|
Contents 摘要-------------------------------------------------------------------------- I ABSTRACT -------------------------------------------------------------- II 致謝------------------------------------------------------------------------ III Contents ----------------------------------------------------------------- IV List of Tables ----------------------------------------------------------- VI List of Figures ------------------------------------------------------- VIII Chapter 1. Introduction ---------------------------------------------------------------- 1 Chapter 2. Review of Experiment Theory -------------------------------------- 6 2-1. Design of Experiment (DOE) ---------------------------------------------- 6 2-2. Inductively Coupled Plasma (ICP) ---------------------------------------- 9 2-3. Etchant Chemistry --------------------------------------------------------- 15 2-4. Epitaxy Constitution ------------------------------------------------------- 19 Chapter 3. Experiment ---------------------------------------------------------------- 22 3-1. Experiment using Photo-resist -------------------------------------------- 23 3-2. Experiment using Silicon Nitride (Hard Mask) ------------------------ 24 3-3. Design of Experiment ----------------------------------------------------- 24 3-4. Experiment of Verification ------------------------------------------------ 25 Chapter 4. Result and Discussion ------------------------------------------------- 31 4-1. Experiment using Photo-resist -------------------------------------------- 31 4-2. Experiment using Silicon Nitride (Hard Mask) ------------------------ 34 4-3. Design of Experiment ----------------------------------------------------- 39 4-4. Experiment of Verification ------------------------------------------------ 43 Chapter 5. Conclusion ----------------------------------------------------------------- 82 Reference ------------------------------------------------------------------------------------ 84 List of Tables Table 2-1-1. The table of orthogonal array of L9 (34) and the response. -------------- 8 Table 2-2-1. The comparison between high-density plasma and capacitively coupled RF plasma. ------------------------------------------------------------------- 13 Table 2-2-2. Applications of inductively coupled plasmas. --------------------------- 13 Table 2-3-1. The boiling points of some etch products in III-V semiconductors. ---------------------------------------------------------------------------------- 18 Table 3-1. The original structure of the epitaxial-wafer. ---------------------------- 27 Table 3-2. The ranges of four parameters for Experiment using Photo-resist. --- 27 Table 3-3. The wafer profile with a 3000Å thick silicon nitride and the epitaxial-layer for Experiment using Silicon Nitride (Hard Mask) and Design of Experiment. ------------------------------------------------------ 27 Table 3-4. The ranges of four parameters for Experiment using Silicon Nitride (Hard Mask). ----------------------------------------------------------------- 28 Table 3-5. The three levels of the four factors of Taguchi L9 method. ------------ 28 Table 3-6. The recipe for each run in the orthogonal array L9 (34). --------------- 28 Table 3-7. The wafer profile with a 1000Å thick silicon nitride and the epitaxial-layer for Experiment of Verification. -------------------------- 29 Table 4-1-1. The whole recipes and the response results in the Experiment using Photo-resist. ------------------------------------------------------------------ 46 Table 4-2-1. The whole recipes and the response results in the Experiment using Silicon Nitride (Hard Mask). ---------------------------------------------- 47 Table 4-3-1. The results of Run No. 1 using the recipe, RF1—50W / RF2—400W / 3mTorr / BCl3—20sccm / HBr—20sccm, in Taguchi L9 Method. ------- 48 Table 4-3-2. The results of Run No. 2 using the recipe, RF1—50W / RF2—600W / 6mTorr / BCl3—27sccm / HBr—13sccm, in Taguchi L9 Method. ------- 48 Table 4-3-3. The results of Run No. 3 using the recipe, RF1—50W / RF2—850W / 10mTorr / BCl3—32sccm / HBr—8sccm, in Taguchi L9 Method. ------- 49 Table 4-3-4. The results of Run No. 4 using the recipe, RF1—120W / RF2—400W / 6mTorr / BCl3—32sccm / HBr—8sccm, in Taguchi L9 Method. -------- 49 Table 4-3-5. The results of Run No. 5 using the recipe, RF1—120W / RF2—600W / 10mTorr / BCl3—20sccm / HBr—20sccm, in Taguchi L9 Method. ----- 50 Table 4-3-6. The results of Run No. 6 using the recipe, RF1—120W / RF2—850W / 3mTorr / BCl3—27sccm / HBr—13sccm, in Taguchi L9 Method. ------- 50 Table 4-3-7. The results of Run No. 7 using the recipe, RF1—200W / RF2—400W / 10mTorr / BCl3—27sccm / HBr—13sccm, in Taguchi L9 Method, and the etching time was 158sec. --------------------------------------------------- 51 Table 4-3-8. The results of Run No. 8 using the recipe, RF1—200W / RF2—600W / 3mTorr / BCl3—32sccm / HBr—8sccm, in Taguchi L9 Method. -------- 51 Table 4-3-9. The results of Run No. 9 using the recipe, RF1—200W / RF2—850W / 6mTorr / BCl3—20sccm / HBr—20sccm, in Taguchi L9 Method. ------- 52 Table 4-3-10. The analysis results for each level of four factors in Taguchi L9 Method. ---------------------------------------------------------------------------------- 52 Table 4-4-1. The results of Base-line 01 using the recipe, RF1—120W / RF2—850W / 10mTorr / BCl3—20sccm / HBr—20sccm. --------------------------------- 53 Table 4-4-2. The results of Base-line 02 using the recipe, RF1—120W / RF2—850W / 10mTorr / BCl3—20sccm / HBr—20sccm. --------------------------------- 53 Table 4-4-3. The results of Critical Condition 01 (After a special recipe) using the recipe, RF1—120W / RF2—850W / 10mTorr / BCl3—20sccm / HBr—20sccm. ---------------------------------------------------------------- 54 Table 4-4-4. The results of Critical Condition 02 (Stand by for 24 hours) using the recipe, RF1—120W / RF2—850W / 10mTorr / BCl3—20sccm / HBr—20sccm. ---------------------------------------------------------------- 54 Table 4-4-5. The results of Critical Condition 03 (After wet-clean and dry-clean) using the recipe, RF1—120W / RF2—850W / 10mTorr / BCl3—20sccm / HBr—20sccm. ---------------------------------------------------------------- 55 List of Figures Figure 1-1. A representative epitaxial layer structure of a GaAs HBT. ------------- 4 Figure 1-2. Simplified schematic cross sections of a GaAs HBT and a monolithically integrated Schottky diode. --------------------------------- 4 Figure 1-3. Schematic diagram of the cross section of etched sample and the responses to get in this study. ----------------------------------------------- 5 Figure 2-2-1. A sketch of the structure of an inductively coupled plasma reactor. --------------------------------------------------------------------------------- 14 Figure 2-2-2. A block diagram of an inductively coupled plasma system. ---------- 14 Figure 2-4-1. The energy bandgap as a function of lattice constant for several elemental and compound semiconductors. ------------------------------ 21 Figure 3-1. The flow chart of this study, which is divided into 4 parts of experiments. ----------------------------------------------------------------- 30 Figure 3-2. The three samples were named as “a”, “b”, and “c” from top to bottom, and the direction of carrier loaded into ICP system was fixed. ------- 30 Figure 4-1-1(a). SEM photo shows the result of the recipe, RF1—200W / RF2—850W / 5mTorr / BCl3—40sccm, without baking the mask (photo-resist) at low magnification. -------------------------------------------------------- 56 Figure 4-1-1(b). SEM photo shows the result of the recipe, RF1—200W / RF2—850W / 5mTorr / BCl3—40sccm, without baking the mask (PR) at high magnification. ------------------------------------------------------------- 56 Figure 4-1-2(a). SEM photo shows the result of the recipe, RF1—200W / RF2—850W / 5mTorr / BCl3—40sccm, with baking the mask (PR) at low magnification. ------------------------------------------------------------- 56 Figure 4-1-2(b). SEM photo shows the result of the recipe, RF1—200W / RF2—850W / 5mTorr / BCl3—40sccm, with baking the mask (PR) at high magnification. ------------------------------------------------------------- 56 Figure 4-1-3(a). SEM photo shows the result of the recipe, RF1—100W / RF2—850W / 5mTorr / BCl3—40sccm, with baking the mask (PR) at low magnification. ------------------------------------------------------------- 57 Figure 4-1-3(b). SEM photo shows the result of the recipe, RF1—100W / RF2—850W / 5mTorr / BCl3—40sccm, with baking the mask (PR) at high magnification. ------------------------------------------------------------- 57 Figure 4-1-4. SEM photo shows the result of the recipe, RF1—100W / RF2—400W / 5mTorr / BCl3—40sccm, with baking the mask (PR). ----------------- 57 Figure 4-1-5(a). SEM photo shows the result of the recipe, RF1—50W / RF2—400W / 5mTorr / BCl3—40sccm, with baking the mask (PR) at low magnification. ------------------------------------------------------------- 57 Figure 4-1-5(b). SEM photo shows the result of the recipe, RF1—50W / RF2—400W / 5mTorr / BCl3—40sccm, with baking the mask (PR) at high magnification. ------------------------------------------------------------- 58 Figure 4-1-6(a). SEM photo shows the result of the recipe, RF1—50W / RF2—400W / 3mTorr / BCl3—40sccm, with baking the mask (PR) at low magnification. ------------------------------------------------------------- 58 Figure 4-1-6(b). SEM photo shows the result of the recipe, RF1—50W / RF2—400W / 3mTorr / BCl3—40sccm, with baking the mask (PR) at high magnification. ------------------------------------------------------------- 58 Figure 4-1-7(a). SEM photo shows the result of the recipe, RF1—50W / RF2—400W / 10mTorr / BCl3—40sccm, with baking the mask (PR) at high magnification. ------------------------------------------------------------- 58 Figure 4-1-7(b). SEM photo shows the surface morphology of the recipe, RF1—50W / RF2—400W / 10mTorr / BCl3—40sccm, with baking the mask (PR). ------------------------------------------------------------------------------- 59 Figure 4-1-8(a). SEM photo shows the result of the recipe, RF1—50W / RF2—400W / 15mTorr / BCl3—40sccm, with baking the mask (PR) at low magnification. ------------------------------------------------------------- 59 Figure 4-1-8(b). SEM photo shows the result of the recipe, RF1—50W / RF2—400W / 15mTorr / BCl3—40sccm, with baking the mask (PR) at high magnification. ------------------------------------------------------------- 59 Figure 4-1-9(a). SEM photo shows the result of the recipe, RF1—50W / RF2—400W / 3mTorr / BCl3—20sccm / HBr—20sccm, with baking the mask (PR) at low magnification. -------------------------------------------------------- 59 Figure 4-1-9(b). SEM photo shows the result of the recipe, RF1—50W / RF2—400W / 3mTorr / BCl3—20sccm / HBr—20sccm, with baking the mask (PR) at high magnification. ------------------------------------------------------- 60 Figure 4-1-10(a). SEM photo shows the result of the recipe, RF1—50W / RF2—400W / 5mTorr / BCl3—20sccm / HBr—20sccm, with baking the mask (PR) at low magnification. --------------------------------------------------- 60 Figure 4-1-10(b). SEM photo shows the result of the recipe, RF1—50W / RF2—400W / 5mTorr / BCl3—20sccm / HBr—20sccm, with baking the mask (PR) at high magnification. -------------------------------------------------- 60 Figure 4-1-11(a). SEM photo shows the result of the recipe, RF1—50W / RF2—400W / 10mTorr / BCl3—20sccm / HBr—20sccm, with baking the mask (PR) at low magnification. --------------------------------------------------- 60 Figure 4-1-11(b). SEM photo shows the result of the recipe, RF1—50W / RF2—400W / 10mTorr / BCl3—20sccm / HBr—20sccm, with baking the mask (PR) at high magnification. -------------------------------------------------- 61 Figure 4-2-1(a). SEM micrograph shows the original profile of silicon nitride, hard mask, at low magnification, and the thickness of nitride is 3000Å. ----------------------------------------------------------------------------- 61 Figure 4-2-1(b). SEM micrograph shows the original profile of silicon nitride, hard mask, at high magnification, and the thickness of nitride is 3000Å. ----------------------------------------------------------------------------- 61 Figure 4-2-2(a). SEM photo shows the result of the recipe, RF1—50W / RF2—400W / 5mTorr / BCl3—40sccm, with hard mask (silicon nitride) at low magnification. ----------------------------------------------------------- 61 Figure 4-2-2(b). SEM photo shows the result of the recipe, RF1—50W / RF2—400W / 5mTorr / BCl3—40sccm, with hard mask (silicon nitride) at high magnification. ----------------------------------------------------------- 62 Figure 4-2-3(a). SEM photo shows the result of the recipe, RF1—50W / RF2—400W / 5mTorr / BCl3—20sccm / HBr—20sccm, with hard mask (silicon nitride) at low magnification. ----------------------------------------- 62 Figure 4-2-3(b). SEM photo shows the result of the recipe, RF1—50W / RF2—400W / 5mTorr / BCl3—20sccm / HBr—20sccm, with hard mask (silicon nitride) at high magnification. ---------------------------------------- 62 Figure 4-2-4(a). SEM photo shows the result of the recipe, RF1—200W / RF2—850W / 5mTorr / BCl3—40sccm, with hard mask (silicon nitride) at low magnification. ----------------------------------------------------------- 62 Figure 4-2-4(b). SEM photo shows the result of the recipe, RF1—200W / RF2—850W / 5mTorr / BCl3—40sccm, with hard mask (silicon nitride) at high magnification. ----------------------------------------------------------- 63 Figure 4-2-5(a). SEM photo shows the result of the recipe, RF1—200W / RF2—850W / 5mTorr / BCl3—20sccm / HBr—20sccm, with hard mask (silicon nitride) at low magnification. ----------------------------------------- 63 Figure 4-2-5(b). SEM photo shows the result of the recipe, RF1—200W / RF2—850W / 5mTorr / BCl3—20sccm / HBr—20sccm, with hard mask (silicon nitride) at high magnification. ---------------------------------------- 63 Figure 4-2-6(a). SEM photo shows the result of the recipe, RF1—200W / RF2—850W / 3mTorr / BCl3—40sccm, with hard mask (silicon nitride) at low magnification. ----------------------------------------------------------- 63 Figure 4-2-6(b). SEM photo shows the result of the recipe, RF1—200W / RF2—850W / 3mTorr / BCl3—40sccm, with hard mask (silicon nitride) at high magnification. ----------------------------------------------------------- 64 Figure 4-2-7(a). SEM photo shows the result of the recipe, RF1—200W / RF2—850W / 3mTorr / BCl3—20sccm / HBr—20sccm, with hard mask (silicon nitride) at low magnification. ----------------------------------------- 64 Figure 4-2-7(b). SEM photo shows the result of the recipe, RF1—200W / RF2—850W / 3mTorr / BCl3—20sccm / HBr—20sccm, with hard mask (silicon nitride) at high magnification. ---------------------------------------- 64 Figure 4-2-8(a). SEM photo shows the result of the recipe, RF1—200W / RF2—850W / 10mTorr / BCl3—40sccm, with hard mask (silicon nitride) at low magnification. ----------------------------------------------------------- 64 Figure 4-2-8(b). SEM photo shows the result of the recipe, RF1—200W / RF2—850W / 10mTorr / BCl3—40sccm, with hard mask (silicon nitride) at high magnification. ----------------------------------------------------------- 65 Figure 4-2-9(a). SEM photo shows the result of the recipe, RF1—200W / RF2—850W / 15mTorr / BCl3—40sccm, with hard mask (silicon nitride) at low magnification. ----------------------------------------------------------- 65 Figure 4-2-9(b). SEM photo shows the result of the recipe, RF1—200W / RF2—850W / 15mTorr / BCl3—40sccm, with hard mask (silicon nitride) at high magnification. ----------------------------------------------------------- 65 Figure 4-2-10(a). SEM photo shows the result of the recipe, RF1—100W / RF2—850W / 5mTorr / BCl3—40sccm, with hard mask (silicon nitride) at low magnification. ----------------------------------------------------------- 65 Figure 4-2-10(b). SEM photo shows the result of the recipe, RF1—100W / RF2—850W / 5mTorr / BCl3—40sccm, with hard mask (silicon nitride) at high magnification. ----------------------------------------------------------- 66 Figure 4-2-11(a). SEM photo shows the result of the recipe, RF1—100W / RF2—850W / 5mTorr / BCl3—20sccm / HBr—20sccm, with hard mask (silicon nitride) at low magnification. ----------------------------------------- 66 Figure 4-2-11(b). SEM photo shows the result of the recipe, RF1—100W / RF2—850W / 5mTorr / BCl3—20sccm / HBr—20sccm, with hard mask (silicon nitride) at high magnification. ---------------------------------------- 66 Figure 4-2-12(a). SEM photo shows the result of the recipe, RF1—200W / RF2—400W / 5mTorr / BCl3—40sccm, with hard mask (silicon nitride) at low magnification. ----------------------------------------------------------- 66 Figure 4-2-12(b). SEM photo shows the result of the recipe, RF1—200W / RF2—400W / 5mTorr / BCl3—40sccm, with hard mask (silicon nitride) at high magnification. ----------------------------------------------------------- 67 Figure 4-2-13(a). SEM photo shows the result of the recipe, RF1—200W / RF2—400W / 5mTorr / BCl3—20sccm / HBr—20sccm, with hard mask (silicon nitride) at low magnification. ----------------------------------------- 67 Figure 4-2-13(b). SEM photo shows the result of the recipe, RF1—200W / RF2—400W / 5mTorr / BCl3—20sccm / HBr—20sccm, with hard mask (silicon nitride) at high magnification. ---------------------------------------- 67 Figure 4-2-14(a). SEM photo shows the result of the recipe, RF1—100W / RF2—400W / 5mTorr / BCl3—40sccm, with hard mask (silicon nitride) at low magnification. ----------------------------------------------------------- 67 Figure 4-2-14(b). SEM photo shows the result of the recipe, RF1—100W / RF2—400W / 5mTorr / BCl3—40sccm, with hard mask (silicon nitride) at high magnification. ----------------------------------------------------------- 68 Figure 4-2-15(a). SEM photo shows the result of the recipe, RF1—100W / RF2—400W / 5mTorr / BCl3—20sccm / HBr—20sccm, with hard mask (silicon nitride) at low magnification. ----------------------------------------- 68 Figure 4-2-15(b). SEM photo shows the result of the recipe, RF1—100W / RF2—400W / 5mTorr / BCl3—20sccm / HBr—20sccm, with hard mask (silicon nitride) at high magnification. ---------------------------------------- 68 Figure 4-3-1(a). SEM photo shows the result of the recipe No. 1, RF1—50W / RF2—400W / 3mTorr / BCl3—20sccm / HBr—20sccm, of Taguchi method with hard mask (silicon nitride) for 120sec at position “a”. ----------------------------------------------------------------------------- 68 Figure 4-3-1(b). SEM photo shows the result of the recipe No. 1, RF1—50W / RF2—400W / 3mTorr / BCl3—20sccm / HBr—20sccm, of Taguchi method with hard mask (silicon nitride) for 120sec at position “b”. ----------------------------------------------------------------------------- 69 Figure 4-3-1(c). SEM photo shows the result of the recipe No. 1, RF1—50W / RF2—400W / 3mTorr / BCl3—20sccm / HBr—20sccm, of Taguchi method with hard mask (silicon nitride) for 120sec at position “c”. ----------------------------------------------------------------------------- 69 Figure 4-3-2(a). SEM photo shows the result of the recipe No. 2, RF1—50W / RF2—600W / 6mTorr / BCl3—27sccm / HBr—13sccm, of Taguchi method with hard mask (silicon nitride) for 120sec at position “a”. ----------------------------------------------------------------------------- 69 Figure 4-3-2(b). SEM photo shows the result of the recipe No. 2, RF1—50W / RF2—600W / 6mTorr / BCl3—27sccm / HBr—13sccm, of Taguchi method with hard mask (silicon nitride) for 120sec at position “b”. ----------------------------------------------------------------------------- 69 Figure 4-3-2(c). SEM photo shows the result of the recipe No. 2, RF1—50W / RF2—600W / 6mTorr / BCl3—27sccm / HBr—13sccm, of Taguchi method with hard mask (silicon nitride) for 120sec at position “c”. ----------------------------------------------------------------------------- 70 Figure 4-3-3(a). SEM photo shows the result of the recipe No. 3, RF1—50W / RF2—850W / 10mTorr / BCl3—32sccm / HBr—8sccm, of Taguchi method with hard mask (silicon nitride) for 120sec at position “a”. ----------------------------------------------------------------------------- 70 Figure 4-3-3(b). SEM photo shows the result of the recipe No. 3, RF1—50W / RF2—850W / 10mTorr / BCl3—32sccm / HBr—8sccm, of Taguchi method with hard mask (silicon nitride) for 120sec at position “b”. ----------------------------------------------------------------------------- 70 Figure 4-3-3(c). SEM photo shows the result of the recipe No. 3, RF1—50W / RF2—850W / 10mTorr / BCl3—32sccm / HBr—8sccm, of Taguchi method with hard mask (silicon nitride) for 120sec at position “c”. ----------------------------------------------------------------------------- 70 Figure 4-3-4(a). SEM photo shows the result of the recipe No. 4, RF1—120W / RF2—400W / 6mTorr / BCl3—32sccm / HBr—8sccm, of Taguchi method with hard mask (silicon nitride) for 120sec at position “a”. ----------------------------------------------------------------------------- 71 Figure 4-3-4(b). SEM photo shows the result of the recipe No. 4, RF1—120W / RF2—400W / 6mTorr / BCl3—32sccm / HBr—8sccm, of Taguchi method with hard mask (silicon nitride) for 120sec at position “b”. ----------------------------------------------------------------------------- 71 Figure 4-3-4(c). SEM photo shows the result of the recipe No. 4, RF1—120W / RF2—400W / 6mTorr / BCl3—32sccm / HBr—8sccm, of Taguchi method with hard mask (silicon nitride) for 120sec at position “c”. ----------------------------------------------------------------------------- 71 Figure 4-3-5(a). SEM photo shows the result of the recipe No. 5, RF1—120W / RF2—600W / 10mTorr / BCl3—20sccm / HBr—20sccm, of Taguchi method with hard mask (silicon nitride) for 120sec at position “a”. ----------------------------------------------------------------------------- 71 Figure 4-3-5(b). SEM photo shows the result of the recipe No. 5, RF1—120W / RF2—600W / 10mTorr / BCl3—20sccm / HBr—20sccm, of Taguchi method with hard mask (silicon nitride) for 120sec at position “b”. ----------------------------------------------------------------------------- 72 Figure 4-3-5(c). SEM photo shows the result of the recipe No. 5, RF1—120W / RF2—600W / 10mTorr / BCl3—20sccm / HBr—20sccm, of Taguchi method with hard mask (silicon nitride) for 120sec at position “c”. ----------------------------------------------------------------------------- 72 Figure 4-3-6(a). SEM photo shows the result of the recipe No. 6, RF1—120W / RF2—850W / 3mTorr / BCl3—27sccm / HBr—13sccm, of Taguchi method with hard mask (silicon nitride) for 120sec at position “a”. ----------------------------------------------------------------------------- 72 Figure 4-3-6(b). SEM photo shows the result of the recipe No. 6, RF1—120W / RF2—850W / 3mTorr / BCl3—27sccm / HBr—13sccm, of Taguchi method with hard mask (silicon nitride) for 120sec at position “b”. ----------------------------------------------------------------------------- 72 Figure 4-3-6(c). SEM photo shows the result of the recipe No. 6, RF1—120W / RF2—850W / 3mTorr / BCl3—27sccm / HBr—13sccm, of Taguchi method with hard mask (silicon nitride) for 120sec at position “c”. ----------------------------------------------------------------------------- 73 Figure 4-3-7(a). SEM photo shows the result of the recipe No. 7, RF1—200W / RF2—400W / 10mTorr / BCl3—27sccm / HBr—13sccm, of Taguchi method with hard mask (silicon nitride) for 158sec at position “a”. ----------------------------------------------------------------------------- 73 Figure 4-3-7(b). SEM photo shows the result of the recipe No. 7, RF1—200W / RF2—400W / 10mTorr / BCl3—27sccm / HBr—13sccm, of Taguchi method with hard mask (silicon nitride) for 158sec at position “b”. ----------------------------------------------------------------------------- 73 Figure 4-3-7(c). SEM photo shows the result of the recipe No. 7, RF1—200W / RF2—400W / 10mTorr / BCl3—27sccm / HBr—13sccm, of Taguchi method with hard mask (silicon nitride) for 158sec at position “c”. ----------------------------------------------------------------------------- 73 Figure 4-3-8(a). SEM photo shows the result of the recipe No. 8, RF1—200W / RF2—600W / 3mTorr / BCl3—32sccm / HBr—8sccm, of Taguchi method with hard mask (silicon nitride) for 120sec at position “a”. ----------------------------------------------------------------------------- 74 Figure 4-3-8(b). SEM photo shows the result of the recipe No. 8, RF1—200W / RF2—600W / 3mTorr / BCl3—32sccm / HBr—8sccm, of Taguchi method with hard mask (silicon nitride) for 120sec at position “b”. ----------------------------------------------------------------------------- 74 Figure 4-3-8(c). SEM photo shows the result of the recipe No. 8, RF1—200W / RF2—600W / 3mTorr / BCl3—32sccm / HBr—8sccm, of Taguchi method with hard mask (silicon nitride) for 120sec at position “c”. ----------------------------------------------------------------------------- 74 Figure 4-3-9(a). SEM photo shows the result of the recipe No. 9, RF1—200W / RF2—850W / 6mTorr / BCl3—20sccm / HBr—20sccm, of Taguchi method with hard mask (silicon nitride) for 120sec at position “a”. ----------------------------------------------------------------------------- 74 Figure 4-3-9(b). SEM photo shows the result of the recipe No. 9, RF1—200W / RF2—850W / 6mTorr / BCl3—20sccm / HBr—20sccm, of Taguchi method with hard mask (silicon nitride) for 120sec at position “b”. ----------------------------------------------------------------------------- 75 Figure 4-3-9(c). SEM photo shows the result of the recipe No. 9, RF1—200W / RF2—850W / 6mTorr / BCl3—20sccm / HBr—20sccm, of Taguchi method with hard mask (silicon nitride) for 120sec at position “c”. ----------------------------------------------------------------------------- 75 Figure 4-3-10. Angle of epitaxial layer as functions of RF1 power, RF2 power, pressure, and gas flow ratio of BCl3/HBr. --------------------------- 75 Figure 4-3-11. Foot angle (the angle of substrate) as functions of RF1 power, RF2 power, pressure, and gas flow ratio of BCl3/HBr. ------------------ 75 Figure 4-3-12. Etch rate of epitaxial layer as functions of RF1 power, RF2 power, pressure, and gas flow ratio of BCl3/HBr. --------------------------- 76 Figure 4-3-13. Etch rate of silicon nitride layer as functions of RF1 power, RF2 power, pressure, and gas flow ratio of BCl3/HBr. ------------------ 76 Figure 4-3-14. Selectivity of epitaxial layer to nitride as functions of RF1 power, RF2 power, pressure, and gas flow ratio of BCl3/HBr. ------------- 76 Figure 4-3-15. Average roughness [Ra], where there was no pattern, as functions of RF1 power, RF2 power, pressure, and gas flow ratio of BCl3/HBr. ----------------------------------------------------------------------------- 76 Figure 4-4-1. SEM micrograph shows the original profile of silicon nitride, hard mask, and the thickness of nitride is 1000Å. ------------------------ 77 Figure 4-4-2(a). SEM photo shows the result of the recipe, RF1—120W / RF2—850W / 10mTorr / BCl3—20sccm / HBr—20sccm, from Taguchi analysis method with hard mask (silicon nitride) for 30sec etching at position “a” for Baseline 01. ----------------------------------------- 77 Figure 4-4-2(b). SEM photo shows the result of the recipe, RF1—120W / RF2—850W / 10mTorr / BCl3—20sccm / HBr—20sccm, from Taguchi analysis method with hard mask (silicon nitride) for 30sec etching at position “b” for Baseline 01. ----------------------------------------- 77 Figure 4-4-2(c). SEM photo shows the result of the recipe, RF1—120W / RF2—850W / 10mTorr / BCl3—20sccm / HBr—20sccm, from Taguchi analysis method with hard mask (silicon nitride) for 30sec etching at position “c” for Baseline 01. ------------------------------------------ 77 Figure 4-4-3(a). SEM photo shows the result of the recipe, RF1—120W / RF2—850W / 10mTorr / BCl3—20sccm / HBr—20sccm, from Taguchi analysis method with hard mask (silicon nitride) for 30sec etching at position “a” for Baseline 02. ----------------------------------------- 78 Figure 4-4-3(b). SEM photo shows the result of the recipe, RF1—120W / RF2—850W / 10mTorr / BCl3—20sccm / HBr—20sccm, from Taguchi analysis method with hard mask (silicon nitride) for 30sec etching at position “b” for Baseline 02. ----------------------------------------- 78 Figure 4-4-3(c). SEM photo shows the result of the recipe, RF1—120W / RF2—850W / 10mTorr / BCl3—20sccm / HBr—20sccm, from Taguchi analysis method with hard mask (silicon nitride) for 30sec etching at position “c” for Baseline 02. ------------------------------------------ 78 Figure 4-4-4(a). SEM photo shows the result of the recipe, RF1—120W / RF2—850W / 10mTorr / BCl3—20sccm / HBr—20sccm, with hard mask (silicon nitride) for 30sec etching at position “a” for Critical Condition 01 (After a special recipe). ------------------------------------------------ 78 Figure 4-4-4(b). SEM photo shows the result of the recipe, RF1—120W / RF2—850W / 10mTorr / BCl3—20sccm / HBr—20sccm, with hard mask (silicon nitride) for 30sec etching at position “b” for Critical Condition 01 (After a special recipe). ------------------------------------------------ 79 Figure 4-4-4(c). SEM photo shows the result of the recipe, RF1—120W / RF2—850W / 10mTorr / BCl3—20sccm / HBr—20sccm, with hard mask (silicon nitride) for 30sec etching at position “c” for Critical Condition 01 (After a special recipe). ------------------------------------------------ 79 Figure 4-4-5(a). SEM photo shows the result of the recipe, RF1—120W / RF2—850W / 10mTorr / BCl3—20sccm / HBr—20sccm, with hard mask (silicon nitride) for 30sec etching at position “a” for Critical Condition 02 (Stand by for 24 hours). ------------------------------------------------ 79 Figure 4-4-5(b). SEM photo shows the result of the recipe, RF1—120W / RF2—850W / 10mTorr / BCl3—20sccm / HBr—20sccm, with hard mask (silicon nitride) for 30sec etching at position “b” for Critical Condition 02 (Stand by for 24 hours). ------------------------------------------------ 79 Figure 4-4-5(c). SEM photo shows the result of the recipe, RF1—120W / RF2—850W / 10mTorr / BCl3—20sccm / HBr—20sccm, with hard mask (silicon nitride) for 30sec etching at position “c” for Critical Condition 02 (Stand by for 24 hours). ------------------------------------------------ 80 Figure 4-4-6(a). SEM photo shows the result of the recipe, RF1—120W / RF2—850W / 10mTorr / BCl3—20sccm / HBr—20sccm, with hard mask (silicon nitride) for 30sec etching at position “a” for Critical Condition 03 (After wet-clean and dry-clean). -------------------------------------- 80 Figure 4-4-6(b). SEM photo shows the result of the recipe, RF1—120W / RF2—850W / 10mTorr / BCl3—20sccm / HBr—20sccm, with hard mask (silicon nitride) for 30sec etching at position “b” for Critical Condition 03 (After wet-clean and dry-clean). -------------------------------------- 80 Figure 4-4-6(c). SEM photo shows the result of the recipe, RF1—120W / RF2—850W / 10mTorr / BCl3—20sccm / HBr—20sccm, with hard mask (silicon nitride) for 30sec etching at position “c” for Critical Condition 03 (After wet-clean and dry-clean). -------------------------------------- 80 Figure 4-4-7. The average etching angle of epi-layer and that of substrate for the recipe, RF1—120W / RF2—850W / 10mTorr / BCl3—20sccm / HBr—20sccm, in different chamber conditions. --------------------- 81 Figure 4-4-8. The selectivity, the etching rate of epi-layer and that of silicon nitride for the recipe, RF1—120W / RF2—850W / 10mTorr / BCl3—20sccm / HBr—20sccm, in different chamber conditions. ----------------------------------------------------------------------------- 81 Figure 4-4-9. The mean of average roughness (Ra) for the recipe, RF1—120W / RF2—850W / 10mTorr / BCl3—20sccm / HBr—20sccm, in different chamber conditions. ---------------------------------------------------- 81
|
|
[1]. Yuan, Jiann S., “SiGe, GaAs, and InP Heterojunction Bipolar Transistors,” John Wiley & Sons, 1999. [2]. Sze, S. M., “High-speed Semiconductor Devices,” John Wiley & Sons, 1990. [3]. M. F. Chang, “Current Trends in Heterojunction Bipolar Transistors,” World Scientific, 1996. [4]. R. Roy, "A Primer on the Taguchi Method," Van Nostrand Reinhold, 1990. [5]. R. H. Lochner, and J. E. Matar, “Designing for Quality: An Introduction to the Best of Taguchi and Western Methods of Statistical Experimental Design,” Chapman and Hall, 1990. [6]. G. S. Peace, “Taguchi methods: A Hands-on Approach,” Addison-Wesley, 1993. [7]. 石川馨, 藤森利美, 久米均著, 鍾朝嵩譯, “工廠實驗計劃法,” 先鋒企管, 1993. [8]. H. E. Hill, and J. W. Prane, “Applied Techniques in Statistics for Selected Industries,” Wiley Interscience, 1984. [9]. 吳玉印, “新版實驗計劃法,” 中興管理顧問公司, 1988. [10]. H. E. Taylor, “Inductively Coupled Plasma-Mass Spectrometry: Practices and Techniques,” Academic Press, p.15, 2001. [11]. J. R. Roth, “Industrial Plasma Engineering Volume 1: Principles,” Institute of Physics Publishing, 1995. [12]. O. A. Popov, “High Density Plasma Sources: design, physics, and performance,” Noyes Publications, 1995. [13]. S. Wolf, and R. N. Tauber, “Silicon Processing For The VLSI Era, Volume 1: Process Technology, 2nd Ed.,” Lattice Press, 2000. [14]. J. W. Lee, M. Devre, D. Johnson, and J. Sasserath, “A New Production Solution for High Selective and Low-Damage Etching of GaAs-Based Devices,” GaAs Mantech Conference, pp.13—16, 2000. [15]. D. Lishan, J. W. Lee, and G. Kim, “InP Processing Using an HBr High Density ICP Plasma,” GaAs Mantech Conference, pp. 175-178, 2001. [16]. J. R. Lothian, J. M. Kuo, F. Ren, and S. J. Pearton, “Plasma and Wet Chemical Etching of In0.5Ga0.5P,” Journal of Electronic Materials, Vol. 21, No. 4, pp. 441-445, 1992. [17]. D. C. Hayes, H. Cho, K. B. Jung, Y. B. Hahn, C. R. Abernathy, S. J. Pearton, F. Ren, W. S. Hobson, “Selective Dry Etching Using Inductively Coupled Plasmas Part I. GaAs/AlGaAs and GaAs/InGaP,” Applied Surface Science, Vol. 147, pp. 125-133, 1999. [18]. S. J. Pearton, “Reactive Ion Etching of III-V Semiconductors,” International Journal of Modern Physics B, Vol. 8, pp. 1781-1876, 1994. [19]. M. Tong, K. Nummila, A. Ketterson, “InAlAs/InGaAs/InP MODFET’s with Uniform Threshold Voltage Obtained by Selective Wet Gate Recess,” IEEE Electron Device Letters, Vol. 13, pp. 525-527, 1992. [20]. S. McLaughlin, C. R. Bolognesi, M. Pessa, “Effects of Selective Gate Recess Etching on the Static and Microwave Properties of InGaP/InGaAs pHEMTs,” GaAs Mantech Conference, 1999. [21]. J. W. Lee, S. J. Pearton, C. R. Abernathy, W. S. Hobson, F. Ren, and C. S. Wu, “Investigation of Wet Etching Solutions for In0.5Ga0.5P,” Solid-State Electronics, Vol. 38, pp. 1871-1874, 1995. [22]. J. W. Lee, S. J. Pearton, C. R. Abernathy, W. S. Hobson, F. Ren, “Effect of Ar Addition in ECR CH4/H2/Ar Plasma Etching of GaAs, InP, and InGaP,” Solid-State Electronics, Vol. 39, No. 7, pp. 1095-1099, 1996. [23]. T. Maeda, J. W. Lee, R. J. Shul, J. Han, J. Hong, E. S. Lambers, S. J. Pearton, C. R. Abernathy, W. S. Hobson, “Inductively Coupled Plasma Etching of III-V Semiconductors in BCl3-based Chemistries: I. GaAs, GaN, GaP, GaSb, and AlGaAs,” Applied Surface Science, Vol. 143, pp. 174-182, 1999. [24]. T. Maeda, J. W. Lee, R. J. Shul, J. Han, J. Hong, E. S. Lambers, S. J. Pearton, C. R. Abernathy, W. S. Hobson, “Inductively Coupled Plasma Etching of III-V Semiconductors in BCl3-based Chemistries: II. InP, InGaAs, InGaAsP, InAs, and AlInAs,” Applied Surface Science, Vol. 143, pp. 183-190, 1999. [25]. J. Hong, J. W. Lee, C. J. Santana C. R. Abernathy, S. J. Pearton, W. S. Hobson, F. Ren, “Plasma Etching of InGaP, AlInP and AlGaP in BCl3 environments,” Materials Science and Engineering B, Vol. 41, pp. 247-252, 1996. [26]. S. J. Pearton, “Processing of Wide Band Gap Semiconductors,” Noyes Publiscarions, 2000. [27]. D. Lishan, J. W. Lee, and G. Kim, “InP Processing Using an HBr High Density ICP Plasma,” GaAs Mantech Conference, pp. 175-178, 2001. [28]. S. J. Pearton, U. K. Chakrabarti, E. Lane, A. P. Perley, C. R. Abernathy, W. S. Hobson, and K. S. Jones, “Characteristics of III-V Dry Etching In HBr-Based Discharges,” Journal of the Electrochemical Society, 139(3), pp. 856-864, 1992. [29]. Y. Kuo and T. L. Tai, “High Temperature Reactive Ion Etching of Indium-Tin Oxide with HBr and CH4 Mixtures,” Journal of the Electrochemical Society, 145(12), pp. 4313-4317, 1998. [30]. B. Jalali, S. J. Pearton, “InP HBTs: Growth, Processing, and Applications,” Artech House, 1995. [31]. J. M. Olson, R. K. Ahrenkiel, D. J. Dunlavy, B. M. Keyes, and A. E. Kibler, “Ultralow Recombination Velocity at Ga0.5In0.5P/GaAs Heterointerfaces,” Applied Physics Letters, Vol. 55, pp. 1208-1210, 1990. [32]. S. J. Pearton, J. M. Kuo, F. Ren, A. Katz, and A. Perley, “Ion Implantation Doping and Isolation of In0.5Ga0.5P,” Applied Physics Letters, Vol. 59, pp. 1467-1469, 1991.
|
| |