跳到主要內容

臺灣博碩士論文加值系統

(3.239.4.127) 您好!臺灣時間:2022/08/16 04:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝坤哲
論文名稱:緩衝化學層對鋯鈦酸鉛厚膜高溫燒結的影響及對雷射剝離製程技術的探討
指導教授:戴念華戴念華引用關係林諭男林諭男引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:PZT雷射剝離
相關次數:
  • 被引用被引用:1
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗採用刮刀成形法 (Doctor Blading)製作鋯鈦酸鉛系 (Pb(ZrxTi1-x)O3,PZT)相對厚薄膜 (~20μm),以滿足微致動器元件微小化的需求,及達成朝向製作單層元件的目標。
一般PZT薄帶需在高溫燒結,而微機電系統所使用的矽基板,無法承受1000℃以上的高溫,因此我們在單晶氧化鋁 (sapphire) 上燒結出具最佳特性的PZT厚膜。再經由雷射剝離法,將燒結完成的厚膜,經過熱壓鍵結、剝離製程,轉移至矽基板上,以供微機電系統上的利用。但是藉由單晶基板所燒結出的薄帶會因基板束縛的關係而導致空孔、裂縫甚至撕裂,因此本研究針對此現象,探討薄帶的束縛燒結下的狀況,研究緩衝化學層在燒結下對薄帶性質的影響及探討雷射剝離法剝離前後PZT厚膜性質的變化。
由X-ray繞射圖形、SEM影像的分析,皆可證明雷射剝離後,薄帶的結晶性、微結構與電性可因緩衝化學薄膜的影響,得到更好的特性。其中具有PZT的緩衝化學薄膜的PNN-PZT薄帶擁有最佳的電性表現:Pr=41.9μC/cm2,Ec=35.6 kV/cm,漏電流密度≦10-7A/cm2。
目 錄
摘要……………………………………………………………………..Ⅰ
目錄……………………………………………………………………..Ⅱ
表目錄………………………………………………………………..…Ⅴ
圖目錄……………………………………………………………….. Ⅵ
第一章 前言……………………………………………………………..1
第二章 文獻回顧………………………………………………………..3
2.1鐵電性…………………………………….……………………..3
2.2晶相與結晶結構之關係……………….………………………..6
2.3壓電效應…………..……………………………………………11
2.4三元系或多元系壓電陶瓷……..………………………………13
2.5鐵電薄膜在微機電系統上的應用……..………………………14
2.5.1微機電系統(MEMS)簡介…..…………………………..14
2.5.2感測元件….…………………….………………………..15
2.5.3致動元件…………………………..……………………..20
2.6刮刀成形法………………….………………………………….23
2.7雷射剝離法…………….……………………………………….24
2.7.1 Pd-In 擴散鍵結…………...…………………………......25
2.7.2雷射和試片之間的交互作用……..……………………..27
2.7.3雷射剝離法運用於PZT系統…………...……………….30
第三章 實驗方法………………………………………………………32
3.1基板製備……………………………………………………….34
3.2薄膜製備流程………………………………………………….35
3.2.1 清洗基板…………………………………………….….35
3.2.2 網印法…………………………………………………..35
3.2.3 緩衝層化學薄膜的製備…………………….………….36
3.2.3.1 有機金屬羧酸鹽前驅物之合成…………..……...36
3.2.3.2 計量比溶液之調配……………………..………...36
3.2.3.3 薄膜的披覆…………………………………..…...38 3.2.4 去脂……………………………………………….…….38
3.2.5 燒結……………………………………………….…….40
3.2.6 上電極製作(黃光製程) ………………………….……..40
3.3 熱阻式蒸鍍及熱壓步驟………………………….…………...42
3.4 雷射設備與雷射剝離法……………………………….……...44
3.5特性量測…………………………………………………….….46
3.5.1熱重量分析儀(Thermal Gravity Analysis) …………..….46
3.5.2薄膜厚度………………………………….……….……..47
3.5.3結晶結構(crystal structure)…………………………….47
3.5.4 微結構…………………………………………………..47
3.5.5極化強度-電場(P-E)的量測…………………………...47
3.5.6電流-電壓(I-V)的量測…………………………………48
第四章 結果與討論……………………………………………………49
4.1 薄帶的束縛燒結……………………………………………....49
4.1.1未有底電極之束縛燒結………………………………...49
4.1.2有底電極之束縛燒結…………………………………...53
4.2 緩衝化學膜對薄帶燒結的影響……………………………....55
4.2.1以PZ及PT順序鍍膜的緩衝層化學薄膜(PZPT)…….55
4.2.2以PT及PZ順序鍍膜的緩衝層化學薄膜(PTPZ)……...57
4.2.3以PZT溶液鍍膜的緩衝層化學薄膜(PZT)…………...59
4.3 雷射剝離法……………………………………………….…...65
4.3.1 雷射剝離前後特性比較………………………………..66
4.3.2 PZPT緩衝化學薄膜於雷射剝離後之特性………….67
4.3.3 PTPZ緩衝化學薄膜於雷射剝離後之特性………….68
4.3.4 PZT緩衝化學薄膜於雷射剝離後之特性………….…69
第五章 結論…………………………………………………...……….77
參考文獻……………………………………………..…………………79
表目錄
表2-1 單晶氧化鋁的基本性質………………………………………..28
表4-1 在單晶氧化鋁基板上燒結,堆疊層數與膜厚的關係…………51
表4-2 不同緩衝化學膜,剝離後之電性表現…………………………74
圖目錄
圖2-1 材料性質相互關係圖…………………………………………..4
圖2-2 鐵電域極化情形 (a)不加電場 (b)施一外電場……………….5
圖2-3 鐵電材料極化值(P)與外加電場(E)之關係圖………………..5
圖2-4 Sawyer-Tower 電路圖………………………………………….6
圖2-5 鈣鈦礦(perovskite)結構………………………………………..7
圖2-6 PbZrO3-PbTiO3雙相互溶體系統…………………………….…9
圖2-7 PZT晶格常數對成份的變化情形…………………………….10
圖2-8 MPB成分材料性質表現…………………………………...…10
圖2-9 正壓電效應示意圖………………………………………...….12
圖2-10 逆壓電效應示意圖…………………………………………....12
圖2-12 紅外線感測元件………………………………………………18
圖2-13 有隔熱裝置的焦電元件………………………………………19
圖2-14 以行進波帶動物件之原理……………………………………21
圖2-15 薄膜表層原子之橢圓狀圓周運動…………...……………….21
圖2-16 超音波馬達結構………………………………………………22
圖2-17 雷射剝離法示意圖…………………………………………....25
圖2-18 Pd-In相圖…………………………………………………..….26
圖2-19 雷射作用於試片使GaN界面溫度上升此為有限元素分析法模擬的溫度分布圖…………………………………….……..29
圖2-20 有限元素分析法模擬雷射能量密度為400 mJ/cm2時,PZT/sapphire系統的時間-溫度-深度圖……………………..31
圖3-1 薄膜製備實驗流程圖…………………………………………32
圖3-2 雷射剝離法實驗流程圖…………………………………...….33
圖3-3 基板結構示意圖……………………………………………..35
圖3-4 PZT有機金屬鹽前驅物之重量分析圖………………………37
圖3-5 所使用PNN-PZT薄帶之熱重量分析(TGA)
與熱差分析(DTA)分析…………………………………….…39
圖3-6 脫脂操作條件………………………………………………..…39
圖3-7 燒結試片的擺放方式………………………………………..…40
圖3-8 單晶氧化鋁基板與矽基板熱壓示意圖…….…….……………43
圖3-9 試片於熱壓鍵結時放置示意圖……………………………..…44
圖3-10 經雷射剝離後,單晶氧化鋁之剝離過程………………...….46
圖4-1 單晶氧化鋁基板上堆疊不同層數燒結之X-ray 繞射圖譜…..50
圖4-2 不同層數之薄膜於單晶氧化鋁基板燒結後之表面微結構
(a)單層;(b)雙層;(c)三層;(d)五層………………..51
圖4-3 束縛燒結之收縮示意圖………………………………………..52
圖4-4 堆疊10層,無基板束縛下於1100燒結3小時………….……..52
圖4-5 具底電極之薄帶於單晶氧化鋁基板上燒結,堆疊不同層數燒結之X-ray 繞射圖譜………………………………………….....53
圖4-6 有底電極之束縛於單晶氧化鋁基板上高溫燒結後
之表面微形貌(a)單層;(b)雙層…………………………….…54
圖4-7 以不同層數燒結之電滯曲線(a)單層;(b)雙層…………….…..54
圖4-8 薄帶於具PZPT緩衝化學薄膜上高溫燒結後
之X-ray 繞射圖譜…………………………………………….56
圖4-9 以PZ及PT緩衝化學薄膜黏附薄帶燒結後
之表面微結構(a)1000X;(b)3000X…………………………....56
圖4-10 以PZPT緩衝化學薄膜經高溫燒結後
的表面形態…………………………………………………….57
圖4-11 薄帶於具PTPZ緩衝化學薄膜上高溫燒結後
之X-ray 繞射圖譜.……………………..……………….....….58
圖4-12 以PTPZ緩衝化學薄膜黏附薄帶燒結後
之表面微結構(a)1000X;(b)3000X……………………………58
圖4-13 以PTPZ緩衝化學薄膜經高溫燒結後
的表面型態………………………………………………….....59
圖4-14 薄帶於具PZT緩衝化學薄膜上高溫燒結後
之X-ray 繞射圖譜…………………………………………….60
圖4-15 以PZT鍍膜的化學薄膜黏附薄帶燒結後
之表面微結構(a)1000X;(b)3000X………..………………..…60
圖4-16 以PZT鍍膜的化學薄膜經高溫燒結後的表面型態………....61
圖4-17 PZT化學薄膜於650℃退火後的表面
(a)5000X;(b)50000X……………………………...………..62
圖4-18 PZT緩衝化學薄膜與PNN-PZT薄帶於高溫燒結後
的界面情形………………………..…………………………..62
圖4-19 不同緩衝化學薄膜經高溫燒結後的表面型態
(a)PZT(b)PZPT(c)PTPZ…………………………...…..63
圖4-20 具薄帶/緩衝化學薄膜/底電極層/sapphire結構
之X-ray 繞射圖譜……………………...………………..……65
圖4-21 具PZPT緩衝化學薄膜之薄帶經雷射剝離後
之SEM(a)1000X;(b)3000X………………………………..67
圖4-22 具PZPT緩衝化學薄膜之薄帶經雷射剝離後之
(a)電滯曲線及(b)漏電流密度…………………...…………68
圖4-23 具PTPZ緩衝化學薄膜之薄帶經雷射剝離後
之SEM(a)1000X;(b)3000X……………………………...…69
圖4-24 具PZPT緩衝化學薄膜之薄帶經雷射剝離後之
(a)電滯曲線及(b)漏電流密度………………………...….69
圖4-25 具PZT緩衝化學薄膜之薄帶經雷射剝離後
之X-ray 繞射圖譜…………………………………………….70
圖4-26 具PZT緩衝化學薄膜之薄帶經雷射剝離後之SEM
(a)1000X;(b)3000X;(c)5000X………………………..…71
圖4-27具PZT緩衝化學薄膜之薄帶經雷射剝離後,表面研磨
之SEM(a)1000X;(b)3000X(c)5000X…………………..…..72
圖4-28 具PZT緩衝化學薄膜之薄帶經雷射剝離後之橫截面
(a)3000X;(b)8000X………………………………...……..73
圖4-29 具PZT緩衝化學薄膜之薄帶經雷射剝離後之
(a)電滯曲線及(b)漏電流密度………...................................74
圖4-30不同緩衝化學膜,剝離後之電滯曲線及漏電流密度
(a)PZ, PT;(b)PT, PZ;(c)PZT……………………………...76
參考文獻
1. “X光繞射原理與材料結構分析”,許樹恩,吳泰伯主編,中國材料科學學會出版 (1996)。
2. A. J. Moulson and J. M. Herbert, “ Electroceramics Materials‧ Properties‧Applications”, Chapman&Hall, New York(1990).
3. B. Jaffe, R. C. William and J. Hans, “ Piezoelectric Ceramics”, Academic Press Inc., London, (1970).
4. W. D. Callister Jr., “Materials Science and Engineering”, John Wiley &Sons Inc., 3th, Canada (1994).
5. Yuhuan. Xu, Ferroelectric Material and Their Applications, Elsevier, Amsterdam, 101-162 (1991) .
6. C. A. Randall et. al., ”Classification and Consequences of Complex lead Perovskite Ferroelectrics with Regard to B-site Cation Order,” J. Mater. Res., 5﹝4﹞829-834 (1990).
7. “陶瓷技術手冊”,汪建民主編,中華民國產業科技發展協進會及中民國冶金協會出版,230-231 (1994)。
8. Mason, W. P., “Piezoelectricity, It’s History and Application”, J. Acoust. Soc. Am. (1981).
9. A. K. Mishima, “Piezoelectric Ceramic”, U. S. Patent 3, 741, 899 (1973).
10. R. M. V. Rao, A. Halliyal and A. M. Umarji, “Perovskite Phase Formation in the Relaxor System ﹝Pb(Fe1/2Nb1/2)O3﹞1-x -﹝Pb(Zn1/3Nb2/3)O3﹞x”, J. Am. Ceram. Soc., 79﹝1﹞, 257-260 (1996).
11. Y. Matsuo et.al., “High-Pressure Synthesis of Perovskite-Type Pb(Zn1/3Nb2/3)O3”, J. Am. Ceram. Soc., 52﹝9﹞, 516-517 (1969) .
12. “微機電壓電薄膜製程與應用”,張所鋐,機械月刊,第292期(2000)。
13. F. Jin, G. W. Auner, R. Naik, N. W. Schubring, J. V. Mantese, A. B. Catalan, nad A. L. Micheli, “Giant effective pyroelectric coefficients from graded ferroelectric devices”, Appl. Phys. Lett., 73(19), 2838 (1998).
14. “強介電陶瓷薄膜的應用”,林諭男,工業材料107,49 (1995)。
15. J. F. Scott, C. A. P. de Araujo, L. D. McMillian, H. Yoshimori, H. Watanabe, T. Mihara, M. Azuma, T. Ueda, Tetsuk Ueda, D. Ueda, and G. Kano, “Ferrorlrctric Thin Films InIntegrated Microelectronic Devices”, Ferroelectrics, 133, 47 (1992).
16. Auld, B. A., “Acoustic Fields and Waves in Solids”, John Willy & Sons, Inc. (1973).
17. Yung-Kung Tseng, Kuo-Shung Liu, Jian-Der, Jiang, I-Nan Lin, “Pyroelectric Properties of (Pb1-xLax)TiO3 thin films deposited using SrRuO3 as a buffer layer”, Appl. Phys. Lett., 72 (25), 3285 (1998).
18. D. F. Bahr, J. S. Robach, J. S. Wright, L. F. Francis, W. W. Gerberich, “Mechanical deformation of PZT thin film for MEMS applications”, Material Science and Engineering A259, 126 (1999).
19. G. H. Haerting, “Ferroelectric thin film gor electronic applications”, J. Vac. Sci. Technol., A9(3), 85 (1991).
20. Yuhuan Xu, “Ferroelectric Materials and Their Applications”, Published by North-Holland, Netherlands, 1-36 (1991).
21. “電泳披覆法製作積層PZT壓電致動器之電及表面絕緣層”,洪永泰,逢甲大學碩士論文 (1997)。
22. Norman W. Schubring, Joseph V. Mantese, Adolph L. Micheli, Antonio B. Catalan, and Richard J. Lopez, “Charge pumping and Pseudopyroelectric effect in active ferroelectric relaxor-type films”, Phys. Rev. Lett., 65, 1778 (1992).
23. C. D. E. Lakeman and D. A. Payne, “Processing effects in the sol-gel preparation of PZT dried gel, powders and ferroelectric thin layers”, J. Am. Ceram. Soc., 75[11], 3091 (1992).
24. G. A. C. M. Spierings, M. J. E. Ulenaers, G. L. M. Kampschoer, H. A. M. van Hal and P. K. Larsen, “Preparation and ferroelectric properties of PbZr0.53Ti0.47O3 thin films by spin coating and metalorganic decomposition”, J. Appl. Phys., 70[4], 2290 (1991).
25. M. Ichiki, J. Akedo, A. Schroth, R. Maeda, and Y. Ishikawa, “X-Ray Diffraction and Scanning Electron Microscopy Observation of Lead Zirconate Titanate Thick Film Formed by Gas Deposition Method”, Jpn. J. Appl. Phys., 36, 5818-5819 (1997).
26. A. R. Raju and C. N. R. Rao, “Oriented ferroelectric thin films of PbTiO3, (Pb, La)TiO3 and Pb (Zr, Ti)O3 by nebulized spray pyrolysis”, Appl. Phys. Lett., 66 (7), 896-898 (1995).
27. M. Ichiki, J. Akedo, A. Schroth, R. Maeda, and Y. Ishikawa, “Some Characteristics of PZT Films Produced by Jet Molding System”, J. Korean Phys. Soci., 32, 1501-1503 (1998).
28. G. Yi, M. Sayer, “Sol-Gel Processing of Complex Oxide Films”, Ceram. Bull., 70 (7), 1173-1179 (1991).
29. John D. Mackenzie and Yuhuan Xu, “Ferroelectric Materials by the Sol-Gel Method”, J. Sol-Gel Sci. & Tech., 8, 673-679 (1997).
30. Robert W. Vest, “Metallo-Organic Decomposition (MOD) Processing of Ferroelectric and Electrooptic Films:A Review”, Ferroelectrics, 102, 53-68 (1990).
31. E. Roncari, and C. Galassi, “Tape casting of porous hydroxyapatite ceramics”, J. Mater. Sci. Lett., 19, 33-35 (2000).
32. R. P. Schaeffer, V. F. Janas, and A. Safari, “Engineering of Fine Structured 2-2 and 2-0-2 Piezoelectric Ceramics/Polymer Composities by Tape Casting”, IEEE. 557-560 (1996).
33. Jun-Kwang Songa, Woo-Sik Uma, Hee-Soo Leea , Kyung-Won Chungb, Jeong-Hyun Parkc, Min-Soo Kanga, “Effect of Polymer molecular weight variations on PZT slip for tape casting”, J. Europ. Ceram. Soci., 20, 685-688 (2000).
34. K. Mikeska and W. R. Cannon, in Ceramic Society, Vol.9, pp164-183, Edited by J.A. Mangels and G. L. Messing. American Ceramic Society, Inc., Columbus, Ohio (1984).
35. A. Roosen, “Basic Requirement for Tape Casting of Ceramic Powder” pp675-692 in ceramic Transactions, Vol.1, Ceramic Powder Science ΠB Edited by E. L. Messing, E. R. Fuller and H. Hansner, Amer. Ceram. Soc. (Wester VILLE, Oh, 1984).
36. R. J. Shanefield and R. E. Mistler, “Fine Grained Alumins Substrates, The Manufracturing Processing,” Am. Ceram. Soc. Bull., 53, 416-420 (1974).
37. R. Capek, Multilayer ceramic capacitors, U.S.Paten No.3549415, Dec. (1970).
38. T. Ogawa, A. Ando and K. Wakino, Ferroelectrics, Vol.68, pp249-256 (1986).
39. L. J. Bowen, T. Shrout, W. A.Schulze, and J. V. Biggers, “Piezoelectric Properties of Internally Electroded PZT Multilayers,” Ferroelectrics,27, 59-62 (1980).
40. W.S.Wong, A.B. Wengrow, Y. Cho, A.Salleo,N.J. Quitoriano, N.W.Cheung, and T. Sands, “Integration of GaN Thin Films with Dissimilar Substrate Materials by Pd-In Metal Bonding and Laser Lift-off” , J. Electr. Mater., 28,1409-1413 (1999).
41. W. S. Wong, Y. Cho, E. R. Weber, and T. Sands, “Structural and optical quality of GaN/metal/Si heterostructures fabricated by excimer laser lift-off” , Appl. Phys. Let.,75,1887-1889 (1999).
42. W. S. Wonga, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off”, Appl. Phys. Let., 75, 1360-1362 (1999).
43. W. S. Wonga, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “InxGa1- xN light emitting diodes on Si substrates fabricated by Pd—In metal bonding and laser lift-off”, Appl. Phys. Let., 77, 2822-2824 (2000).
44. William S. Wonga, Michael Kneissl, Ping Mei, David W. Treat, Mark Teepe, and Noble M. Johnson, “Continuous-wave InGaN multiple-quantum-well laser diodes on copper substrates”, Appl. Phys. Let., 78, 1198-1200 (2001).
45. L. Tsakalakosa, and T. Sands, “Epitaxial ferroelectric (Pb,La)(Zr, Ti)O3 thin films on stainless steel by excimer laser lift-off”, Appl. Phys. Let., 76, 227-229 (2000).
46. T. Sands, E.D. Marshall, L.C. Wang, J. Mater.Res.3,914 (1988).
47. L.H. Allen, L.S.Hung K.L.Kavanagh, J.R. Phillips, A. J. Yu, J. W. Mayer, Appl. Phys. Lett., 51, 326 (1987).
48. E. A. Stach, M. Kelsch, E. C. Nelson, W. S. Wong, T. Sands, and N. W. Cheung, “Structural and chemical characterization of free-standing GaN films separated from sapphire substrates by laser lift-off”, Appl. Phys. Let., 77, 1819-1821 (2000).
49. W. S. Wong, Y. Cho, E. R. Weber, T. Sands, K. M. Yu and J. Kruger A. B. Wengrow, and N. W. Cheung, “Structural and optical quality of GaN/metal/Si heterostructures fabricated by excimer laser lift-off”, Appl. Phys. Let., 75, 1887-1889 (1999).
50. F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer, 2nd Edition (New York:John Wiley & Sons), 43-47 (1985).
51. W.S. Wong, J. Krüger, Y. Cho, B.P. Linder, E.R. Weber, N.W. Cheung, and T. Sands, “SELECTIVE UV-LASER PROCESSING FOR LIFT-OFF OF GaN THIN FILMS FROM SAPPHIRE SUBSTRATES”, Proceedings of the Symposium on LED for Optoelectronic Applications and the 28th State of the Art Programs on Compound Semiconductors 98-2, 377 (1998).
52. L. Tsakalakos, T. Sands, “Epitaxial ferroelectric (Pb, La)(Zr,Ti)O3 thin films on stainless steel by excimer laser liftoff”, Appl. Phys. Lett., 76, 227-229 (2000).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top