉛銲錫接點中的Ni3P與Ni3Sn4介金屬生成物中的濃度分佈分別為0.5at%及1.0at%,在銅/無電鍍鎳(15 m)/錫鉛銲錫接點中則分別為0.2-0.3at%和0.8-0.9at%。經由這一連串詳細的濃度分析,推論Ni3P可視為擴散屏障層來阻擋過多的銅通過無電鍍鎳層到錫鉛銲錫球中。
本實驗也設計了另外一組由銅/無電鍍鎳及銅/無電鍍鎳/錫鉛銲錫球組成的固-固態擴散偶進行240oC不同時間的退火處理。藉由SEM觀察界面微結構及EPMA定量分析得到整個擴散偶的濃度分佈圖,經由濃度分佈圖和套用Matano plane的計算可求得銅、鎳及磷三者的交互擴散通量與交互擴散係數。銅、鎳及磷三者的交互擴散通量隨著退火時間的增加而減少,平均交互擴散係數的值是10-14 cm2/s,而銅在電鍍鎳銲錫接點系統中的Ni3P析出相及Ni3Sn4介金屬生成物之濃度為0.25at%與0.5at%。在短時間的退火處理中,無電鍍鎳與錫鉛銲錫球間的界面反應會輔助銅加速擴散通過無電鍍鎳層。

Cu is widely used in today's electronics packaging, and electroless Ni-P (EN)/Cu is popularly adopted in the under bump metallurgy (UBM) for flip chip application. The diffusion behavior of Cu in the metallization layer is an important issue. In this study, a joint in the Cu/EN/Pb-Sn structure with different EN thickness annealed at 240oC were employed to investigate the diffusion behavior of Cu for various annealing time. The concentration-distance profiles at the interface of EN/solders were evaluated by EPMA (Electron Probe Microanalyzer). The interdiffusion flux and effective interdiffusion coefficient of species Cu, Ni and P were evaluated with the aid of corresponding concentration profile. Ni3P precipitated layer and Ni3Sn4 intermetallic compound were observed near the interface of EN and Sn-Pb solder during annealing. According to detailed quantitative analysis by EPMA, the concentration of Cu in Ni3P and Ni3Sn4 intermetallic compound was around 0.5at% and 1.0at%, respectively, for the Cu/EN(7.5 m)/Sn-Pb solder joint, while it was 0.2-0.3at% and 0.8-0.9at%, respectively, for the Cu/EN(15 m)/Sn-Pb solder joint. With respect to the evaluated Cu concentration variation across the joint assembly, Ni3P can be regarded as diffusion barriers to prevent extra Cu diffusion through the EN layer to the solder.
Another isothermal interdiffusion experiments were also carried out at 240oC for different time with solid-solid diffusion couples assembled in the Cu/electroless-Ni (Ni-10wt%P) and Cu/electroless Ni (Ni-10wt%P)/Sn-37Pb joint. The diffusion structure and concentration profile were examined by SEM and EPMA analysis. The interdiffusion fluxes of Cu, Ni and P were calculated from the concentration profile with the aid of Matano plane evaluation. The values of , and decreased with increasing annealing time. The average effective interdiffusion coefficients in the order of 10-14 cm2/s were also evaluated within the diffusion zone. Cu dissolved in intermetallic compound (IMC) Ni3Sn4 and Ni3P precipitate after annealing in Cu/electroless Ni/Sn-37Pb system was about 0.25 at% and 0.5 at%. For the short period of annealing, it appears that the presence of EN with Sn-Pb soldering reaction assisted the diffusion of Cu through the EN layer time.

List of Tables…………………………………………………IV
Figure Captions…………………………………….................V
Abstract………………………………………………………IX
Chapter I Introduction………………………………………..1
Chapter II Literature Review………………...........................3
2.1 Cu Chip Packaging of Flip chip (FC)……………………..3
2.2 Electroless nickel-phosphorus deposition…………………8
2.2.1 Structure and properties of electroless Ni-P coating……………8
2.2.2 Crystallization of electroless Ni-P deposits after heat treatment………………………………………………………………….9
2.2.3 Interfacial reaction of SnPb/Electroless Ni UBM……………..10
2.3 Diffusion…………………………………………………13
2.3.1 Matano interface and interdiffusion fluxes………….................13
2.3.1.1 Diffusion couples………………………………………………………...13
2.3.1.2 Matano interface………………………………………………………….13
2.3.1.3 Interdiffusion fluxes……………………………………….......................14
2.3.2 Diffusion coefficients………………………………...…….......18
2.3.2.1 Effective interdiffusion coefficients………………………………….…..18
2.3.2.2 Diffusion coefficients of Ni and Cu……………………….......................20
Chapter III Experimental Procedures……………………...27
3.1 Electroless Ni-P (10 wt%) plating on Cu substrate….................................................................................27
3.2 Annealing……………………………………...…….... 28
3.3 Reflow test……………………………………………….29
Chapter IV Results and Discussion…………………………36
Part A Elemental Diffusion Behavior in the Cu/Electroless Ni/Sn-37Pb Solder Joints during Annealing……………………………………………………...36
4A.1 Concentration Profile………………..............................36
4A.2 Interdiffusion flux……………………………………...39
4A.3 Effective interdiffusion coefficients……………………41
4A.4 Morphology and microstructural analysis for the Cu/EN/Sn-Pb solder joint……………………………………49
4A.4.1 For the Cu/EN (15, 7.5 m) /Sn-Pb joints during annealing……………………………………………………………...49
4A.4.2 For the Cu/EN (7.5 m) /Sn-Pb joints during reflow……………………………………………………………………50
4A.5 The elemental distribution of Cu in the interfacial region of the solder joint…………………………….........................54
Part B Diffusion Behavior of Cu in Cu/Electroless Ni and Cu/Electroless Ni/Sn-37Pb Solder Joint in Flip Chip Technology……………………………...…………………….59
4B.1 Concentration Profile…………………...……………...59
4B.2 Evaluation of interdiffusion flux and Effective interdiffusion coefficients……….…………………...………..62
4B.2.1 Interdiffusion flux………………………………………...…..62
4B.2.2 Effective interdiffusion coefficients…………………………..64
4B.3 Morphologies of the diffusion couples……………...…68
4B.4 The correlation of interdiffusion flux and effective interdiffusion coefficient with respect to annealing time……………………………………………………………72
4B.4.1 Interdiffusion flux v.s. annealing time…………….................72
4B.4.2 Effective interdiffusion coefficient v.s. annealing time……………………………………………………………………..73
Chapter V Conclusions………………………………………79
Part A………………………………………………...............79
Part B………………………………………………………...80
References…………………………………………………….81

1. Z. Mei, M. Kaufmann, A. Eslambolchi, and P, Johnson, Brittle Interfacial Fracture of PBGA Packages Soldered on Electroless Nickel/ Immersion Gold, Electronic Components and Technology Conference, 25-28, Seattle, Washington, USA, pp. 952 (1998).
2. P. G. Kim, J. W. Jang, K.N. Tu and D. R. Frear, Kinetic analysis of interfacial diffusion accompanied by intermetallic compound formation, Journal of Applied Physics, Vol.86 No.3, pp. 1266-1272 (1999).
3. C. D. Young, Ph. D. Dissertation, National Tsing Hua University, Hsinchu, Taiwan (1997).
4. D. R. Frear, F. M. Hosking, and P. T. Vianco, Mechanical Behavior of Solder Joint Interfacial Intermetallics, Materials Developments in Microelectronic Packaging Conference Proceedings, Montreal, Quebec, Canada, August 19-22, pp. 229 (1991).
5. A. C. K. So, Y. C. Chan, and J. K. L. Lai, Aging Studies of Cu-Sn Intermetallic Compounds in Annealed Surface Mount Solder Joints, IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part B, Vol.20 No.2, pp. 161-166 (1997).
6. C. Zhang, Interface Microstructure and Mechanical Fatigue Behavior of Sn63Pb37 on Electroplated Cu and Ni, IEEE Electronic Components and Technology Conference, pp. 138-141 (2000).
7. J. W. Wang, P. G. Kim, K. N. Tu, D. R. Frear, and P. Thompson, Solder reaction-assisted crystallization of electroless Ni-P under bump metallization in low flip chip technology, Journal of Applied Physics, Vol.85, No.12, pp. 8456-8463 (1999).
8. J. H. Yeh, Interfacial Reactions and Wetting Property between Electroless Ni in the Under Bump Metallurgy (UBM) and Sn-37Pb Solder, Master Thesis, National Tsing Hua University, Hsinchu, Taiwan (2000).
9. K. L. Lin and Y. C. Liu, Manufacturing of Cu/Electroless Nickel/Sn-Pb Flip Chip Solder Bumps, IEEE Transactions on Advanced Packaging, Vol.22 No.4, pp. 575-579 (1999).
10. A. Maeda, T. Umemura, Q. Wu, Y. Tomita and T. Abe, Formation of Ni3Sn4 at the Boundary between Sn-Pb Soldering Layers and Au/Ni Plated Coatings, International Symposium on Advanced Packaging Materials (2000).
11. K. L. Lin and K. T. Hsu, Manufacturing and Materials Properties of Ti/Cu/Electroless Ni/Solder Bump on Si, IEEE Transactions on Components and Packaging Technologies, Vol.23 No.4, pp. 657-660 (2000).
12. K. Yokomine, N. Shimizu, Y. Miyamoto, Y. Iwata, D. Love and K. Newman, Development of Electroless Ni/Au Plated Build-Up Flip Chip Package with Highly Reliable Solder Joints, IEEE Components and Technology Conference (2001).
13. Y. D. Jeon and K. W. Paik, Studies on Ni-Sn Intermetallic Compound and P-rich Ni Layer at the Electroless Nickel UBM Solder Interface and Their Effects on Flip Chip Solder Joint Reliability, IEEE Electronic Components and Technology Conference (2001).
14. C. L. Lee and K. L. Lin, The Interaction Kinetics and Compound Formation Between Electroless Ni-P and Solder, Thin Solis Film, 249, pp. 201-206 (1994).
15. S. AnhÖck, A. Ostmann, H. Oppermann, R. Aschenbrenner and H. Reichl, Reliability of Electroless Nickel for High Temperature Applications, International Symposium on Advanced Packaging Materials, pp. 9256-261 (1999).
16. S. Wiegele, P. Thompson, R. Lee and E. Ramsland, Reliability and Process Characterization of Electroless Nickel-Gold/Solder Flip Chip Interconnect, IEEE Electronic Components and Technology Conference pp. 861-866 (1998).
17. P. Su, T. Korhonen, M. Korhonen and C. Y. Li, Intermetallic Phase Formation and Growth Kinetics at the Interface Between Molten Solder and Ni-Containing Under Bump Metallization, IEEE Electronic Components and Technology Conference pp. 861-1718 (2000).
18. B. L. Young, Wetting Behavior and Interfacial Reactions between Lead-Free Solder and EN in UBM, Master Thesis, National Tsing Hua University, Hsinchu, Taiwan (2000).
19. C. S. Huang, Y. M. Chen, and J. G. Duh,  Phase Transformation between Ni/Cu UBM and Eutectic Sn-Pb Solder in Flip Chip Technology, submitted to Journal of Electronic Materials (2002).
20. K. M. Chow, W. Y. Ng and L. K. Yeung, "Barrier properties of Ni, Pd and Pd-Fe for Cu diffusion", Surface and Coatings Technology, Vol. 105, pp. 56-64 (1998).
21. D. R. Marx, W. R. Bitler, H. W. Pickering, American Electroplaters’ Society Project No. 29 (1985).
22. U. Kűrpick, "Self-diffusion on (100), (110), and (111) surfaces of Ni and Cu: A detailed study of prefactors and activation energies", The American Physical Society, Physical Review B, Vol. 64 075418 (2001).
23. J. Hajdu and S. Zabroky, Metal Finishing pp. 44 (2000).
24. K. N. Tu and K. Zeng, Tin-lead (SnPb) solder reaction in flip chip technology, Materials Science and Engineering, R 34, pp. 1-58 (2001).
25. H. M. Tong, Microelectronics packaging: present and future, Materials Chemistry and Physics, 40, pp. 147-161 (1995).
26. J. Bogdanski, J. Leal, and H. Yang, Practical Design Issues to Bump and Flip, International Symposium on Microelectronics, pp. 111-115 (1997).
27. K. L. Lin and Y.C. Liu, Shearing Strength and Materials Interaction during Reflow of Al/Cu/Electroless Nickel/ solder bump, Electronic Components and Technology Conference, pp. 607 (1999).
28. A. Ostmann, Ch. Jauerning, Ch. Dombrowski, J. Kloeser, R. Aschenbrenner, and H. Reichl, Electroless Metal Deposition for Back-End Wafer Processes, Advancing Microelectronics, pp. 23 (1999).
29. A. J. G. Strandjord, S. F. Popelar, C. A. Erickson, Break Through Developments in Electroless Nickel/Gold Plating on Copper Based Semiconductors, International Symposium on Advanced Packaging Materials, pp. 107-111 (2000).
30. P. Nash, in Phase Diagrams of Binary Nickel Alloys, ASM International, June (1991).
31. R. C. Agarwala and S. Ray, Variation of Structure in Electroless Ni-P Films With Phosphorous Content, Z. Metallkunde, 79, pp. 472 (1988).
32. P. G. Kim, J. W. Jang, K.N. Tu and D. R. Frear, Kinetic analysis of interfacial diffusion accompanied by intermetallic compound formation, Journal of Applied Physics, Vol.86 No.3, pp. 1266-1272 (1999).
33. S. V. S. Tyagi, V. K. Tondon, and S. Ray, Study of the Crystallization Behavior of Electroless Ni-P Films by Electron and X-ray Diffraction, Z. Metallkd., 76(7), 492 (1985).
34. J. Hajdu and S. Zabroky, The Future of Electroless Nickel, Metal Finishing, p. 44 (2000).
35. L. Hexing, H. Chen, S. Dong, J. Yang and J. F. Deng, Study on the Crystallization Process of Ni-P Amorphous Alloy, Applied Surface Science 125, pp. 115-119 (1998).
36. P. Sampath Kumar and P. Kesavan Nair, Studies on Crystallization of Electroless Ni-P Deposits, Journal of Materials Proceeding Technology 56, pp. 511-520 (1996).
37. M. E. Glicksman, in Diffusion in Solids, Field Theory, Solid-State Principles, and Applications, (John Wiley and Sons, Inc. 2000).
38. J. G. Duh, Ph. D. Dissertation, Purdue University, U.S.A. (1983).
39. J. G. Duh and M. A. Dayananda, Diffusion and Defect Data 39, pp. 1-50 (1985).
40. M.A. Dayananda and D.A. Behnke, Effective Interdiffusion Coefficients and Penetration Depths, Scrip. Metall. Vol. 25, pp. 2187-2191 (1991).
41. L. Onsager, Annals, New York Acad. of Sciences, 46, p. 241 (1945).
42. Smithells and C. James, Diffusion in Metals, in Smithells Brandes Metals Reference Book, 7th Edition, (Boston, 1992).
43. G. Neumann and V. Tölle, Diffusion of Cr, Mn, Fe and Ni in Copper, Defect and Diffusion forum, Vol.95-98, pp. 703-708 (1988).
44. J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. Fiori and E. Lifshin, in Scanning Electron Microscopy and X-ray Microanalysis, Plenum Press, (1992).
45. M. A. Dayananda, Diffusion in multicomponent alloys: Challenges and Problems, Defect Diffusion Forum, vol. 83, pp. 73 (1992).
46. E. Robert and Reed-Hill, in Physical metallurgy principles, (PWS-KENT, Boston, 1992).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top