跳到主要內容

臺灣博碩士論文加值系統

(18.208.126.232) 您好!臺灣時間:2022/08/12 01:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪國翔
研究生(外文):Kong-Shiang-Hong
論文名稱:以微波電漿化學氣相沉積合成奈米碳管之化學鍵結及場發射性質研究
論文名稱(外文):The chemical bonding and field emission properties of carbon nanotubes synthesized by microwave plasma enhanced chemical vapor deposition
指導教授:施漢章
指導教授(外文):Han C. Shih
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:138
中文關鍵詞:碳管碳氮鍵結電子場發射參雜
外文關鍵詞:carbon nanotubescarbin-nitride bondingelectron field emssiondoping
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以微波電漿化學氣相沉積系統去合成奈米碳管,觀察以硼、氮元素參雜碳管後,其顯微結構之改變及電子場發射性質受到化學鍵結之影響的關係。經由紅外線光譜分析,氮原子參雜進入碳管石墨層的所形成的主要鍵結為碳-氮單鍵。藉由微波電漿化學氣相系統和電子迴旋共振系統對碳管參雜,氮原子會使的碳管內的sp2 鍵增加,而使的sp3鍵減少,並且使的碳管的電子場發射性質提高。起始電壓由3 V/μm 降到2.5 V/μm, 電場加強因子則可以提高到40~120%。以微波電漿化學氣相沉積系統所生成的氮電漿具有較高的能量,可以穿透到碳管內層的石墨層並與碳原子置換,改變其原來直立結構的石墨壁成為螺旋狀。而使用電子迴旋共振化學氣相沉積系統所激發出的氮電漿只有對碳管的表面局部改質,形成容易發射出電子的斷鍵。若對碳管參雜硼原子則會使的碳管內的sp3鍵結增加並使的電子場發射性質降低,起始電壓會提高到3.5V/μm而電場加強因子會降低35%。這是因為三族的硼元素相較於碳原子少一個電子,在場發射中電洞捕捉電子效應造成電子場發射性質較差。

In this study, we using the microwave plasma enhanced chemical vapor deposition (MPE-CVD) system to synthesize the carbon nanotubes, and observing the structures, chemical bonding and the field emission properties of carbon nanotubes doped by the nitrogen and boron elements. From the results of FTIR, the primary chemical bonds of C/N are single bonds. It is found that N doped carbon nanotubes using ECR-CVD and MPE-CVD can increase the sp2 bonding and decrease the sp3 bonding, which can enhance the properties of field emission. The onset voltages are decreasing from 3 V/μm to 2 V/μm, and the enhancement factor is increasing to 40 ~ 120 %. The nitrogen plasma excited by MPE-CVD has higher energy to substitute the carbon and penetrate the graphite walls. However, the nitrogen plasma excited by ECR-CVD only can treat the surface of carbon nanotubes and form dangling bond that are well to emit electrons. If the carbon nanotubes are doped by boron atoms, the sp3 bonding will increase and the onset voltages will also increase to 3 V/μm. The enhancement factor will decrease in the percentage of 35, it is because of the boron has less electrons, and electron holes will trap the electrons when emitting.

Content
摘要 ……………………………………………………………………...I
Abstract .....................................................................................................II
誌謝 ……………………………………………………………………III
1.Overview of Carbon Nanotubes .......................................................1-1
1.1 Inotroduction ................................................................................1-2
1.2 Structures of carbon nanotubes.................................................... 1-2
1.3 Electronic properties of carbon nanotubes................................... 1-3
1.4 Production of carbon nanotubes ...................................................1-4
1.4.1 Arc discharge method ............................................................1-4
1.4.2 Laser vaporization ………………………………………….1-6
1.4.3 Chemical vapor deposition …………………………………1-7
1.5 The growth mechanism………………………………………….1-9
1.5.1Carbon nanotubes growth without catalyst …………………1-9
1.5.2 Carbon nanotubes growth in the presence of catalyst …….1-10
1.6 The application of carbon nanotubes ..........................................1-11
1.6.1 Field emission display …………………………………….1-11
1.6.2 AFM tips ………………………………………………….1-13
1.6.3 Energy storage …………………………………………….1-13
1.6.4 Interconnect ……………………………………………….1-14
References ……………………………………………………………1-25
2. Carbon Related Materials ………………………………………...2-1
2.1 Bonding of Carbon ……………………………………………...2-1
2.2 Forms of Carbon ………………………………………………..2-3
2.2.1 Ideal Graphite ………………………………………………2-3
2.2.2 Graphite Whiskers ………………………………………….2-3
2.2.3 Carbon Fiber ………………………………………………..2-4
2.2.4 Carbon Blacks and Carbon Onions ………………………...2-5
2.2.5 Amorphous Carbon ………………………………………...2-6
2.2.6 Diamond ……………………………………………………2-7
Reference ……………………………………………………………..2-14
3.Experimental and Characterization ………………………………3-1
3.1 Thin Film of Catalyst ………………………………………...3-1
3.2 Growth of Carbon Nanotubes ………………………………..3-2
3.3 Doping Carbon nanotubes ……………………………………3-2
3.4 CVD system ………………………………………………….3-3
3.4.1.Microwave Plasma Enhanced Chemical Vapor Deposition ..3-3
3.4.2 Electron Cyclotron Resonance CVD ……………………….3-5
3.5 Characterization .………………………………………………..3-7
3.5.1. Scanning Electron Microscope (SEM) …………………….3-8
3.5.2. Transmission Electron Microscopy (TEM) ………………..3-8
3.5.3. Raman Spectroscopy ………………………………………3-8
3.5.4. Fourier Transform Infrared Spectroscopy (FTIR) …………3-9
3.5.5. Electron Field Emission ………………………………….3-10
3.5.6. X-ray Photoelectron spectroscopy (XPS) …………...…...3-10
3.5.7. Flowchart …...…………………………………………….3-12
Reference..…………………………………………………………….3-13
4. Characterization of doped carbon nanotubes …………………...4-1
4.1. Introduction …………………………………………………….4-1
4.2. Results and discussion of doped carbon nanotubes ……………4-2
4.2.1. SEM images ……………………………………………….4-2
4.2.2. TEM images ……………………………………………….4-6
4.2.3. Selected area diffraction (SAD) ………………………….4-13
4.2.4. Raman spectrums ………………………………………...4-21
4.2.5. FTIR ……………………………………………………...4-25
4.2.6 XPS ……………………………………………………….4-27
4.2.7. EELS ……………………………………………………..4-39
4.2.8. Field emission ……………………………………………4-50
4.3. Conclusions …………………………………………………..4-60
Reference……………………………………………………………..4-61
5. Characterization of Carbon Nanotubes Treated by Oxygen Plasma and the Forming of Pd nanowire ……………………………………5-1
5.1 Introduction ……………………………………………………..5-2
5.2 Results and discussion …………………………………………..5-3
5-3 Conclusions ……………………………………………………5-11
Reference ……………………………………………………………..5-12
6. Future Work ……………………………………………………….6-1

Reference
[1] S. Iijima, Nature 354, 56 (1991)
[2] S. Iijima, T. Ichihashi, Nature 363, 603 (1993)
[3] D. S. Bethane, C. H. King, M. S. Driess, G Gorman, R. Savoy, J. Vazquez, and R. Boyers, Nature 363, 605 (1993)
[4] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, J. M. Kim, Appl. Phys. Lett.,75, 3129 (1998)
[5] K. Tanaka, T. Yamabe, and K.Fukui, The science and Technology of carbon nanotubes, p41 (1999)
[6] N. Hamada, S. Sawada, A. Oshiyama, New One- Dimensional Conductors: Graphitic Microtubles, Phys. Rev. Lett. 68, p1581(1992)
[7] R. Saito, M. Fujita, G. Dresslaus, M. S. Dresslus, Electronic structure of chiral graphene tubules, Appl. Phys. Lett. 60, p2204 (1992)
[8] J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Nature, 391, 59 (1998)
[9] T. W. Odom, J. L. Huang, P. Kim, C.M. Lieber Nature, 391, 63 (1998)
[10] X. Zhao, M. Ohkohchi, M. Wang, S. Iuma, T. Ichihashi and Y. Ando, Preparation of high —grade carbon naotubes by hydrogen arc discharge, Carbon 35, p775 (1997)
[11] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science 273,433-487 (1998)
[12] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, Chem. Phys. Lett., 243, 49 (1995)
[13] S. H. Tsai, C. W. Chao, C. L. Lee, X. W. Liu, I. N. Lin, and H. C. Shih, Formation and Field Emission of Carbon nanofiber Films on Metallic Nanowire Arrays, Electrochem. Solid-State Lett. 2, 247 (1999)
[14] Jung Sang Suh and Jin Seung Lee, Hoghly ordered two dimensional carbon nanotube arrays, Appl. Phys. Lett. 75, 2047(1999)
[15] J. Li, C. Papadopoulos, J. M. Xu, and M. Moskovist, Highly ordered carbon nanotube arrays for electronics applications nature, Appl. Phys. Lett. 75,367 (1999)
[16] Tatsuya Lwasaki, Taiko Motoi, and Tohru Den, Multiwalled carbon nanotubes growth in anodic alumina nanoholes, Appl. Phys. Lett. 75, 2044(1999)
[17] Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. provencio, Synthesis of Large Arrays of Well- Aligned Carbon Nanotubes on Glass, Science 282,1105 (1998)
[18] Soo-Hwan Jeong, Hee-Young Hwang, Kun-Hong Lee, and Yongsoo Jeong, Appl. Phys. Lett. 78, 2052 (2001)
[19] Y. Saito, T. Yoshikawa, M. Inagaki, M. Tomita, T. Hayashi, Chem. Phys. Lett., 204, 277 (1993)
[20] Cheol Jin Lee, Dae Woon Kim, Tae Jae Lee, Young Chul Choi, Young Soo park, Young Hee Lee, Won Bong Choi, Nae Sung Lee, Gyeong Su Park, Jong Min Kim, Synthesis of align carbon nanotubes using thermal chemical vapor deposition Chem. Phys. Lett. 312, p461 (1999)
[21] K. A. Dean, B. R. Chalamala, Appl. Phys. Lett., 75, 3017 (1999)
[22] W. B. Choi, D. S. Chung, J, H, Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, J. M. Kim, Appl. Phys. Lett., 75, 3129 (1999)
[23] H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley, Nature, 384,147 (1998)
[24] J. Lefebvre, J. F. Lynch, M. Llaguno, M. Radosavljevic, and A. T. Johnson, Single-wall carbon nanotube circuits assembled with an atomic force microscope, Appl. Phys. Lett. 75,3014 (1999)
[25] B. Gao, A. Kleinhammes, X. P. Tang, C. Bower, l. Fleming, Y. Wu, O. Zhou, Chem. Phys. Lett., 307,153 (1999)
[26] A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, M. J. Heben, Storage of hydrogen in single-wall carbon nanotubes, Nature 386,377 (1997)
[27] S. Jans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geelings, and C. Dekker, Individual single-wall carbon nanotubes as quantum wire, Nature 386,474 (1997)
[28] M. Bockrath, D. H. Cobden, P. L. McEuen, N. G. Chopra, and A. Zettle, Single-Electron Transport in Ropes of Carbon nanotubes, Science 275,1922 (1997)
[29] S. J. Trans, A. R. M. Verschueuren, and C. Dekker, Room temperature transistor base on a single carbon nanotube, Nature 393, 49 (1998)
[30] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical properties of carbon nanotubes, p36 (1998)
[31] K. Tanaka, T. Yamabe, and K. Fukui, The science and technology of carbon nanotubes, p109 (1999)
[32] Thomas W. Ebbesen, Carbon nanotubes: preparation and properties, p142-143 (1997)
[33] B. I. Yakobson and R. E. Smally, American Scientist 85, 324(1997)
[34] Thomas W. Ebbesen, Carbon nanotubes: preparation and properties, p20-21 (1997)
References
[1] J. E. Field, in Properties of Diamond, Field, Ed. Academic Press, London, 281 (1979)
[2] Thomas W. Ebbesen, Carbon nanotubes: preparation and properties, p181 (1997)
[3] Thomas W. Ebbesen, Carbon nanotubes: preparation and properties, p181 (1997)
[4] F. Banhart, T. Füller, Ph. Redlich and P.M. Ajayan , The formation and self-compression of carbon onions ,Chem. Phys. Lett. 269, 349-355 (1997)
Reference
[1] C. J. Lee, J. H. Park, J. M. Kim, Y. Hu. Y. Lee, and K. S. No, Chem. Phys. Lett. 327, 277 (2000)
[2] C. J. Baddeley et al., Surf. sci. 400, 166 (1998)
[3] D. Marton, K. J. Boyd, A. H. Al-Bayati, S. S. Todorov, and J. W. Rabalaais, Phys. Rev. Lett 73, 118 (1994)
Reference
[1] N. Hamada, S. Sawada,A. Oshiyama, Phys. Rev. Lett. 68,1579 (1992)
[2] D.L. Caroll, Ph. Redlish, X. Blasé, J. -C. Charlier, S. Curran, P.M. Ajayan, S.Roth, M. Ruhle, Phys. Rev. Lett. 81, 2332 (1998)
[3] M. Torrones, W. K. Hsn, A. Schilder, H.Terrones, N. Crobert, J. P. Hare, Y.Q. Zhu, M. Schwoerer, K. Prassides, H.W. Kroto, D.R.M. Walton, Appl. Phys. A 66, 307 (1998)
[4] W. Han, Y. Bando, K. Kurashima, T. Sato, Appl. Phys. Lett. 73, 3085 (1998)
[5] W. Han, Y. Bando, K. Kurashima. T. Sato, Chem. Phys. Lett. 72, 2108 (1998)
[6] D. Bernaerts, X. B. Zhang, X. F. Zhang, S. Amelinckx, G.Van Tendeloo, J. Van Landuyt, V. Ivanov, J. B. Nagy, Phil. Mag. A 71 (1995) 605
[7] S. Amelincks, D. Bernaerts, G. Van Tendeloo, J. Van Landuty, A. A. Lucas, M. Mathot and Ph. Lambin, The morphology, structure and texture of carbon nanotubes: an electron microscopy study, Proceedings of the International Winterschool on Electronic Properties of Novel Materials, P 515(1995)
[8] P. C. Eklund, J. M. Holden and R. A. Jishi, Carbon, 33, 959 (19954)
[9] M. Sveningsson, R.-E. Morjan, O. A. Nerushev, Y. Sato, J. Bäckström, E. E. B. Campbell and F. Rohmund, Appl. Phys. A, 73 409 (2001)
[10] D. Marton, K. J. Boyd, A. H. Al-Bayati, S. S. Todorov, and J. W. Rabalaais, Phys. Rev. Lett 73, 118 (1994)
[11] W. Edward Billups, and Marco A. Ciufolini, Buckminsterfullerenes, p187 (1993)
[12] J. R. Pels, F. Kapteijn, J. A. Moulijn, Q. Zhu, and K. M. Thomas, Carbon 33, 1641 (1995)
[13] S. Souto, M. Pickholz, M. C. dos Santos, and F. Alvarez, Phys. Rev. B 57, 2536(1998)
[14] F. L. Normand, J. Hommet, T.Szorenyi, C. Fuchs, and E. Fogarassy, Phys. Rev. B, 64, 235416(2001)
[15] A.T. Matveev, D. Golberg, V.P. Novikov, L.L. Klimkovich, Y. Bando, Carbon 39, 155 (2001)
[16] Z. Wen-Sieh, K. Cgerry, N.G. Chopra, X. Blasé, Y. Miyamoto, A. Rubio, M.L. Cohem, S.G. Louie, A. Zettl and R. Gronsky, Phys. Rev. B 51, 11299 (1995)
[17] J. Hu and C. M Lieber, Phys. Rev. B 57, R3185 (1998)
[18] A. llie, A. C. Ferrari, T. Yagi, S. E. Rodil, and J. Robertson, J. Appl. Phys.90, 2024 (2001)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 曾騰光(1994)。對志願工作者督導管理之探討。中國社會工作教育學刊,2,73-86。
2. 許維素(1993)。督導關係初探(上)。諮商與輔導,94,5-10。
3. 陳慧媚(1990)。社會工作督導的因素:領導能力、關係及訓練。社區發展季刊,52,49-56。
4. 許維素(1993)。督導關係初探(下)。諮商與輔導,95,6-11。
5. 張曉春(1983)。專業人員工作疲乏研究模式----以社會工作員為例。思與言,21,2,179-201。
6. 林純文(1997)。國民小學組織氣後、教師工作壓力及其因應方式之研究。屏東師院國民教育研究所論文集,1,59-102。
7. 李增祿(1990)。社會工作督導之發展趨勢。社區發展季刊,52,9-11。
8. 李高財(1997)。媒體組織之權力、上行影響策略與工作滿意度之相關性研究。民意研究季刊,202,129-165。
9. 李坤崇(1995)。教師因應策略量表編製報告。測驗年刊,42,245-264。
10. 王智弘(1994)。督導關係中「告知督導過程」的倫理課題。諮商與輔導,105,37-39。
11. 王智弘(1993)。諮商督導中倫理問題之探討。輔導學報,16,214-243。
12. 王智弘(1993)。督導倫理問題與專業督導倫理守則。學生輔導通訊,25,61-67。
13. 黃清高(1984)。社會工作的督導關係與督導倫理。社區發展季刊,27,23-29。
14. 廖榮利(1990)。督導在社會福利體系--專業與科層之整合。社區發展季刊,52,12-21。
15. 劉宗其、吳志正、張淑昭(1997)。權力、企業型態與主管之決策影響力對企業績效之影響。輔仁管理評論,4,111-144。