跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.251) 您好!臺灣時間:2022/08/11 23:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李奇澤
研究生(外文):Chi-Tse Li
論文名稱:銅薄膜應力疏散機制的探討
論文名稱(外文):The study of stress relaxation mechanisms in copper thin films
指導教授:蔡哲正
指導教授(外文):Cho-Jen Tsai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:93
中文關鍵詞:銅薄膜應力疏散機制
外文關鍵詞:stress relaxation mechanisms
相關次數:
  • 被引用被引用:7
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
金屬薄膜在硬質材料的基材上的熱機械行為與薄膜元件的可靠度有關,但薄膜的機械應力比起同材料的塊材要大上許多,而它的機制並不完全被了解。本研究將探討不同銅薄膜厚度在矽基材上以TaN為擴散阻障層時的應力行為。試片熱處理方式,則是在真空下進行熱循環(至溫到500℃ 及700℃ )及持溫退火(200℃, 300℃, 400℃),並以in-situ雷射掃描方式量測曲率。此外也利用歐傑電子能譜儀(AES)、X光繞射分析(XRD)以及四點探針片電阻量測來分析銅薄膜的性質。而銅薄膜於持溫退火時之應力疏散曲線,則利用不同的應變速率方程式來進行擬合,所需的擬合參數則參考已發表的銅塊材參數。
實驗結果顯示,銅薄膜在不同的介電層材料上將會表現出不同的應力-溫度行為。而在溫度650℃以上則觀察到Ta2N的晶粒成長將影響銅薄膜的溫度-應力行為。經由實驗數據計算而得到銅的雙軸彈性模數,則會隨著銅薄膜厚度的增加而有減少的趨勢。
根據利用適當的塑性變形方程式進行擬合的結果,在300℃和400℃高溫潛變顯然是TaN/Cu/TaN/SiO2/Si結構中銅薄膜主要的應力疏散機制。但是在200℃,我們不能找到一個適當的疏散機制。

Mechanical stresses in thin films are often significantly higher than those supported by the same material in bulk form. The thermomechanical behavior of metallic thin films on stiff substrates is relevant for thin film devices, but its mechanisms are not yet fully understood. In this investigation, the stress behaviors of copper thin films with different thickness on diffusion-barrier (TaN) coated Si substrates are studied using a laser scanning method for in-situ curvature measurements. The heat treatments of the samples include isochronal (from room temperature to 500℃ and 700℃) and isothermal (200℃, 300℃, 400℃) annealing in vacuum. The film properties of Cu were analyzed by Auger electron spectroscopy (AES), X-ray diffraction (XRD), and four-point probe measurement. The stress relaxation data obtained during isothermal annealing were curve-fitted with different strain-rate equations with appropriate parameters for bulk copper and the plausible mechanisms for the relaxation were determined.
The results show that copper thin films on different dielectric materials have different thermomechanical behavior. At temperatures above 650℃, the grain growth of Ta2N was observed which affects the thermomechanical of the copper films. The biaxial modulus of copper thin films decreases with increasing thickness.
According to the results of curve-fitting for plastic deformation, high temperature creep appears to be the dominate stress relaxation mechanism for copper thin films in TaN/Cu/TaN structure at 300℃and 400℃. At 200℃, no existing models for relaxation mechanism could describe the relaxation behavior properly.

第一章 緒論 1
1-1 前言 1
1-2 銅薄膜 3
1-3 薄膜應力 4
1-3-1 應力來源 4
1-3-2 應力的影響 4
1-3-3 銅薄膜的應力行為 5
第二章 理論基礎 7
2-1 量測理論 7
2-1-1 曲率量測原理 7
2-1-2 Stony 方程式 8
2-1-3 熱應力 9
2-2 光學系統 9
2-2-1 雷射掃描之光學系統架構 9
2-2-2 光學系統校正 10
2-3 塑性變形機制 11
2-3-1 擴散流(Diffusion flow) 11
2-3-2 低溫塑性:差排滑移(Dislocation glide) 13
2-3-3 高溫塑性:指數-定律潛變(Power-law creep) 14
2-3-4 變形機制圖 15
2-4 擬合基礎 16
2-4-1 溫度-應力曲線 16
2-4-2 持溫狀態下的應力疏散機制分析 17
第三章 實驗方法及分析儀器 18
3-1 實驗流程 18
3-1-1 試片製備 18
3-1-2 RCA clean 18
3-1-3 熱氧化 18
3-1-4 鍍膜 19
3-1-5 試片製作 19
3-2 熱循環及持溫 20
3-2-1 熱循環 20
3-2-2 持溫 21
3-3 分析儀器 21
3-3-1 X-光繞射儀 21
3-3-2 四點探針 22
3-3-3 歐傑電子能譜儀 22
第四章 結果與討論 24
4-1 TaN/CU/TaN的應力-溫度行為 24
4-1-1 SiO2對銅薄膜應力的影響 24
4-1-2 雙軸彈性係數(Biaxial elastic modulus) 25
4-1-3 TaN/Cu/TaN在500℃熱循環的應力-溫度行為 26
4-1-4 TaN/Cu/TaN在700℃熱循環的應力-溫度行為 28
4-2 微結構分析 30
4-2-1 Auger分析 30
4-1-2 XRD分析 31
4-3 銅薄膜的片電阻 32
4-4 未加鈍化層的銅薄膜應力-溫度行為 33
4-5 鈍化層的影響 35
4-6 持溫狀態下的應力疏散機制分析 36
4-6-1 擬合方程式 36
4-6-2 應力值零點的定位方法 39
4-6-3 升溫過程中的持溫 40
4-6-4 降溫過程中的持溫 41
4-6-5 討論 42
第五章 結論 45
參考文獻及書目 48
表 52
圖 64

1. Y.Pauleau, Solid State Technology 30, 31(1987)
2. P. -L.Pai and C.H. Ting, Proc.6[th] VLSI Multilevel InterconnectionConf., Santa Clara, p.528(1989)
3. A.Kumar and H. Bakhur, C. Jin and W.W.Lee,T.-M.Lu, J.Appl.Phys. 87, 3567(2000)
4. P.-L. Pai and C.H. Ting, IEEE Electron Device Lett. 10, 423(1989)
5. M.B.Small and D.J. Pearson, IBM J.Res.Develop. 34, 858(1990)
6. K.Seshan,T.J.Maloney,K.J.Wu, Intel Technology Journal, Q3(1998)
7. 施敏,“半導體元件物理與製作技術”,高立圖書公司,1997 年5月二版修定,P.453
8. W. A .Landford, P. J. Ding ,W. Wang, S. Hymes , S. P. Murarka , Materials Chemistry and Physics 41, 192(1995)
9. R. S. Muller and T. I. Kamins, Device Electronics for IntegratedCircuits , 2nd ed. , John Wiley & Sons, New York, pp. 1-56 (1986).
10. A. Flinn, D. S. Gardner, and W. D. Nix, IEEE Trans, Electron Device ED-34, 689(1987)
11. C. A. Volkert, J. Appl. Phys. 70, 3521(1991)
12. J. Li and J. W. Mayer, J. Appl. Phys.70,2820(1991)
13. 莊達人,“VLSI 製造技術”,高立圖書公司,1995年3月25日初版,P38
14. W. Buckel, J. Vac. Sci. Tech. 6, 606(1969)
15. F. Spaepen and A. L. Shull. Current Opinion in Solid State & Materials Science 1. 678(1996)
16. Thin Films: Stress and Mechanical Properties 1.edited by J. C. Bravman. W. D. Nix. D. M. Barnett. and D. A. Smith(Mater. Res. Soc. Symp. Proc. 130. Pittsburgh. PA, 1989)
17. Thin Films: Stress and Mechanical Properties Ⅰ. edited by J.C .Bravman. W.D. Nix. D.M. Barnett. and D.A. Smith(Mater. Res. Soc. Symp. Proc. 130. Pittsburgh. PA, 1989)
18. Thin Films: Stress and Mechanical Properties Ⅱ. edited by J.C .Bravman. W.D. Nix. D.M. Barnett. and D.A. Smith(Mater. Res. Soc. Symp. Proc. 130. Pittsburgh. PA, 1990)
19. Thin Films: Stress and Mechanical Properties Ⅲ. edited by J. C .Bravman. W. D. Nix. D. M. Barnett. and D. A. Smith(Mater. Res. Soc. Symp. Proc. 130. Pittsburgh. PA, 1992)
20. C. V. Thomplson and R. Carel, J. Mech. Phys. Sol. 44. 657-673(1996)
21. M. D. Thouless, J. Gupta. and J. M. E. Harper, J. Mater. Res. 8. 1845-1852(1993)
22. P. R. Besses. S. Brennan and J. C. Bravman. J. Mater. Res. 9. 13-24(1994)
23. R. Venkatraman. J. C. Bravman. W. D. Nix. P. W. Davies, P. A. Flinn, and D. B. Fraser, J. Electronic Mater. 10. 1231-1237(1990)
24. C. Lingk and M. E. Gross, J. Appl. Phys. 84, 5547(1998)
25. T. S. Kuan and M. Murakami, Mettal. Trans. A 13A,383(1982)
26. M. F. Doerner, D. S. Gardner, and W. D. Nix, J. Mater. Res. 1, 845(1986)
27. W. D. Nix, Mettal. Trans. A 20A, 2217(1989)
28. R. Venkatraman. and J.C. Bravman., J. Mater. Res. 7,2040(1992)
29. H. J. Frost, and M. F. Ashby, Deformation-mechanism Maps:The Plasticity and Creep of Metals and Ceramics( Pergamon Press, Oxford, 1982) pp. 6-16
30. M.D. Thoules、J. Gupta and J. M. E. Harper, J. Mater. Res. 8,13(1993)
31. R. P. Vinci、E. M. Zielinski J. C. Bravman, Thin Solid Film 262,142(1995)
32. R.-M. Keller, S. P. Baker and E. Arzt, Acta Mater. 47, 415(1999)
33. M. J. Kobrinsky and C. V. Thompson, Appl. Phys. Lett. 73, 2429(1998)
34. M. J. Kobrinsky and C. V. Thompson, Acta Mater. 48, 625(2000)
35. Y-L. Shen and S. Suresh, J. Mater. Res. 13. 1928 7 (1998)
36. R. -M. Keller, S. P. Baker and E. Arzt, J. Mater. Res. 13. 1307 5(1998)
37. D. Weiss, H. Gao and E. Arzt, Acta Mater. 49, 2395(2001)
38. M. Ohring, The Material Science of Thin Films(Academic Press,America,1991), p.p 416-425
39. J. T. Pan, and I. Blech, J. Appl. Phys. 55, 2874(1984)
40. V. L. Teal, and S. P. Murarka, J. Appl. Phys. 61, 5038(1987)
41. J. F. Jongste, O. B. Loopstra, G. C. A. M. Janssen, and S. Radelaar, J. Appl. Phys. 73, 2816(1993)
42. 陳明義, TiSi2相的形成及其應力變化, 國立中興大學材料工程研究所碩士論文(1997)
43. CRC Handbook of Chemistry and Physics(CRC Press Inc., Boca Raton, FL, 1992)
44. http://www.ndl.gov.tw/EQUIP_INTRO/EQUIP_INTRO_10/B9.htm
45. http://www.ndl.gov.tw/EQUIP_INTRO/EQUIP_INTRO_3F10K/1.htm
46. B. D. Cullity, Elements of X-ray Diffraction (Addison-Wesley Publishing Company, Inc., 1979), p. 86-87
47. M. M. SZE, Semiconductor Devices Physics and Technology, 1985,P37
48. E. J. Mittemeijer, A. Van gent and P. J. Van Der Schaaf, Metallurgical Transactions, A17, 1441(1986)
49. http://www.nscric.nthu.edu.tw/Other/augeresca/auesca.html
50. F. M. Smits, The Bell System Technical Journal , May, p711(1958)
51. W. A. Brantly, J.Appl.Phys. 44, 534, 1973.
52. E. A. Brandes and G.B. Brook, Smithells metals reference book7th Edition,(Butterworth-Heinemann Ltd, Great Britain, 1992)
53. Kyung-Hoon Min, Kyu-Chang Chun, and Ki-Bum Kim, J. Vac. Sci. Technol. B 14(5), Sep/Oct 1996.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top