跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.251) 您好!臺灣時間:2022/08/11 22:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林志偉
論文名稱:結合無電鍍銅與電鍍銅製備銅導線薄膜之研究
論文名稱(外文):A study on the preparation of copper interconnections by combining electroless deposition and electroplating
指導教授:林樹均
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:142
中文關鍵詞:無電鍍銅電鍍銅
外文關鍵詞:copperelectroless depositionelectroplating
相關次數:
  • 被引用被引用:4
  • 點閱點閱:941
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以敏化活化法成長無電鍍銅晶種層,並整合電鍍銅技術製備銅導線薄膜。將試片先以10 % HF進行蝕刻處理,粗糙度最低,且能夠均勻去除TaN表面的原生氧化層,促進後續的敏化活化。在溫度75 ℃下進行敏化活化,能夠在試片表面形成緻密且均勻散佈,尺寸大小約10 nm的Sn-Pd聚團。無電鍍銅則是以這些Pd為成核點,成長一層緻密且連續的晶種層;晶種層在200 mTorr Ar氣氛下400 ℃退火30 min,可減少內部缺陷提高晶種層的結晶性,使30 nm厚的晶種層電阻率降至3.12 μΩ-cm,且退火處理後附著力變佳,表面粗糙度降至1.92 nm;另外可以成功在0.18 μm 的特徵孔洞內覆蓋一層30 nm的無電鍍銅晶種層。
在退火過的無電鍍銅晶種層上電鍍銅膜,最佳的電流密度為3.33 mA/cm2,若電鍍時不進行攪拌,在較高電流密度時由於反應速率太快,局部濃度較高的地方,會有銅自由析出沈積於銅膜表面,造成銅膜表面變粗糙且堆積密度降低,電阻率因而升高;攪拌鍍液可使銅離子擴散速率加快,鍍液濃度分布均勻,因而加快反應的速率,也減少自由析出現象。此外,電鍍銅膜在Ar氣氛下400 ℃退火30 min,銅膜可通過附著力測試;180 nm銅膜電阻率下降至2.14 μΩ-cm ,1.9 μm銅膜更降至1.77 μΩ-cm,相當接近銅塊材的1.67 μΩ-cm;電鍍銅時若加入添加劑,可以成功填滿0.18 μm 的特徵孔洞,形成超填充。
以上結果可知,無電鍍銅晶種層與電鍍銅整合,在下世代銅導線製程將極具潛力。
摘要……………………………………………………………………...I
誌謝...........................................................................................................II
目錄..........................................................................................................III
圖目錄………………………………………………………………….VII
表目錄………………………………………………………………...XIII
壹、前言...................................................................................................1
貳、文獻回顧…………………………………………………………...3
2.1. 積體電路之金屬內連線…………………………………………...3
2.1.1. RC延遲效應(RC delay)…………………………………….3
2.1.2. 電遷移效應(Electromigration)……………………………..3
2.1.3. 內連線材料之選擇………………………………………....6
2.1.4. 銅化學機械研磨技術(Cu CMP) [17]……………………....8
2.1.5. 銅金屬內連線製作之Damascence製程…………………..8
2.2. 擴散阻隔層 [21]………………………………………………….10
2.3. 銅金屬內連線之沉積技術 [17]………………………………….16
2.3.1. 物理氣相沈積 [28]………………………………………..17
2.3.2. 化學氣相沈積 [17,29]…………………………………….19
2.3.3. 電化學沈積………………………………………………...20
2.3.3.1. 電鍍銅……………………………………………21
2.3.3.1-1 陽極的選用……………………………21
2.3.3.1-2 電鍍銅鍍液成份………………………21
2.3.3.1-3 銅晶種層(Seed Layer)………………...25
2.3.3.2. 無電鍍銅…………………………………………26
2.3.3.2-1 無電鍍銅製程之發展…………………26
2.3.3.2-2 無電鍍銅製程之前處理………………28
2.3.3.2-3 無電鍍銅鍍液之組成與特性…………30
2.3.3.2-4 無電鍍銅之化學反應式與反應機制…35
2.3.3.2-5 無電鍍銅的發展與應用………………36
2.3.3.2-6 應用無電鍍銅製作半導體銅製程的晶種層……………………………...37
2.4. 研究目的…………………………………………………………..38
參、實驗步驟..........................................................................................39
3.1. 基材………………………………………………………………..39
3.2. 敏化活化無電鍍銅晶種層………………………………………..39
3.2.2. 蝕刻處理…………………………………………………...39
3.2.3. 敏化活化處理……………………………………………...39
3.2.4. 無電鍍銅晶種層…………………………………………...41
3.3. 在無電鍍銅晶種層上進行電鍍銅………………………………..41
3.3.1. 試片清洗…………………………………………………...41
3.3.2. 電鍍銅……………………………………………………...41
3.4. 實驗流程圖………………………………………………………..45
3.4.1. 敏化活化無電鍍銅晶種層實驗流程圖…………………...45
3.4.2. 在無電鍍銅晶種層上進行電鍍銅實驗流程圖…………...46
3.5. 儀器設備簡介……………………………………………………..47
3.5.1. 無電鍍銅設備……………………………………………...47
3.5.2. 電鍍銅設備………………………………………………...47
3.6. 熱處理……………………………………………………………..47
3.7. 微結構觀察………………………………………………………..50
3.7.1. 掃描式電子顯微鏡(SEM)分析……………………………50
3.7.2. 原子力顯微鏡(AFM)分析…………………………………50
3.7.3. 穿透式電子顯微鏡(TEM)分析……………………………50
3.8. 成份分析…………………………………………………………..50
3.8.1. 歐傑電子能譜儀(AES)分析……………………………….50
3.8.2. 拉塞福背向散射分析儀(RBS)分析……………………….51
3.9. 性質分析…………………………………………………………..51
3.9.1. X-ray繞射儀分析…………………………………………..51
3.9.2. 電阻率量測………………………………………………...51
3.9.3. 附著力測試…………………………………………….......52
3.9.4. 應力量測…………………………………………………...52
肆、結果與討論………………………………………………………..56
4.1. 擴散阻隔層成份分析……………………………………………..56
4.1.1. 拉塞福背向散射分析儀分析結果………………………...56
4.1.2. X-ray繞射圖分析結果……………………………………..56
4.1.3. AFM分析結果……………………………………………...56
4.2. 無電鍍銅晶種層製程研究………………………………………..60
4.2.1. 蝕刻處理…………………………………………………...60
4.2.1.1. 不同蝕刻成份之AFM分析……………………..60
4.2.2. 敏化活化處理……………………………………………...66
4.2.2.1. 不同敏化活化溫度之銅膜電阻率分析…………66
4.2.2.2. 不同敏化活化溫度之銅膜SEM分析…………..69
4.2.2.3. 敏化活化後之表面AFM分析…………………..69
4.2.2.4. 敏化活化後之TEM分析………………………..78
4.2.2.5. Sn-Pd聚團之RBS分析………………………….78
4.2.3. 無電鍍銅晶種層分析……………………………………...78
4.2.3.1. 晶種層SEM分析………………………………...78
4.2.3.2. 晶種層AFM分析………………………………..83
4.2.3.3. 晶種層TEM分析…………………………….......83
4.2.3.4. 晶種層電阻率分析………………………………83
4.2.3.5. 晶種層X-ray分析……………………………….92
4.2.3.6. 晶種層附著力分析………………………………92
4.2.3.7. 晶種層的階梯覆蓋能力研究……………………95
4.3. 無電鍍銅晶種層與電鍍銅製程整合研究………………………..95
4.3.1. 不攪拌條件下不同電流密度對電鍍銅影響之研究……...95
4.3.1.1. 電鍍銅SEM分析………………………………..95
4.3.1.2. 電鍍銅電阻率分析………………………………98
4.3.1.3. 電鍍銅AFM分析……………………………....106
4.3.2. 攪拌對電鍍銅影響之研究……………………………….106
4.3.2.1. 電鍍銅SEM分析………………………………111
4.3.2.2. 電鍍銅不同退火溫度電阻率分析……………..111
4.3.2.3 電鍍銅X-ray分析………………………………117
4.3.2.4 電鍍銅熱循環應力分析………………………...117
4.3.2.5. 電鍍銅附著力分析……………………………..120
4.3.2.6. 電鍍銅填洞能力研究…………………………..120
伍、結論………………………………………………………………122
陸、參考文獻…………………………………………………………124
1. R. A. Levy, M. L. Green, and P. K. Gallager, “Characterization of LPCVD Aluminum for VLSI Process,” J. Electrochem. Soc., 131, 1984, p. 2175.
2. A. Cros, M. O. Aboafotoh, and K. N. Tu, “Formation, Oxidation, and Electrical Properties of Copper Silicides,” J. Appl. Phys., 67, 1990, p. 3328.
3. S. P. Murarka, in C. C. Smith, and R. Blumenthal(eds.), Materials Research Society, Pittshurgh, PS, 1991, p. 179.
4. J. S. H. Cho, et al., Tech. Dig. Of International Electron Devices Meeting, 1993, p. 265.
5. R. S. Muller and T. I. Kamins, Device Electronics for Integrated Circuits, 2nd ed., John Wiley & Sons, New York, 1986, p. 1.
6. J. S. H. Cho, et al., EKE EDM Technical Digest, 1993, p. 265.
7. Y. Shacham-Diamand, et al., “Copper Transport in Thermal SiO2,” J. Eectrochem. Soc., 140, 1993, p. 2427.
8. S. Q. Wang, “Filling of Contacts and Interconnects with Cu by XeCl Laser Reflow,” VMIC Conference, Santa Clara, June, 1990, p. 431.
9. Y. Shacham-Diamand and V. Dubin, “Electroless Copper Deposition for ULSI,” Thin Solid Films, 262, 1995, p. 93.
10. H. H. Hsu, C. W. Teng, S. J. Lin, and J. W. Yeh, “Sn/Pd Catalyzatio and Electroless Cu deposition on TaN Diffusion Barrier Layers,” J. Electrochem. Soc., 149, 2002, p. 143.
11. S. P. Murarka, “Low Dielectric Constant for Interlayer Dielectric Applications,” Solid State Technology, 39, 1996, p. 83.
12. S. P. Jeng, R. H. Havemann, and M. C. Chang, “Process Intergration and Manufacturability Issues for High Performance Multilevel Interconnect,” in Advanced Metallization for Devices and Circuits-Science, Technology and Manufacturability Symposium, 1994, p. 25.
13. 陳來助, “ULSI超大型積體電路之銅導線技術,” 電子與材料, 10月號, 1999, p. 85.
14. M. Schlesinger and M. Paunovic, Modern Electroplating 4th ed., p. 661.
15. 吳文發和秦玉龍, “電遷移效應對銅導線可靠度之影響,” 毫微米通訊, 第六卷第一期.
16. H. S. Rathore and D. Nguyen, “Effect of Scaling of Interconnection,” Copper Metallization for Sub-Micron Integrated, 14, 1998, p. 29.
17. 楊正杰、張鼎張和鄭晃忠, “銅金屬與低介電常數材料與製程,” 毫微米通訊, 第七卷第四期.
18. F. B. Kaufman and D. B. Thompson, “Chemical-Mechanical Polishing for Fabricating Patterned W Metal Feature as Chip Interconnects,” J. Electrochem. Soc., 138, 1991, p. 3460.
19. C. S. Ryu PhD Thesis, Materials Sci Eng., Stanford University, 1998.
20. 張鼎張、鄭晃忠和楊正杰, “銅金屬化製程簡介,” 毫微米通訊, 第五卷第三期.
21. 吳文發和黃麟峰, “銅製程之擴散阻隔層,” 毫微米通訊, 第六卷第四期.
22. Y. Shacham-Diamand and A. Dedhia, “Copper Transport in Thermal SiO2,” J. Electrochem. Soc., 140, 1993, p. 2427.
23. Q. T. Jiang, R. Faust, H. R. Lam, and J. Muchda, Proceedings of the International Interconnect Technology Conference, 1999, p. 125.
24. M. H. Tsai and S. C. Sun, “Comparison of the Diffusion Barrier Properties of Chemical-Vapor-Deposited TaN and Sputtered TaN between Cu and Si,” J. Appl. Phys., 79, 1996, p. 6932.
25. S. P. Murarka and S. W. Hymes, “Copper Metallization for ULSI and Beyond,” Critical Reviews in Solid State and Materials Science, 20, 1995, p. 87.
26. C. Ryu, H. Lee, K. W. Kwon, L. S. Loke, and S. S Wong, “Barrier for Copper Interconnections,” Solid State Technology, 42, 1999, p. 53.
27. T. Oku and E. Kawakami, “Diffusion Barrier Property of TaN Between Si and Cu,” Applied Surface Science, 99, 1996, p. 265.
28. 吳文發, “積體電路技術中物理氣相沉積製程設備發展,” 電子月刊, 4月號, 1999, p. 106.
29. 張鼎張, “金屬(W、Cu、Al、TiN、TaN)化學氣相沉積技術,” 電子月刊, 4月號, 1999, p. 116.
30. M. B. Naik, W. N. Gill, R. H. Wentorf, and R. R. Reeves, “CVD of Copper Using Copper(Ⅰ) and Copper(Ⅱ) β-Diketonates,” Thin Solid Films, 262, 1995, p. 60.
31. N. Awaya and Y. Arita, “Digest of Technical Papers,” Section 12-4, 1989, p. 103.
32. S. S Wong, in P. W. J. Verhofstadt(eds), SRC Topical Research Conf. On Interconnects, SRC Publ. P90007, SRC. Research Triangle Park, NC, 1990, p. 45.
33. V. M. Dubin and C. H. Ting, “Electro-Chemical Deposition of Copper for ULSI Metallization,” VMIC Conference, Santa Clara, June, 1997, p. 10.
34. 胡榮治, “金屬化學氣相沈積技術與電化學方式沈積銅導線在積體電路金屬化製程之應用與研究,” 國立清華大學材料科學與工程研究所博士論文, D/440.2/2000.
35. A. Sato and R. Barauskas, Metal Finishing, 64th Guidebook and Directory Issue, 94, 1996, p.214.
36. S. Yoon, M. Schwartz, and K. Nobe, “Rotating Ring-Disk Electrode Studies of Copper Electrodeposition : Effect of Chloride Ions and Organic Additives,” Plating Surf. Finish., 81, Dec., 1994, p.65.
37. S. Yoon, M. Schwartz, and K. Nobe, “Rotating Ring-Disk Studies of Cu Anodes : Effect of Chloride Ions and Organic Additives,” Plating Surf. Finish., 82, Feb., 1995, p.64.
38. Z. Nagy, J. P. Blaudeau, N. C. Hung, L. A. Curtiss, and D. J. Zurawski, “Chloride Ion Catalysis of the Copper Deposition Reaction,” J. Electrochem. Soc., 142, June, 1995, p. L87.
39. 謝嘉民、林琨程、張世杰、戴寶通、馮明憲和陳家富, “150 nm深次微米小孔的電鍍銅技術,” 毫微米通訊, 第八卷第一期.
40. P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni, “Damascene Copper Electroplating for Chip Interconnections,” IBM J. Res. Develop., 42, Sep., 1998, p. 567.
41. R. Solanki and B. Pathangey, “Atomic Layer Deposition of Copper Seed Layers,” Electrochemical and Solid-State Letters, 3, 2000, p. 479.
42. J. S. Park and M. J. Lee, “Plasma-Enhanced Atomic Layer Deposition of Tantalum Nitrides Using Hydrogen Radicals as a Reducing Agent,” Electrochemical and Solid-State Letters, 4, 2001, p. C17.
43. V. M. Dubin and Y. Shacham-Diamand, “Selective and Blanket Electroless Copper Deposition for Ultralarge Scale Integration,” J. Electrochem. Soc., 144, March, 1997, p. 898.
44. 蔡明蒔, “半導體製程中銅電鍍技術之製程及設備,” 電子月刊, 4月號, 1999, p. 155.
45. 逢板哲爾, “化學反應製造金屬薄膜,” 表面處理工業雜誌, 3期, 1986, p. 25.
46. 張中良, “非導體表面之金屬化,” 表面處理工業雜誌, 3期, 1996, p. 86.
47. 神戶德藏著;莊萬發譯, “無電解鍍金,” 復漢出版社印行, 1989.
48. 齊藤圈, “金屬表面技術,” 17期, 1966, p. 14.
49. L. N. Schoenberg, “The Structure of the Complexed Copper Species in Electroless Copper Plating Solutions,” J. Electrochem. Soc., 118, 1971, p.1571.
50. Y. Shacham-Diamand, Valery and M. Angyal, “Electroless Copper Deposition for ULSI,” Thin Solid Film, 262, 1995, p. 93.
51. Y. Shacham-Diamand and S. Lopatin, “Integrated electroless metallization for ULSI,” Electrochemica Acta , 44, 1999, p. 3639.
52. J. Dugasz and A. Szasz, “Factors Affecting the Adhesion of Electroless Coating,” Sur. Coating Technol., 58, 1993, p. 57.
53. N. Feldstein and J. A. Weiner, “Surface Characterization of Sensitized and Activated Teflon”, J. Electrochem. Soc., 120, 1973, p. 475.
54. R. Sard, “The Nucleation, Growth, and Structure of Electroless Copper Deposits”, J. Electrochem. Soc., 117, 1970, p. 864.
55. C. Longo, P. T. Sumodjo, and F. Sanz, “Displacement Deposition of Sn from Fluoride Solutions on Pd Predeposited (100) Si Substrate,” J. Electrochem. Soc., 144, 1997, p. 1659.
56. V. M. Dubin, “Electroless Ni-P Deposition on Silicon with Pd Activation,” J. Electrochem. Soc., 139, 1992, p. 1289.
57. J. Dumesic, J. A. Koutsky, and T. W. Chapman, “The Rate of Electroless Copper Deposition by Formaldehyde Reduction,” J. Electrochem. Soc., 121, 1974, p. 1405.
58. J. Shu, B. P. A. Grandjean, and S. Kaliaguine, “Effect of on Cu(OH)2 Electroless Copper Plating,” Ind. Eng. Chem. Res., 36, 1997, p. 1632.
59. 方景禮, “電鍍添加劑總論(14),” 表面處理工業雜誌, 153期, 1995, p. 137.
60. A. Hung and K. M. Chen, “Mechanism of Hypophosphite-Reduced Electroless Copper Plating,” J. Electrochem. Soc., 136, 1989, p. 72.
61. A. Hung and I. Ohno, “Electrochemical Study of Hypophosphite Reduced Electroless Copper Deposition,” J. Electrochem. Soc., 137, 1990, p. 918.
62. A. Hung, “Electroless Copper Deposition with Hypophosphite as Reducing Agent,” Plating and Surface Finishing, 75, 1988, p. 62.
63. J. E. A. van den Meerakker, “On the Mechanism of Electroless Plating: I. Oxidation of Formaldehyde at Different Electrode Surface,” J. Appl. Electrochem., 11, 1981, p. 395.
64. J. E. A. van den Meerakker, “On the Mechanism of Electroless Plating: II. One Mechanism for Different Reductants,” J. Appl. Electrochem., 11, 1981, p. 387.
65. 齊藤圈, “金屬表面技術,” 17期, 1966, p.14.
66. H. Honma and T. Kobayashi, “Electroless Copper Deposition Process Using Glyoxylic Acid as a Reducing Agent,” J. Electrochem. Soc., 141, 1994, p. 730.
67. Y. Shacham-Diamand, “Electroless Copper Deposition Using Glyoxylic Acid as Reducing Agent for Ultralarge Scale Integration Metallization,” Electrochemical and Solid-State Letters, 3, 2000, p. 279.
68. 尤志州、劉嘉熹、蔡明蒔、胡淑芬、王進龍、李盈壕和呂志鵬, “利用無電極鍍銅方法成長晶種層及其特性研究,” 毫微米通訊, 第七卷第四期.
69. K. Koyano, M. Kato, and H. Takenouchi, “Electroless Copper Plating from Copper-Glycerin Complex Solution,” J. Electrochem. Soc., 139. 1992. p. 3112.
70. V. V. Svirdow, et al., “Electroless Metal Deposition Aqueous Solution,” Byelorussian University, Minsk, Russia, 1987.
71. M. Pounovic and R. Arndt, “The Effect of Some Additives on Electroless Copper Deposition,” J. Electrochem. Soc., 130, 1983, p. 794.
72. 方景禮, “電鍍添加劑總論(14),” 表面處理工業雜誌, 153期, 1995, p. 137.
73. B. D. Barker, “Electroless Deposition of Metals,” Surface Technology, 12, 1981, p. 77.
74. V. V. Svirdow, “Electroless Metal Deposition Aqueous Solution,” Byelorussian University, Minsk, Russia, 1987.
75. A. Hung, “Electroless Copper Deposition with Hypophosphite as Reducing Agent,” Plating and Surface Finishing, 75, 1988, p. 62.
76. J. P. O’Kelly, “Room Temperature Electroless Plating Copper Seed Layer Process for Damascene Interlevel Metal Structures,” Microelectronic Engineering, 50, 2000, p. 473.
77. Y. Lantasov, “New Plating Bath for Electroless Copper Deposition on Sputtered Barrier Layers,” Microelectronic Engineering, 50, 2000, p. 441.
78. J. C. Hu, “Effects of A New Combination of Additives in Electroplating Solution on The Properties of Cu Films in ULSI Applications,” J. Vac. Sci. Technol. A, 18, 2000, p. 1207.
79. M. Schlesinger and M. Paunovic, Modern Electroplating 4th ed., p. 89.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top