跳到主要內容

臺灣博碩士論文加值系統

(3.229.124.74) 您好!臺灣時間:2022/08/11 07:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳冠賢
論文名稱:以機械球磨改善AB2型儲氫合金之電化學活性
指導教授:陳 建 瑞
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:75
中文關鍵詞:機械球磨AB2型儲氫合金電化學
相關次數:
  • 被引用被引用:0
  • 點閱點閱:113
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於電子、資訊及通訊等3C 產品均朝向無線化、可攜帶化方向發展,對於產品的各項高性能元件也往「輕、薄、短、小」的目標邁進,因此對於可攜式二次電池的需求更不例外;小型二次電池的市場從1998年的18億顆成長到2005年的23億顆以上,根據日本矢野經濟研究所1998年的研究報告,小型二次電池在公元2005年的市場值約有一兆一千億日元,其中鋰離子電池佔82% , 鎳氫電池佔10%,鎳鎘電池佔8%,由於環保的要求,鎳鎘電池將逐漸被鋰離子電池和鎳氫電池取代。鎳氫電池之組成材料一般在鎳鎘電池中已長期使用,因此技術發展多屬產品物理性質或製程改良,較少有種類上之變化。因而鎳氫電池性能改良之重點,落在儲氫合金材料。本研究目的在以簡單組成成分之AB2型儲氫合金為基礎,其活化圈數約十幾圈到幾十圈左右,嘗試以機械球磨、熱處理及混鎳球磨,試著是否能更進一步的加強其活性,在前幾圈的充放電活化步驟中即能迅達到最佳活性。倘若如此,則對於較複雜成分之AB2 型與Mg2Ni 型儲氫合金,即可提供一絕佳之後續改善方法,以提高其實用性,充份發揮儲氫合金之優點,增加市埸競爭性。本實驗所配製的合金成分有 Ti0.35Zr0.65Ni1.4V0.6 與 ZrCrNi 兩種。經高能球磨後,合金的平均粒徑變小,使合金的表面積變大,增加了合金的活性。實驗中的合金,經球磨後電化學活圈數明顯下降。從原本需要15次的充放,才能達到最高電容量,經球磨後只需5次的充放電,即可達到最高電容量。但經球磨後電容量下降,球磨時間越長,電容量下降越多。經由混鎳球磨的處理後,電容量略有回昇,但無法回昇到完全未球磨時的電容量。

摘要
致謝
目錄………………………………………………………………………1
表目錄……………………………………………………………………3
圖目錄……………………………………………………………………4
第一章 緒 論…………………………………………6
1-1 前言………………………………………………………………….6
1-2 鎳氫電池的發展…………………………………………………….6
1-3 研究動機與目的…………………………………………………9
第二章 儲氫合金文獻回顧………………………….11
2-1 儲氫材料簡介……………………………………………………11
2-2 儲氫機構…………………………………………………………13
2-3 儲氫性能提升……………………………………………………22
2-4機械合金……………………………………………………………29
第三章 實驗設備與程序……………………………32
3-1 實驗架構流程圖…………………………………………………32
3-2 合金製備…………………………………………………………33
3-3 合金粉末製備及分析……………………………………………33
3-4 機械球磨…………………………………………………………34
3-5 P-C-T曲線量測……………………………………………………..34
3-6電化學性質測試…………………………………………………….35
3-7儀器分析……………………………………………………………36
第四章 結果與討論…………………………………..40
4-1 合金成分與結構分析……………………………………………40
4-2 以SEM觀察合金表面…………………………………………….41
4-3 球磨後合金XRD分析……………………………………………..43
4-4 P-C-T分析…………………………………………………………..44
4-5 電化學分析………………………………………………………47
第五章 結論…………………………………………..64
參考文獻………………………………………………66

[1]充電電池規格標準誕 生環境與發展基金會副研究員 陳靖原
[2] 陳世渝, “鎳氫化物電池的材料與技術,” 工業材料, 111期, p.77-85, 1996
[3] 電池資訊網 鎳氫電池 中華民國行政院國家科學委員會
[4] 呂台生, “鈦鎳鈷錳合金之氫化性質與電化學行為之研究,” 國立
清華大學碩士論文, p. 1 (1997).
[5]朱志堯,李玉興 "金屬新秀" 凡異出版社 民國89年6月初版
[6] 鳳凰新聞 2001年7月30號
[7] "奈米碳管提高7倍儲氫量" 工業材料月刊 第174期
[8] "儲存技術" 氫能資訊網站 亞太能源公司
[9] H. A. Liebhafsky and E. J. Cairns, Fuel Cells and Fuel Batteries, p.18,John Wiley & Sons, Inc., New York, 1968
[10]T. Gramham, Phil. Trans. Roy. Soc., London, Vol. 156, p. 399, 1866.
[11]D. G. Ivey and D. O. Northwood, “Review storing energy in metalhydride:a review of physical metallurgy,” J. Material Science, Vol. 18,pp.321-347, 1983
[12] A. H. Boonstra, G. J. M. Lippits, and T. N. M. Bernards,“Degradation process in a LaNi5 electrode,” J. Less-Common Met.,Vol. 155, pp.119-131, 1989.
[13]黃鐵生, 儲氫合金概論, 工業材料, 111 期, 97-107 頁, 1996.
[14] K. Girgis, R. W. Cahn, and P. Haasen, “Physical Metallurgy”, 3rd edit., Amsterdam, New York, pp.243, 1983.
[15] R. P. Elliot and W. Rostocker, “The occurrence of Laves-type phaseamong transition elements,” Trans. Am. Soc. Met., Vol. 50, pp.617-631, 1958.
[16] 陳立業, “燒結條件對Zr-Ti-Cr-Mn-X 系儲氫合金電極性質之影響研究,” 電力科技產業學術合作研究計畫, 1999.
[17] V. T. Venkatesan and W. E. Wallace, “The hyperstoichiometric ZrMn1+xFe1+y-H2 system Ⅱ: hysteresis effect,” J. Less-Common
Met., Vol.91, p. 239, 1983.
[18] T. B. Flanagan and W. A. Oates, “Some aspects of equilibrium andnon-equilibrium phenomena in intermetallic compound and alloyhydrides,” J. Less-Common Met., Vol. 100, p. 299, 1984.
[19] T. B. Flanagan and H. S. Chung, “The thermodynamic of hysteresisfor high pressure metal hydrides,” J. Less-Common Met., Vol. 125, p.247, 1986.
[20] B. Baranowski, “Simplified quantitative approach to the isothermalhysteresis in metallic hydrides with coherent interphases,” J. Alloysand Compounds, Vol. 200, p. 87, 1993.
[21] J. R. Johnson, Z. Garvra, P. Chyou, and J. J. Reilly, “Behavior of hydrided and dehydride LaNi5Hx as an hydrogenation catalyst,” J.Catalysis, Vol. 137, p. 102, 1992.
[22] T. Sakai, H. Miyamura, N. Kuriyama, A. Kato, and K. Oguru, “The influence of small amounts of added elements on various anode performance characteristics for LaNi2.5Co2.5-based alloys,” J. Less-Common Met., Vol. 159, p. 127, 1990.
[23] T. Sakai, H. Miyamura, N. Kuriyama, A. Kato, K. Oguru, and H. Ishikawa, “Metal hydride anodes for Nickel-Hydrogen secondary battery,” J. Electrochem. Soc., Vol. 137, p. 795, 1990.
[24] J. J. G. Willems and K. H. J. Buschow, J. Less-Common Met., Vol. 129, p.13, 1987.
[25] T. Sakai, T. Hazama, H. Miyamura, N. Kuriyama, A. Kato, and H. Ishikawa, “Rare-earth-based alloy electrodes for a nickel-metal hydride battery,” J. Less-Common Met., Vol. 172-174, p. 1175, 1991.
[26] G. D. Adzic, J. R. Johnson, J. J. Reilly, J. McBreen, and S. Mukerjee, “Cerium content and cycle life of multicomponent AB5 hydride electrodes,” J. Electrochem. Soc., Vol. 142, p. 3429, 1995.
[27] C. Witham, B. V. Ratnakumar, R. C. Bowman, Jr., A. Hightower, and B. Fultz, “Electrochemical evaluation of LaNi5-xGex metal hydride alloys,” J. Electrochem. Soc., Vol. 143, p. L205, 1996.
[28] S. Luo, W. Luo, J. D. Clewley, T. B. Flanagan, and L. A. Wade,“Thermodynamic studies of the LaNi5-xSnx-H system from x = 0 to0.5,” J. Alloys Compounds, Vol. 231, p. 467, 1995.
[29] B. V. Ratnakumar, G. Halpert, C. Witham, and B. Fultz, “Electro-
chemical evaluation of La-Ni-Sn metal hydride alloys,” J.
Electrchem. Soc., Vol. 141, p. L89, 1994.
[30] B. V. Ratnakumar, C. Witham, R. C. Bowman, Jr., A. Hightower, and
B. Fultz, “Electrochemical studies on LaNi5-xSnx metal hydride
alloys,” J. Electrochem. Soc., Vol. 143, p. 2578, 1996.
[31] T. Sakai, K. Oguro, H. Miyamura, N. Kuriyama, A. Kato and H.
Ishikawa, “Some factors affecting the cycle lives of LaNi5-based
alloy electrodes of hydrogen batteries,” J. Less-common Met., Vol.
161, p.193, 1990.
[32] M. A. Fetcenko, S. Venkatesan, and S. R. Ovshinsky, “Selection of
metal hydride alloys for electrochemical applications,” Proc. Symp.
on hydrogen storage materials, batteries, and electrochemistry, edited
by D. A. Corrigan and S. Srinivasan, The Electrochemical Society
Inc., Pennington, NJ, pp. 141-167, 1992.
[33] S. R. Ovshinsky, M. A. Fetcenko, and J. Ross, “A nickel metal
hydride battery for electric vehicles,” Science, Vol. 260, pp.
176-181, 1993.
[34] H. Miyamura, T. Sakai, N. Kuriyama, K. Oguro, A. Kato, and H.
Ishikawa, “Hydrogen absorption and electrode chatacteristics of
Ti-Zr-Ni-V-X alloys”, Proc. Symp. on Hydrogen Storage Materials,
Batteries, and Electrochemistry, edited by D. A. Corrigan and S.
Srinivasan, The Electrochemical Society Inc., Pennington, NJ, pp.
179-198, 1992.
[35] S. R. Kim, K. Y. Lee, and J. Y. Lee, “Improved low-temperature
dischargeability of C14-type Zr-Cr-Ni Laves phase alloy,” J. Alloys
Compounds, Vol. 223, pp. 22-27, 1995.
[36] T. Sakai, H. Ishikawa, and K. Oguro, “Effect of Microencapsulation
of Hydrogen Storage Alloy on the Performance of Sealed
Nickel/Metal Hydride Batteries,” J. Electrochem. Soc., Vol. 134, pp.
558-562, 1987.
[37] X. P. Gao, W. Zhang, H. B. Yang, D. Y. Song, Y. S. Zhang, Z. X.
Zhou, and P. W. Shen, “Electrochemical properties of the
Zr(V0.4Ni0.6)2.4 hydrogen storage alloy electrode,” J. Alloys
Compounds, Vol. 235, p. 225, 1996.
[38] M. Matsuoka, T. Kohno, and C. Iwakura, “Electrochemical
Properties of Hydrogen Storage Alloys Modified with Foreign
Metals,” Electrochimica Acta, Vol. 38, pp. 787~791, 1993.
[39] T. Imoto, K. Kato, N. Higashiyama, M. Kimoto, Y. Itoh, and K.
Nishio, “Influence of surface treatment by HCl aqueous solution on
electro-chemical characteristics of a Mm(Ni-Co-Al-Mn)4.76 alloy for
nickel-metal hydride batteries,” J. Alloys Compounds, Vol. 282, p.
274, 1999.
[40] L. Yongquan, Y. Xiaoguang, W. Jing, and W. Oidong, “The
electro-chemical charge-discharge properties of Zr-Cr-Ni hydrogen
storage alloys,” J. Alloys Compounds, Vol. 231, p. 573, 1995.
[41] J. Chen, D. H. Bradhurst, S. X. Dou, and H. K. Liu, “Surface and
electrode properties of Zr(V0.25Ni0.75)2 alloy treated with
ultra-sound-solution,” J. Alloys Compounds, Vol. 265, p. 281, 1998.
[42] C. Iwakura, I. Kim, N. Matsui, H. Inoue, and M. Matsuoka, “Surface
modification of Laves-phase ZrV0.5Mn0.5Ni alloy electrodes with
an alkaline solution containing potassium borohydride as a reducing
agent,” Electrochimica Acta, Vol. 40, pp. 561~566, 1995.
[43] J. H. Jung, S. M. Lee, D. M. Kim, K. J. Jang, and J. Y. Lee, “Effect
of Cu powder as compacting material on the discharge
characteristics of negative electrodes in Ni-MH batteries,” J.
Alloys Compounds, Vol. 266, p. 271, 1998.
[44] Y. Morita, T. Gamo, and S. Kuranaka, “Effects of nonmetal addition
on hydriding properties for Ti-Mn Laves phase alloys,” J. Alloys
Compounds, Vol. 253-254, p. 29, 1997.
[45] H. Yoshinaga, M. Wada, T. Sakai, H. Miyamura, N. Kuriyama, and I.
Uehara, “Metal hydride electrodes with lamellar-type network
Structure,” J. Alloys Compounds, Vol. 253-254, p. 665, 1997.
[46] J. Chen, D. H. Bradhurst, S. X. Dou, and H. K. Liu, “Properties of
chemically prepared MmNi4.52Mn0.49 alloy,” J. Alloys Compounds,
Vol. 260, p. 260, 1997.
[47] J. Huot, S. Bouaricha, S. Boily, J. P. Dodelet, D. Guay, and R. Schulz,
“Increase of specific surface area of metal hydrides by lixiviation,” J.
Alloys Compounds, Vol. 266, p. 307, 1998.
[48] M.Tsukahara, K. Takahashi, T. Mishima, A. Isomura, and T. Sakai,
“Vanadium-based solid solution alloys with three-dimensional
network structure for high capacity metal hydride electrodes,” J.
Alloys Compounds, Vol. 253-254, p. 583, 1997.
[49] J.S. Benjamin, Sci. Amer. 234(1976)40-48
[50] R.B. Schwarz, Scripta Materialia 34(1996)1-4
[51] 王爾德, 粉末冶金會刊第22卷第3期(1997)194-201
[52] 李丕耀, 粉末冶金會刊第22卷第3期(1997)182-193
[53] 吳菊清,孫衛權,王謙,粉末冶金會刊第22卷第3期(1997) 210- 219
[54] P.R.Elliot and W.Rostocker., “The occurrence of Laves-type phases among transistion element”,Trans.AmSoc.Met>,50(1958)pp.617~631
[55] 許樹恩、吳泰伯, 1993,"X光繞射原理與材料結構分析,國科會精儀中心
[56]S.Corre,M.Bououdina,N.Kuriyama,D.Fruchart,G.AdachiJ.AlloysComp.292(1999)166~173
[57]J. Hout, S. Bouaricha, S. Boily, J.-P. Dodelet, D. Guay and R. Schulz, “Increase of specific surface area of metal hydrides by lixiviation”, J. Alloys and Compounds, 266(1998)307.
[58]J. Chen, D.H. Bradhurst, S.X. Dou and H.K. Liu, “Properties of chemically prepared MmNi4.52Mn0.49 alloy”, J. Alloys and Compounds, 260(1997)260.
[59]M.N. Mungole, R. Balasubramaniam, Int. Hydrogen Energy, 25(2000)55.
[60]T. Saito, K. Suwa, T. Kawamura, J. Alloys Comp. , 253(1997)682.
[61]C. E. Lundin, F. E. Lynch, in Record of the 10th Intersociety Energy Conversion Engineering Conference, (Inst. of Electrical and Electronics Engineers, New York 1975)1380.
[62]J. J. Reilly, R. H. Wiswall, Inorg. Chem. , 13(1974)218.
[63]J. J. Reilly, R. H. Wiswall, Inorg. Chem. , 7(1968)2254.
[64]G. D. Sandrock, Proc. 2nd World Hydrogen Energy Conf.(Pergamon, Oxford 1978)1625.
[65]G. D. Sandrock, “The Metallurgy and Production of Rechargeable Hydrides” .
[66] B.J. Chang, H.K. Jee and S.L. Kyung, “Activation behavior of ZrCrNi mechanically milled with nickel”, J. Alloys and Compounds, 267(1998)265.
[67] J. Chen, S.X. Dou and H.K. Liu, “Properties of Zr0.5Ti0.5(V0.25Mn0.15Ni0.6)2 alloy ball-milled with nickel powder”, 248(1997)146.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文