跳到主要內容

臺灣博碩士論文加值系統

(44.200.175.255) 您好!臺灣時間:2022/08/11 14:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹宏偉
研究生(外文):Hung-Wei Chan
論文名稱:以共沈法合成過量鋰及摻雜鉻之鋰錳氧正極材料
論文名稱(外文):Li1+xMn2O4 and LiCryMn2-yO4 prepared by co-precipitation method as cathode material
指導教授:杜正恭杜正恭引用關係
指導教授(外文):Jenq-Gong Duh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:87
中文關鍵詞:鋰電池共沈法正極材料鋰錳氧過量鋰摻雜鉻
外文關鍵詞:lithium batteryco-precipitationcathode materialLiMn2O4excess-LiCr-doped
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
相較於其他正極材料,鋰錳氧正極材料具有低成本,環保以及安全性高的特點。在本篇論文當中,採用以氫氧化鋰作為反應物兼共沉劑的水溶液共沉法來合成過量鋰和摻雜鉻的鋰錳氧正極材料。其先趨物經由不同煆燒時間及溫度的燒結,形成具有不同粒徑大小、粒徑分布及表面型態的尖晶石正極粉末材料。由熱分析的結果可以推斷形成尖晶石相的最低溫度為400C左右。藉由共沉法所合成之過量鋰以及摻雜鉻的鋰錳氧,是由X光繞射分析與感應耦合電漿原子發射光譜分析儀來鑑定其尖晶石相與組成。在沒有摻雜鉻的系列中,不純相三氧化二錳出現在較短的煆燒時間,然而隨著煆燒時間的增加,雜相會逐漸消失。另外在摻雜鉻的系列中,即使在低溫仍然可燒結出純尖晶石相的鋰錳氧材料。電子顯微鏡和雷射散佈儀顯示在700C到870C的燒結溫度,粉末的粒徑大小分布在2-8微米的範圍之間。其晶格常數則隨煆燒溫度上升而增加,隨鉻添加量的增加而減少。本製程所合成之電池的電化學性質是採用金屬鋰為參考負極、LiPF6為電解液搭配所合成的正極材料來做充放電循環測試。經測試後,以LiMn2O4、Li1.08Mn2O4以及Li1.1Mn2O4為正極的硬幣型電池的初電容量分別為85、109與126mAh/g。摻雜鉻的初始電容量則分別為LiCr0.05Mn1.95O4的108mAh/g及LiCr0.08Mn1.92O4的106mAh/g,經過15圈的循環後分別維持93.6與93.4的電容量。藉由本研究的成果,可以歸納出過量鋰製程明顯的提昇了鋰錳氧正極材料的初始電容量,而摻雜鉻製程則有效的減少了鋰錳氧正極材料的電容量損失。

LiMn2O4 exhibits lower cost, acceptable environmental characteristics, and better safety property than other cathode materials. In this study, excess Li doped Li1+xMn2O4 and Cr doped LiCryMn2-yO4 were synthesized by well-mixed co-precipitation method with LiOH utilized as both the reactant and co-precipitation agent. The precursor was calcined under various heating time and temperature to form fine powder of single spinel phase with different particle size, size distribution, and morphology. The minimum heating temperature was evaluated around 400C owing to TG/DTA analysis. The pure spinel LiMn2O4 with excess-Li and Cr-doped were successfully obtained by co-precipitation method and the structure was confirmed by XRD along with the composition measured by ICP-AES. For short period of heating time, the Mn2O3 impurity was observed in lithium manganese oxide synthesized without Cr-doped, however it would disappear after longer heating time. By contrast, pure Cr-doped LiCryMn2-yO4 without impurity could be derived at even lower temperature. From FESEM image and Laser Scattering measurements, the average particle size is in the range of 2-8m for powders calcined between 700C and 870C. The lattice parameter would increase with the elevated heating temperature and decrease with the Cr content. The electrochemical behavior of LiMn2O4 powder was examined by using two-electrode test cells consisted of a cathode, metallic lithium anode, and an electrolyte of 1M LiPF6 in a 1:1 (volume ratio) mixture of EC/DMC. Cyclic charge/discharge testing of the coin cells, fabricated by LiMn2O4, Li1.08Mn2O4 and Li1.1Mn2O4 showed the high capacity of 85, 109 and 126 mAh/g, respectively. LiCr0.05Mn1.95O4 and LiCr0.08Mn1.92O4 powders provide values of 108 and 106 mAh/g, respectively, and both remained 93.5 of its origin value after 15 cycles. The introduction of excess Li in LiMn2O4 apparently increased the capacity, and the Cr-doped LiMn2O4 significantly decreased the decay rate after cyclic test.

Abstract i Content iii List of Tables vi
Figures Caption vii
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Introduction of Lithium Ion Batteries (LIB) 3
2.1.1 Evolution of LIB 3
2.1.2 Fundamental conception of charge-discharge in LIB 15
2.1.3 Carbon anode materials 15
2.1.4 Electrolyte 17
2.1.5 Intercalation cathode materials 17
2.1.5.1 LiCoO2 20
2.1.5.2 LiNiO2 20
2.1.5.3 LiMn2O4 22
2.2 Spinel LiMn2O4 structure as the cathode material utilized in LIB 27
2.2.1 Structure and phase research 27
2.2.2 Synthesis methods of LiMn2O4 29
2.2.3 Factors that affect the electrochemical performance of LiMn2O4 33
2.2.3.1 Effects of particle size and crystallinity 33
2.2.3.2 Effects of temperature 35
2.2.4 Doped spinel LiMn2O4 cathode material 37
Chapter 3 Experimental Procedure 41
3.1 Powder preparation by aqueous co-precipitation 41
3.1.1 Li1+xMn2O4 41
3.1.2 LiCryMn2-yO4 41
3.2 Characterization and analysis 46
3.2.1 Phase identification 46
3.2.2 Particle size, morphology and distribution 46
3.2.3 Thermal analysis 46
3.2.4 Composition evaluation 48
3.2.5 Electrochemical characterization 48
Chapter 4 Result and Discussion 50
4.1 Excess-Li 50
4.1.1 Thermal analysis 50
4.1.2 Phase identification 52
4.1.3 Particle size and morphology 58
4.1.4 Electrochemical property 61
4.2 Cr-doped 66
4.2.1 Thermal analysis 66
4.2.2 Phase identification 68
4.2.3 Particle size and morphology 71
4.2.4 Electrochemical property 75
Chapter 5 Conclusions 81
References 82
List of Tables
Table 2.1 Comparison of some primary batteries 4
Table 2.2 Comparison of some secondary batteries 5
Table 2.3 Physical properties of some usable electrolyte 18
Table 2.4 Comparison of the primary cathode materials 19
Table 2.5 Structural characteristic and theoretical capacities of some spinel phases 32
Table 2.6 Comparison of powder procedure 34
Table 2.7 Binding energy for M-O systems at 298 K 38
Table 2.8 Cycle efficiency of Cr3+ and Li+ doped LiyCrxMn2-xO4 40
Table 3.1 The sample designation of the Li1+xMn2O4 series 42
Table 3.2 The sample designation of the LiCryMn2-yO4 series 44
Table 4.1 Phase distribution for Li1+xMn2O4 sintered at various temperatures for 5-15 hr 57
Table 4.2 Phase distribution for LiCryMn2-yO4 sintered at various temperatures for 5-15 hr 72
Figures Caption
Fig.2.1 The dendritic growth of lithium metal on the anode surface 7
Fig.2.2 The voltage range of several electrode materials 9
Fig.2.3 The electric conduction mechanism of lithium ion battery 10
Fig.2.4 Charging and discharging process in Li ion battery 11
Fig.2.5 Intercalation/deintercalation of Li ion vs. voltage in LiMn2O4 during charging-discharging process 14
Fig.2.6 Categorization of carbon anode in lithium ion batteries 16
Fig.2.7 Comparison of (a) layer and (b) spinel structure 21
Fig.2.8 (a) The unit cell of LiMO2 (M = transition metal) type materials. (b) The representation of the layered structure with Li+ cations intercalated in between the MO2- (M = transition metal) slabs 23
Fig.2.9 The spinel LiMn2O4 structure 24
Fig.2.10 The charge-discharge mechanism of LiMn2O4 for lithium ion batteries 26
Fig.2.11 Structure of the spinel lattice shows the location of the octahedral (16d), tetrahedral (8a), and interstitial octahedral (16c) site, which are represented by small dark spheres, small light spheres, and large dark spheres, respectively. Large light spheres represent the oxygen atoms 28
Fig.2.12 The typical cyclic voltammogram of LiMn2O4 30
Fig.2.13 The phase diagram of Li-Mn-O system 31
Fig.2.14 Charge and discharge curves of LiMn2O4 powders with different particle size 36
Fig.3.1 The schematic diagram of co-precipitation process 45
Fig.3.2 The standard X-ray diffraction pattern of LiMn2O4 47
Fig.3.3 Fabrication of the 2016 coin cell 49
Fig.4.1 TGA trace of Li1.08Mn2O4 precursor heat-treated from room temperature to 1000C at rate of 10 C min-1 in air 51
Fig.4.2 XRD pattern of LiMn2O4 precursor heat-treated at various temperatures for 10 hr (a) precursor, (b) 400 C, (c) 500 C, (d) 600 C, (e) 700 C and (f) 800 C 53
Fig.4.3 XRD pattern of various precursor heat-treated at elevated temperature for 15 hr (a) LiMn2O4 and (b) Li1.08Mn2O4 54
Fig.4.4 XRD pattern of (a) LiMn2O4 calcined at 700C for 5hr and BEI morphology of LiMn2O4 calcined at 700C for (b) 5 hr and (c) 10 hr 56
Fig.4.5 Lattice constant vs. heat-treated temperature for calcined LiMn2O4 for 10 hr 59
Fig.4.6 FESEM images of various powders calcined at 870C for 15hr (a) LiMn2O4, (b) Li1.08Mn2O4, and (c) Li1.1Mn2O4 60
Fig.4.7 Particle size distribution of various powders calcined at 870C for 15hr (a) LiMn2O4, (b) Li1.08Mn2O4, and (c) Li1.1Mn2O4 62
Fig.4.8 The first charge and discharge curves of various powders (a) LiMn2O4 and (b) Li1.08Mn2O4 calcined at 870C for 15hr at a current of 0.1 C rate 63
Fig.4.9 Specific discharge capacities of Li1+xMn2O4 calcined at 870C for 15 hr cycled at the current density of 0.2 C rate at room temperature 65
Fig.4.10 TG/DTA trace of LiCr0.08Mn1.92O4 precursor calcined from room temperature to 1000C at a rate of 10C min-1 in air 67
Fig.4.11 XRD pattern of LiCr0.08Mn1.92O4 precursor heat-treated at various temperatures for 5hr (a) precursor, (b) 400 C, (c) 500 C, (d) 600 C, (e) 700 C and (f) 800 C 69
Fig.4.12 XRD pattern of LiCr0.08Mn1.92O4 precursor heat-treated at various temperature for 10hr (a) 400 C, (b) 500 C, (c) 600 C, (d) 700 C (e) 800 C, (f) 850 C and (g) 870 C 70
Fig.4.13 Dependence of lattice constant for calcined LiCr0.08Mn1.92O4 for 10hr with respect to (a) heat-treated temperature and (b) Cr content 73
Fig.4.14 FESEM images of various powders (a) LiCr0.05Mn1.95O4 calcined at 870C for 10hr (b) LiCr0.08Mn1.92O4 calcined at 870C for 10hr (c) LiCr0.08Mn1.92O4 calcined at 600C for 10hr 74
Fig.4.15 Particle size distribution of various powders calcined at 870C for 10hr (a) LiCr0.08Mn1.92O4, (b) LiCr0.05Mn1.95O4 76
Fig.4.16 The first three charge and discharge curves of LiCr0.08Mn1.92O4 powders calcined at 870C for 10 hr at a current of 0.1 C rate 77
Fig.4.17 Specific discharge capacities of various powders calcined at 870C for 10 hr cycled at the current density of 0.2 C rate at room temperature (a) LiCr0.05Mn1.95O4, (b) LiCr0.08Mn1.92O4 and (c) Li1.1Mn2O4 79

1.A. V. Fraioly, W. A. Barber, and A. M. Feldman, R. S. Patent 3, 551 (1970) p.205.
2.J. P. Gabano, French Patent 1, 583 (1969) p.804.
3.J. Moser, U. S. Patent 3, 660 (1972) p.163.
4.A. A. Schneider and J. Noser, U. S. Patent 3, 674 (1972) p.562.
5.M. S. Whittingham and M. B. Dines, J. Electrochem. Soc., 124 (1977) p.1388.
6.J. P. Gabano, Prog. Battery Solar Cells, 9 (1989) p.149.
7.D. L. Maricle and J. P. Mohns, U. S. Patent 3, 567 (1971) p.515.
8.K. Brandt, J. Power Sources, 18 (1986) p.117.
9.K. Mizushima, P. C. Jones, P. J. Wisemen, and J. B. Goodenough, Mat. Res. Bull, 15 (1980) p.783.
10.J. Hajek, French Patent, 8 (1949) p.10.
11.A. Yamada, M. Tanaka, K. Tanaka and K. Sekai, J. Power Sources, 82 (1999) p.73.
12.Y. I. Jang, B. Y. Huang, H. F. Wang, D. R. Sadoway and Y. M. Chiang, J. Electrochem. Soc., 146[9] (1999) p.3217.
13.J. Moser, U. S. Patent 3, 660 (1972) p.163.
14.A. A. Schneider and J. Noser, U. S. Patent 3, 674 (1972) p.562.
15.M. S. Whittingham, Science, 192 (1976) p.1126.
16.J. M. Amarilla, J. L. M. de Vidales and R. M. Rojas, Solid State Ionics, 127 (2000) p.73.
17.D. Peramunage and K. M. Abraham, J. Electrochem. Soc., 145 (1998) p.1131.
18.K. Mizushima, P. C. Jones, P. J. Wisemen, and J. B. Goodenough, Mat. Res. Bull, 15 (1980) p.783.
19.K. Brandt, J. Power Sources, 18 (1986) p.117.
20.D. L. Maricle and J. P. Mohns, U. S. Patent 3, 567 (1971) p.515.
21.J. P. Gabano, Prog. Battery Solar Cells, 9 (1989) p.149.
22.M. S. Whittingham and M. B. Dines, J. Electrochem. Soc., 124 (1977) p.1388.
23.E. Pled, J. Electrochem. Soc., 126 (1979) p.2047.
24.V. R. Koch J. L. Goldman, C. J. Mattos, and M. Mulvaney, J. Electrochem. Soc., 129 (1982) p.1.
25.D. Aurbach, Y. Gofer, and J. Langzam, J. Electrochem. Soc., 136 (1989) p.3198.
26.B. Scrosati, Lithium Polymer Batteries, Chapman & Hall, Inc., London (1993) p.212.
27. M. Armand, Materials for Advanced Batteries, Eds. D. W. Murphy, J. Broadhead, B. C. H. Steel, Plenum Press, New York, 1980, p.145.
28. R. Bittihn, R. Heer, and D. Hoge, J. Power Sources, 43 (1993) p.223.
29. H. J. Orman, and P. J. Wiseman, Acta. Cryst. 40 (1984) p.12.
30. E. Plichta, M. Salomon, S. Slane, M. Uchiyama, D. Chua, W. B. Ebner, and H. W. Lin, J. Power Sources, 21 (1987) p.25.
31. J. Molenda, A. Stoklosa, and T. Bak, Solid State Ionics, 36 (1989) p.53.
32. T. Naguara, and K. Tazawa, Pro. Batteries Sol. Cells, 9 (1990) p.20.
33. J. Morales, C. Peraz-Vicente, and J. L. Tirado, Mat. Res. Bull., 25 (1990) p.623.
34. J. R. Dahn, U. von Sacken, M. W. Jazkow, and H. Al-Janaby, J. Electrochem. Soc., 138 (1991) p.2207.
35. G. T. K. Fey, “New high voltage cathode materials for rechargeable lithium batteries”, Active and Passive Electronic Components, 18 (1995) p.11.
36. C. Delmas, M. Menetrier, L. Croguennec, S. Levasseur, J. P. Peres, C. Pouillere, and G. Prado, Int. J. Inorg. Mater, 1 (1999) p.11.
37. W. Liu, G. C. Farrington, F. Chaput, and B. Dunn, J. Electrochem. Soc., 143 (1996) p.459.
38. J. M. Tarascon and D. Guymard, Electrochimica Acta, 9 (1993) p.1221.
39. C. Delmas, M. Menetrier, L. Croguennec, S. Levasseur, J. P. Peres, C. Pouillere, and G. Prado, Int. J. Inorg. Mater. 1, 11 (1999).
40. X. Qiu, X. Sun, W. Shen, and N. Chen, Solid State Ionics, 93 (1997) 335.
41. C. I. Yao and K. M. Chen, Industrial Materials, 110 (1996) p.57.
42. Z. Takehara, “Future prospects of the lithium metal anode”, J. Power Sources, 68 (1997) p.82.
43. M. Winter and J. O. Besenhard, “Electrochemical lithiation of tin and tin-based intermetallics and composites”, Electrochim. Acta, 45 (1999) p.31.
44. T. Shodai, Y. Sakurai, and T. Suzuki, “Reaction mechanisms of Li2.6Co0.4N anode material”, Solid State Ionics, 122 (1999) p.85.
45. D. H. Doughty, SAMPLE Journal, 32 (1996) p.75.
46. W. D. Johnson, R. R. Heikes, DD. Sestrich, Phys. Chem. Solids, 7 (1958) p.1.
47. K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, “LixNiO2 (0 x 1): A new cathode materials for batteries of high energy density”, Mater. Res. Bull., 17 (1980) p.783.
48. C. Delmas, “Alkali metal intercalation in layered oxides”, Mater, Sci. Eng., B3 (1989) p.97.
49. S. P. Xu, D. S. Shi, and W. M. Hong, Industrial Material, 110 (1996) p.49.
50. C. C. Chang, J. Y. Kim, and P. N. Kumta, “Divalent cation incorporated Li(1+x)MMgxO2(1+x) (M = Ni0.75Co0.25) : viable cathode materials for rechargeable lithium-ion batteries”, J. Power Sources, 89 (2000) p.56.
51. D. G. Wickham and W.J. Croft, J. Phys. Chem. Sloids, 7 (1958) p.351.
52. J. C. Hunter, J. Solid State Chem., 39 (1981) p.142.
53. M. M. Thackeray, W. I. F. David, P. G. Bruce, and J. B. Goodenough, Mat. Res. Bull., 18 (1983) p.461.
54. J. M. Tarascon and D. Guymard, Electrochimica Acta, 9 (1993) p.1221.
55. J. M. Tarascon and D. Guymard, Electrochimica Acta, 9 (1993) p.1221.
56. C. Bellitto, M. G. DiMarco, W. R. Branford, M.A. Green, and D.A. Neumann, “Cation distribution in Ga-doped Li1.02Mn2O4”, Solid State Ionics, 140 (2001) p.77.
57. M. M. Thackeray, W. I. F. David, P. G. Bruce, and J. B. Gookenough, Mat. Res. Bull., 18 (1983) p.461.
58. M. Winter, J. O. Besengard, M. E. Spahr, and R. Novak, Adv. Mater., 10 (1998) p.10.
59. M. M. Thackeray, A. de Kock, M. H. Rossouw, D. Liles, R. Bittihn, and D. Hoge, J. Electrochem. Soc., 139 (1992) p.363.
60. Z. Jiang and K. M. Abraham, J. Electrochem. Soc., 143 (1996) p.1591.
61. W. Liu, K. Kowal, and G C. Farrington, J. Electrochem. Soc., 138 (1996) p.3590.
62. J. H. Choy, D. H. Kim, C. W. Kwon, S. J. Hwang, and Y. I. Kim, J. Power Sources, 77 (1999) p.1.
63. J. M. Tarascon, E.Wang, and F. K. Shokoohi, J. Electrochem. Soc., 138 (1991) p.138.
64. K. T. Hwang, W.S. Um, H. S. Lee, J. K. Song, and K. W, Chung, J. Power Sources, 74 (1998) 169
65. C. H. Lu and S. W. Lin, “Influence of the particle size on the electrochemical properties of lithium manganese oxide”, J. Power Sources, 97 (2001) p.458.
66. T. Tsumura and M. Inagaki, “Preparation of LiMn2O4 via decarboxylates and their lithium extraction/insertion behavior”, Solid State Ionics, 104 (1997) p.35.
67. Y. K. Sun, “Synthesis and electrochemical studies of spinel Li1.03Mn2O4 cathode materials prepared by a sol-gel method for lithium secondary batteries”, Solid State Ionics, 100 (1997) p.115.
68. J. M. Tarascon, E. Wang, F.K. Shokoohi, W. R. McKinnon, and S. Colson, J. Electrochem. Soc., 138 (1991) p.2859.
69. J. M. Tarascon, W. R. McKinnon, F. Coowar, T. N. Toowmer, G. Amatucci, and D. Guymard, J. Electrochem. Soc., 141 (1994) p.1421.
70. A. Momchilov, V. Manev, and A. Nassalevska, J. Power Sources, 41 (1993) p.305.
71. D. Guymard and J. M. Tarascon, Solid State Ionics, 69 (1994) p.222.
72. gA. Yamada, K. Miura, K. Hinokuma, and M. Tanaka, J. Electrochem. Soc., 143 (1996) p.178.
73. D. Guymard, J. M. Tarascon, “The carbon Li1+xMn2O4 system”, Solid State Ionics, 69 (1994) p.222.
74. G. G. Amatucci, J. M. Tarascon, US Patent 5, 674 (1997) p.645.
75. M. Wakihara and O. Tamamoto, Lithium Ion Batteries Fundamental and Performance, Wiley-Vch, 1998, p.42.
76. A. D. Robertson, S. H. Lu, W. F. Averill, and W. F. Howard, Jr., J. Electrochem. Soc., 144 (1997) p.3500.
77. A. Mosbach, A. Verbaere, and M. Tournoux, Mater. Res. Bull., 18 (1983) p.1375.
78. P. Strobel, F. Le Cras, L. Seguin, M. Anne and J. M. Tarascon, J. Solid State Chem., 135 (1998) p.132.
79. B. D. Cullity, Elements of X-ray Diffraction, 2nd Edition, Addison Wesley, California, (1978) p.355.
80. J. I. Goldstein, Scanning Electron Microscopy and X-ray Microanalysis, 2nd Edition, Plenum Press, New York, 1981, p.405.
81. R. Koksbang, J. Barker, H. Shi, and M.Y. Saidi, Solid State Ionics, 89 (1996) p.1.
82. A.R. Naghash and Jim Y. Lee, J. Power Sources, 85 (2000) p.284.
83. Y. K. Sun, B. Oh and H. J. Lee, Electrochim. Acta, 46 (2001) p.541.
84. X. Qiu, X. Sun, W.Shen, and N. Chen, Solid State Ionics, 93 (1997) p.335.
85. A. R. Naghash and J. Y. Lee, J. Power Sources, 85 (2000) p.284.
86. Y. S. Han and H. G. Kim, J. Power Sources, 88 (2000) p.161.
87. B. W. Lee, J. Power Sources, 109 (2002) p.220.
88. J.C.P.D.S. file 35-0782.
89. C. Wu, Z. Wang, F. Wu, L. Chen, and X. Huang, Solid State Ionics, 144 (2001) p.277.
90. A. Yamada, K. Miura, K. Hinokuma, and M. Tanaka, J. Electrochem. Soc., 142 (1995) p.2149

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊