跳到主要內容

臺灣博碩士論文加值系統

(3.238.225.8) 您好!臺灣時間:2022/08/09 01:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:柯志忠
論文名稱:8-羥奎林鋁鹽之奈米結構及其場發射性質研究
論文名稱(外文):Nanostructures and field emission propertiesof Alq3
指導教授:彭宗平彭宗平引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:109
中文關鍵詞:8-羥奎林鋁鹽場發射奈米結構
相關次數:
  • 被引用被引用:1
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
關鍵字: 奈米科技、掃描式探針顯微術、奈米碳管、奈米線、有機發光二極體、X光繞射、掃描式電鏡、穿隧式電鏡、紅外線吸收光譜、光激發光、光譜之振動結構
近十年科學家對奈米科技的基礎研究投注了很多的心力,其中以掃描式探針顯微術對奈米科技之研究助益尤大。奈米碳管及奈米線製備已有顯著之成果,發射平面顯示器為最有潛力的應用。本實驗係發展應用有機發光二極體之材料─8-羥奎林鋁鹽(Alq3)來製備奈米線。
與傳統的奈米線製備方法不同的地方,在於利用熱蒸鍍系統來製備奈米線,並沈積在以液態氮冷卻之基板上。特別值得一提的是有機奈米線在文獻上很少被提及,所以在低溫下利用熱蒸鍍來製備Alq3奈米線極具利用價值得。
藉由X光繞射(XRD)及掃描(SEM)和穿隧(TEM)式電鏡的分析,可以鑑定Alq3 奈米線非晶之特性和其外貌,經由紅外線吸收光譜可得知這些奈米線確由Alq3的分子所組成。在光激發光方面之研究,可以了解奈米線在發光的行為和其粉末一致。另一方面,經由場發射之試驗得知Alq3在平面顯示器有其應用可能性。
此外,本研究應以奈米光學來探討奈米薄膜結構。藉由偏光近場光學掃描顯微鏡來判定Alq3膜的結晶區域,且在掃描式電鏡和原子力顯微鏡之影像顯示出相同結構,光激發光的光譜中之振動結構也印證了其結晶性。
Abstract
Key words: Nanotechnology, Scanning probe microscopy, carbon nanotubes, nanowires, organic light emitting diode, XRD, SEM, TEM, FTIR, PL , PM-NSOM
A great deal of effort has been dedicated to the fundamental research of nanotechnology in the past 10 years. At the same time, the development of scanning probe microscopy, such as AFM and NSOM, has enabled the characterization of the nano scale. The investigation on the fabrication and application of nanostructured materials has attracted intensivel attention. The application in a flat panel display is regarded as one of the most promising applications of carbon nanotubes. Meanwhile, methods of synthesizing different species of nanowires have also been explored, and their field emission characteristics are one of the primary subject of study. A widely-used material of OLEDs, tris-(8-hydroxyquinolate)-aluminum (Alq3), is employed to fabricate nanowires in this study.
Unlike traditional routes in preparing nanowires, such as the vapor-liquid-solid (VLS) process, an insert-gas evaporation method was applied to fabricate Alq3 nanowires on a liquid nitrogen-trapped substrate. Very few studies have been concentrated on the fabrication of organic nanowires before. In this work, the Alq3 nanowires can be readily produced at a relatively low temperature compared to the traditional routes for inorganic nanowires.
From the x-ray diffraction patterns and TEM and SEM images, the partially amorphous nature and wire-like structure of Alq3 nanowires were described. Further identification of the Alq3 nanowires was conducted by means of FTIR, which evidenced that they were indeed composed of Alq3 molecules. The measurement of PL revealed a similar luminescence behavior of Alq3 nanowires to that of the bulk. The field emission characteristics showed a great possibility to apply the Alq3 nanowires to a flat panel display.
In addition, a nano-optics technique, i.e., near-field scanning optical microscopy (NSOM), was employed to identify the crystalline nature of Alq3 film which was prepared in vacuum. AFM and SEM images showed a rod-like topography on the surface of the Alq3 film. A vibronic progression in the PL spectrum provided the evidence of crystallinity in film.

Table of Contents
Acknowledgements
摘要
Abstract
Chapter I Introduction 1
1-1 Nanotechnology 1
1-2 Nanowires 1
1-3 Applications 4
1-4 Nano-optics 6
Chapter II Literature Review 9
2-1 Basic Properties of Alq3 9
2-1-1 Crystal structure 9
2-1-2 Thermal properties 11
2-1-3 Optical properties 11
2-1-4 Electron transport 16
2-1-5 Vibronic progression 16
2-2 Field Emission in Nanowires and Nanotubes 20
2-2-1 Conventional cold cathode materials 20
2-2-2 Nanotubes 22
2-2-3 Nanowires 23
Chapter III Experimental Principles 34
3-1 Thermal Evaporation and Gas Condensation 34
3-2 Luminescence from Organic Materials 34
3-2-1 Organic and inorganic luminescence 34
3-2-2 Singlet and triplet states 38
3-2-3 Electronic transitions in organic molecules 38
3-2-4 Absorption 42
3-2-5 Fluorescence 42
3-2-6 Vibronic progression 42
3-3 Field Emission Mechanism 43
3-3-1 Field emission 43
3-3-2 Electron emission 44
3-3-3 Fowler-Nordheim equation 44
3-3-4 Fowler-Nordheim plot 50
3-3-5 Field enhancement factor 53
3-3-6 Effective distance and emission area 53
3-4 Polarization-modulated Near-field Scanning Optical
Microscope (PM-NSOM) 55
3-4-1 Dicroism measurement 55
3-4-2 Instrumentation 57
Chapter IV Experimental procedures 63
4-1 Preparation of Alq3 Nanowires and Nanosized Crystalline
Film 63
4-1-1 Instrumentation 63
4-1-2 Thermal evaporation 66
4-2 Analysis and Characterization 67
4-2-1 X-ray diffraction (XRD) 67
4-2-2 Atomic force microscopy (AFM) 67
4-2-3 Transmission electron microscopy (TEM) 67
4-2-4 Fourier transform infrared spectroscopy (FTIR) 68
4-2-5 Photoluminescence Spectroscopy (PL) 68
4-3 Field Emission Measurement 70
4-3-1 Instrumentation 70
4-3-2 Measurement procedure 70
4-4 PM-NSOM Measurement 72
Chapter V Results and Discussion 75
5-1 Alq3 Nanowires 75
5-1-1 Scanning electron microscopy (SEM) 75
5-1-2 Fourier transform infrared spectroscopy (FTIR) 75
5-1-3 X-ray diffraction (XRD) 75
5-1-4 Transmission electron microscopy (TEM) 82
5-1-5 Photoluminescence spectroscopy (PL) 82
5-1-6 Field emission 82
5-2 Alq3 Crystalline film 82
5-2-1 Scanning electron microscopy (SEM) 82
5-2-2 Atomic force microscopy (AFM) 89
5-2-3 PM-NSOM 89
5-2-4 Photoluminescence spectroscopy (PL) 89
5-3 Discussion 94
5-3-1 Alq3 nanowires 94
5-3-2 Alq3 crystalline film 98
Chapter VI Conclusions 100
6-1 Alq3 Nanowires 100
6-2 Alq3 Crystalline Film 100
Chapter VII Suggested Future Work 102
References 103

References
[1] H W. Kroto, J. R. Heath, S. C. O’Brien, Robert F. Curl and R. E. Smalley, Nature, 318, 162 (1985).
[2] S. Iijima, Nature, 354, 561 (1991).
[3] M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos, Science, 281, 2013 (1998).
[4] A. N. Goldstein, C. M. Echer and A. P. Alivisatos, Science, 256, 1425 (1992).
[5] H. Ohnish, Y. Kondo and K. Takayanag, Nature, 395, 780 (1998).
[6] A. M. Morales and C. M. Lieber, Science, 279, 208 (1998).
[7] R. S. Wanger and W. C. Ellis, Appl. Phys. Lett., 4, 89 (1964).
[8] E. I. Givargizov, J. Cryst. Growth, 31, 20 (1975).
[9] Y. Wu and P. Yang, J. Am. Chem. Soc., 123, 3165 (2001).
[10] Y. Cui, J. Lauhon, M. S. Gudiksen, J. Wang and C. M. Lieber, Appl. Phys. Lett., 78, 2214 (2001).
[11] X. Duan and C. M. Lieber, Adv. Mater., 12, 298 (2000).
[12] H. Y. Peng, Z. W. Pan, L. X. Xu, X. H. Fan, N. Wang, C. Lee and S. Lee, Adv. Mater., 13, 317 (2001).
[13] J. D. Holmes, K. P. Johnston, R. Chrestopher Doty and B. A. Korgel, Science, 287, 1471 (2000).
[14] Y. H. Lee, Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee and D. J. Bae, Adv. Mate., 12, 746 (2000).
[15] W. Han, S. Fan, Q. Li and B. Gu, Appl. Phys. Lett., 71, 2271 (1997).
[16] W. Han, S. Fan, Q. Li and Y. Hu, Science, 277, 1287 (1997).
[17] J. K. Lee, W. K. Koh, W. S. Chae and Y. R. Kim, Chem. Commun., 2 138 (2002).
[18] F. Zheng. L. Liang, Y. Gao, J. H. Sukamto. and C. Ardahl, Nano Lett., in press (2002).
[19] A. Noy, A. E. Miller, J. E. Klare, B. L. Week, B. W. Wood and J. J. DeYoreo, Nano Lett. 2, 109 (2002).
[20] Y. Zhang, K. Suenage, C. Colliex and S. Iijima, Science, 281, 973 (1998).
[21] Y. H, N. Wang, Y. F. Zhang, C. S. Lee, I. Bello and S. T. Lee, Appl. Phys. Lett., 75, 2921 (1999).
[22] B. Zheng, Y. Wu, P. Yang and J. Liu, Adv. Mater., 14, 122 (2002).
[23] S. Fan, M G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell and H. Dai, Science, 283, 512 (1999).
[24] P. G. Collins, A. Zettl, H. Bando, A. Thess and R. E. Smalley, Science, 287, 100 (1997).
[25] T. Rueckes, k. Kim, E. Joselevich, C. Y. Tseng, C. Cheung and C. M. Lieber, Science, 289, 94 (2000).
[26] S. S. Wong, J. D. Harper, P. T. Lansbury Jr. and C. M. Lieber, J. Am. Chem. Soc., 120, 603 (1998).
[27] S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung and C. M. Lieber, Nature, 394, 52 (1998).
[28] W. U. Huynh, J. J. Dittmer and A. P. Alivisatos, Science, 295, 2425 (2002).
[29] N. Tessler, V. Medvedev, M. Kazes, S. Kan and U. Banin, Science, 295, 1506 (2002).
[30] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science, 292, 1897 (2001).
[31] E. Betzig and J. K. Trautman, Science, 257, 189 (1992).
[32] C. W. Tang, and S. A. Vanslyke, Appl. Phys. Lett., 51, 913 (1987).
[33] A. Curioni, M. Boero and W. Andreoni, Chem. Phys. Lett., 294, 263 (1998).
[34] A. Curioni and W. Andreoni, Appl. Phys. Lett., 72, 1575 (1998).
[35] M. Brinkmann, G. Gadret, M. Muccini, C. Taliani, N. Masciocchi, and A. Sironi, J. Am. Chem. Soc., 122, 5147 (2000).
[36] L. S. Sapochak, A. Padmaperuma, N. Washton, F. Endrino, G. T. Schmett, J. Marshall, D. Fogarty, P. E. Burrow, and S. R. Forrest, J. Am. Chem. Soc., 123, 630 (2001).
[37] P. Addy, D. F. Evans, R. N. Sheppard, Inorg. Chim. Acta, 127, L19 (1987).
[38] K. Naito, and A. Miura, J. Phys. Chem., 97, 6240 (1993).
[39] J. F. Moulin, M. Brinkmann, A. Thierry, J. C. Wittmann, Adv. Mater., 14, 436 (2002).
[40] A. Schmidt, M. L. Anderson and N. R. Armstrong, J. Appl. Phys., 79, 5619 (1995).
[41] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCathy, S. R. Forrest, J. A. Cronin and M. E. Thompson, J. Appl. Phys., 79, 7991 (1996).
[42] M. D. Halls and H. B. Schlegel, Chem. Mater., 13, 2632 (2001).
[43] C. P. Kushto, Y. Iizumi, J. Kido and Z. H. Kafafi, J. Phys. Chem. A, 104, 3670 (2000)
[44] R. W. Wood, Phys. Rev., 5, 1 (1897).
[45] E. L. Murphey and R. H. Good, Phys. Rev., 102, 1464 (1956).
[46] C. A. Spindt, J. Appl. Phys., 39, 3504 (1968).
[47] R. N. Thomas and H. C. Nathanson, Appl. Phys. Lett., 21, 384 (1972).
[48] B .C. Djubua and N. N. Chubun, IEEE Trans. Elec. Dev., 38, 2314 (1991).
[49] W. A. Mackie, R. L. Hartman, M. A. Anderson, and P. R. Davis, J. Vac. Sci. Technol. B, 12, 722 (1994).
[50] M. Endo, H. Nakane and H. Adachi, J. Vac. Sci. Technol. B, 14, 2114 (1996).
[51] M. W. Geis, J. C. Twichell, N. N. Efremow, K. Krohn and T. M. Lyszczarz, Appl. Phys. Lett., 68, 2294 (1996).
[52] I. Musa, D. A. I. Munindrasdasa, G. A. J. Amaratunga and W. Eccleston, Nature, 395, 362 (1998).
[53] F. S. Baker, A. R. Osborn and J. Williams, Nature, 239, 96 (1972).
[54] W. A. de Heer, A. Chatelain and D. Ugarte, Science, 270, 1179 (1995).
[55] S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell and H. Dai, Sceince, 283, 512 (1999).
[56] J. M. Bonard, J. P. Salvetat, T. Stockli, L. Forro and A. Chatelain, Appl. Phys. A, 69, 245 (1999).
[57] J. M. Bonard, N. Weiss, H. Kind, T. Stockli, L. Forro, K. Kern and A. Chatelain, Adv. Mater. 13, 184 (2001).
[58] X. T. Zhou, N. Wang, C. K. Au, H. L. Lai, H. Y. Peng, I. Bello, C. S. Lee and S. T. Lee, Mat. Sci. Eng., A286, 119 (2000).
[59] J. L. Gole, J. D. Stout, W. L. Rauch and Z. L Wang, Appl. Phys. Lett, 76, 2346 (2000).
[60] X. Zhang, L Zhang, G. Meng, G. Li, Jin-Phillipp NY and F. Phillipp, Adv. Mater., 13, 1238 (2001).
[61] L. Cao, Z. Zhang, L. Sun, C. Gao, M. He, Y. Wang, Y. Li, X. Zhang, G. Li, J. Zhang and W. Wang, Adv. Mater., 13, 1701 (2001).
[62] Y. Wu, R. Fan and P. Yang, Nano Lett., 2, 83 (2002).
[63] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. Lieber, Nature, 415, 617 (2002).
[64] X. Duan and C. M. Lieber, J. Am. Chem. Soc., 122, 188 (2000).
[65] M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, Adv. Mater., 13, 113 (2001).
[66] M. S. Gudiksen and C. M. Lieber, J. Am. Chem. Soc., 122, 8801 (2001).
[67] Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao and Y. Tang, Nano Lett. in press (2002).
[68] H. Dai, E. W. Wong, Y. Z. Lu, S. Fan and C. M. Lieber, Nature, 375, 769 (1995).
[69] E. W. Wong, B. W. Maynor, L. D. Burns and C. M. Lieber, Chem. Mater., 8, 2041 (1996).
[70] X.T. Zhou, C. K. Au. H. L. Lai, H. Y. Peng, I. Bello, C. S. Lee and S. T. Lee, Appl. Phys. Lett., 19, 2918 (1999).
[71] H. L. Lai, H. Y. Peng, C. K. Au, N. Wang, I. Bello, C. S. Lee, S. T. Lee and X. F. Duan, Appl. Phys. Lett., 76, 294 (2000).
[72] Z. Pan, H. Lai, C. K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C. Lee, N. Wong, S. T. Lee and S. Xie, Adv. Mater. 12, 1186 (2000).
[73] X.D.Bai,J. D. Guo, J. Yu and E. G. Wang, Appl. Phys. Lett., 76, 2624 (2000).
[74] F. G. Tarntair, C. Y. Wen, L. C. Chen, J. J. Wu, K. H. Chen, P. F. Kuo, S. W. Chang, Y. F. Chen, W. K. Hong and H. C. Chen, Appl. Phys. Lett., 76, 2630 (2000).
[75] C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello and S. T. Lee, Appl. Phys. Lett., 75, 1700 (1999).
[76] C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, J. Y. Peng and Y. F. Chen, J. Am. Chem. Soc., 123, 2791 (2001).
[77] Y. H. Tang, C. S. Lee and S. T. Lee, Appl. Phys. Lett., 79, 1673 (2001).
[78] J. Chen, S. Wang, C. Yang and W. Ge, Appl. Phys. Lett., 80, 3620 (2002).
[79] C. G. Granqvist and R. A. Buhrman, J. Appl. Phys., 47, 2200 (1976).
[80] A. R. Tholen, Acta Metall., 27, 1765 (1979).
[81] S. G. Kim and J. R. Brock, J. Appl. Phys., 60, 509 (1986).
[82] S. Kasukabe, S. Yatsuya and R. Uyeda, Jpn. J. Appl. Phys., 13, 1714 (1974).
[83] C. Kaito, Jpn. J. Appl. Phys., 17, 601 (1978).
[84] S. Yatsuya, S. Kasukabe and R. Uyeda, Jpn. J. Appl. Phys., 12, 1675 (1973).
[85] M. D. Lumb, “Luminescence Specetroscopy” New York, London, pp 98 (1978).
[86] C. Kittel, “Introduction to Solid State Physics”, New York, Wiley, pp 75 (1996).
[87] P. Martin and E. S. Charles, “Electronic Processes in Organic Crystals and Polymers”, New York, Oxford University, pp 27 (1999).
[88] R. Fowler and L. W. Nordheim, Proc. R. Soc. London, 119, 173 (1928).
[89] L. W. Nordheim, Proc. R. Soc. London, 121, 626 (1928).
[90] R. Fowler and E. A. Guggenheim, “Statistical Thermodynamics”, Cambridge University Press, New York, pp 460 (1956).
[91] E. L. Murphy and R. H. Good Jr., Phys. Rev., 102, 1464 (1956).
[92] R. E. Burgess and H. Kroemer, Phys. Rev., 90, 515 (1953).
[93] E. W. Muller, J. Appl. Phys., 26, 732 (1955).
[94] S. C. Kung, T. F. Kuo, B. J. Li and H. J. Lai, private.
[95] T. Ha, T. Enderie and D. S. Chemla, Phys. Rev. Lett., 77, 3979 (1996).
[96] D. A. Higgins, D. A. Vanden, J. Kerimo and P. F. Barbara, J. Phys. Chem., 100, 13794 (1996).
[97] P. K. Wei and W. S. Fann, J. Microsc., 202, 148 (2000).
[98] JASCO editors, Near Field Scanning Optical Microscopy, http://www.jasco.co.uk/nearfield.htm, 2002/6/26.
[99] M. D. Halls and R. Aroca, Can. J. Chem., 76, 1730 (1998).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top