跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/17 22:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃懋霖
研究生(外文):Mao-Lin Huang
論文名稱:氮化矽與矽(100)與矽(111)界面結構之研究
論文名稱(外文):Investigation of Interfacical Structures of Si3N4 on Si(100) & SI(111)
指導教授:周立人周立人引用關係
指導教授(外文):Li-Jen Chou
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:33
中文關鍵詞:氮化矽穿隧介電層界面性質高分率電子顯微鏡氨氣
外文關鍵詞:silicon nitridetunneling dielectricinterfacial propertiesHRTEMammonia
相關次數:
  • 被引用被引用:0
  • 點閱點閱:277
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近二十年來,氮化矽薄膜被廣泛地使用在半導體工業上,例如擴散阻障層、保護層、閘極介電層、穿隧介電層…等。此外,研究指出在具有氮化矽緩衝層的矽(111)基材上可以成長高品質的氮化鎵,如此一來就可利用矽做為光電元件的基材,大幅降低基材成本問題。因此,氮化矽與矽之界面性質和薄膜結構是相當重要的課題。
本論文第一部分進行矽與氮化矽之界面性質研究。以氨氣高溫氮化矽基材表面成長氮化矽薄膜,針對氮化矽與矽(100)和矽(111)界面性質作一系列探討,並討論使用快速昇溫退火爐通入氨氣進行氮化成長氮化矽的成長動力學。本論文利用高分辨電子顯微鏡與影像模擬,成功的觀察到矽(111)/β-氮化矽(0001)中β-氮化矽六方密堆積結構中c軸拉長之現象,並提出合理解釋。
第二部分進行氮化矽之電性研究,使用低壓化學氣相沈積法成長130Å的氮化矽,成功的利用氮氣與笑氣進行熱處理改善氮化矽薄膜性質:氮氣前處理,漏電流隨著前處理溫度與時間的增加而降低,元件可靠度亦獲得改善;笑氣熱處理,元件漏電流大幅下降。利用電性與物性的差異解釋氨氣高溫氮化形成的氮化矽,與低壓化學氣相沈積法,成長的氮化矽結構上的差異,並解釋造成電性改善之原因。

Silicon nitride films, can be used as diffusion barrier layers, passivation layers, buffer layers, gate dielectrics, and tunneling dielectrics in microelectronic industry. Furthermore, in optoelectronics area, high quality GaN has been successfully grown on Si(111) using Si3N4 as a buffer layer. It is possible to fabricate new optoelectronic devices by combining GaN growth techniques with already well-established silicon device technology. The interfacial properties of Si3N4 on silicon as well as the characteristics of the film itself are two vital issues for those applications.
In the first part of this thesis, physical characteristics of the nitride film by using HRTEM, AES, XPS and STM will be discussed. In our studies, thermally grown nitride in ammonia (NH3) ambient was the best quality nitride film compared with either LPCVD grown one or N2O grown one. HRTEM observation indicated that the higher nitridized temperature get the better interfacial properties of the films. Kinetics studies shown that reaction controlled mechanism in the early stage of the nitride film growth, lead to the Si-rich nitride/Si interface. On the other head, in the latter growth stage, diffusion controlled mechanism, kept the stoichiometry condition preferable in the interface region. HRTEM also provided a cross-sectional view of the basal plane nitride grown on Si(111) substrate, and verified that the c-axis has been elongated from 2.9Å to 3.3Å.
In the second part of the thesis, electrical characteristics of the nitride films were carried out by using I-V and C-V techniques. A simple MIS structure with extra 130 Å thick LPCVD grown nitride was a standard sample. The data indicated that thermal ammonia pretreated process would help to reduce the leakage current of the sample. The reliability tests such as Qbd & tbd were also improved by the process. Higher processing temperature or longer processing time got the better electrical results. Using N2O as a pretreated gas, the electrical properties of the samples were improved more prominent, than the NH3 pretreated one. AES data suggested that the interface between nitride and Si has been converted to Si(ON)x.

目 錄
中文摘要………………..…………………...Ι
Abstract………………………...……………......Ⅱ
Chapter 1 序論
1-1 閘極介電層厚度的縮減………………………..1
1-2 GaN 成長於矽基材………….………………....3
1-3 Si3N4簡介……………………………………….4
1-4 介電層的電流傳導機制…………………….….6
1-5 動機………………………………………….….7
Chapter 2 實驗程序
2-1 橫截面TEM試片備製…………………………9
2-2 高分辨影像分析………………………..………10
2-3 AES縱深分析………………………….………..11
2-4 XPS成份分析……………………………………12
2-5 MIS 元件製作…………………………………..12
2-6 I-V量測………………………………………….14
2-7 TDDB量測………………………………………14
2-8 C-V量測…………………………………………14
Chapter 3結果與討論
3-1 NH3高溫氮化Si(100)…………………………...16
3-2 NH3高溫氮化Si(111)……………………………18
3-3 熱處理Si(100)基材與LPCVD-Si3N4…………..19
3-4 I-V特性…………………………………………..21
3-5 Si3N4薄膜電流傳導機制………………………...23
3-6 TDDB特性……………………………………….23
3-7 C-V特性………………………………………….25
Chapter 4 討論與總結…………………..….26
References………………………………...….27

References
[1] Paui S. Peercy, “The Drive to Miniaturization”, Nature, vol. 406, pp1023 (2000).
[2] The International Technology Roadmap for Semiconductors (ITRS Roadmap), 2001 Edition.
[3] The International Technology Roadmap for Semiconductors (ITRS Roadmap), 2001 Edition.
[4] Kuniyoshi Yoshikawa, “Technology requirements for next decade flash memories”, 2000 ESSDERC, p11.
[5] Douglas A. Buchanan, “Scaling the gate dielectric materials, integration, and reliability”, IBM J. Res. Develop., vol. 43, pp245 (1999).
[6] K. S. Min, J. Y. Chung and K. Lee, “Characteristic of tunneling nitride grown by electron cyclotron resonance nitrogen-plasma nitridation and its application to low-voltage electrical erasable-programmable read-only memory”, Jpn. J. Appl. Phys., vol. 40, pp2963 (2001).
[7] S. Nakamura et. al., “InGaN-based multi-quantum-well-structure laser diodes”, Jpn. J. Appl. Phys., vol. 35, L74-L76 (1996).
[8] K. A. Smart, E. M. Chumbes, A. T. Schremer, and J. R. Shealy, “Single step process for epitaxial lateral overgrowth of GaN on SiC and sapphire substrates”, Appl. Phys. Lett. , vol. 75, pp3820 (1999).
[9] J. W. Yang, C. J. Sun, Q. Chen, M. Z. Anwar, and M. Asif Khan, “High quality GaN-InGaN heterostructures grown on (111) silicon substrates”, Appl. Phys. Lett., vol. 69, pp3566 (1996).
[10] W. S. Wong et al., “Structural and optical quality of GaN/metal/Si heterostructures fabricated by excimer laser lift-off”, Appl. Phys. Lett., vol. 75, pp1887 (1999).
[11] W. S. Wong et al., “Structural and optical quality of GaN/metal/Si heterostructures fabricated by excimer laser lift-off”, Appl. Phys. Lett., vol. 75, pp1887 (1999).
[12] Y. Nakada, I. Aksenov, and H. Okumura, “GaN heteroepitaxial growth on silicon nitride buffer layers formed on Si(111) surfaces by plasma-assisted molecular beam epitaxy”, Appl. Phys. Lett., vol. 73, pp827 (1998).
[13] R. Yang, H. K. Fun, I. Ab. Rahman, and M. I. Saleh, “ Two phase refinements of the structures of α-Si3N4 and β-Si3N4 made from Rice Husk by Rietveld analysis”, Ceramics International, vol. 21, pp137 (1995).
[14] Y. N Xu, W. Y. Ching, “Electronic structure and optical properties of α and β phases of silicon nitride, silicon oxynitride, and with comparison to silicon dioxide”, Physical Review B, vol. 51, pp17379 (1995).
[15] H. Ahn, C. L. Wu, S. Gwo, C. M. Wei, and Y. C. Chou, “Structure determination of the Si3N4/Si(111)-(8×8) surface: A combined study of Kikuchi electron holography, Scanning Tunneling Microscopy, and ab initio calculations”, Physical Review Letters, vol. 86, pp2818 (2001).
[16] Y. N Xu, W. Y. Ching, “Electronic structure and optical properties of α and β phases of silicon nitride, silicon oxynitride, and with comparison to silicon dioxide”, Physical Review B, vol. 51, pp17379 (1995).
[17] G. Zhai, J. Yang, N. Cue, and X.-S. Wang, “Surface structure of silicon nitride thin films on Si(111)”, Thin Solid Films, vol. 366, pp121 (2000).
[18] C. L. Wu, J, L, Hsieh, H. D. Hsueh and S. Gwo, “Thermal nitridation of the Si(111)-(7×7) surface studied by scanning tunneling microscopy and spectroscopy”, Physical Review B, vol. 65, pp045309-1 (2002).
[19] X.-S. Wang, G. Zhai, J. Yang, L. Wang, Y. Hu, Z. Li, J. C. Tang, “ Nitridation of Si(111)”, Surface Science, vol. 494, pp83 (2001).
[20] R. Wolkow and Ph. Avouris, “Atom-Resolved Surface chemistry using Scanning Tunneling Microscopy”, Physical Review Letters, vol. 60, pp1049 (1988).
[21] V. I. Belyi et al., “Silicon nitride in electronics”, Materials Science Monographs, vol. 34, Elsevier (1988).
[22] M. M. Moslehi and K. C. Saraswat, “Thermal nitridation of Si and SiO2 for VLSI”, IEEE Trans. Electron Devices, vol. ED-32, No. 2, pp106 (1985).
[23] I. J. R Baumvol, F. C. Stedile, J. J. Ganem, S. Rigo, and I. Trimaille, “Mechanisms of thermal nitridation of silicon”, J. Electrochem. Soc., vol. 142, pp1205 (1995).
[24] R. M. C. de Almeida and I. J. R Baumvol, “Reaction-diffusion model for thermal growth of silicon nitride films on Si”, Physical Review B, vol. 62, pp16-255 (2000).
[25] T. P. Ma, “ Making silicon nitride film a viable gate dielectric”, IEEE Trans. Electron Devices, vol. 45, pp680 (1998).
[26] M. She et at., “JVD Silicon Nitride as Tunnel Dielectric in p-Channel Flash Memory”, IEEE Electron Device Letters, vol. 23 (2002).
[27] William D. Brown and Joe E. Brewer, “Nonvolatile Semiconductor Memory Technology”, Institute of Electrical and Electronics Engineers, Inc., New York (1998).
[28] Milton Ohring, “The Materials Science of Thin Films”, Academic Press, San Diego (1992).
[29] Takashi Hori, “Gate Dielectrics and MOS ULSIs: Principles, Technologies and Applications”, Springer, 1997.
[30] S. Manzini, “Electronic processes in silicon nitride”, J. Appl. Phys., vol.62, pp.3278 (1987).
[31] K. D. Vargheese and G. M. Rao, “Electrical properties of silicon nitride films prepared by electron cyclotron resonance assisted sputter deposition”, J. Vac. Sci. Technol. A, vol. 19, pp2122 (2001).
[32] M. Bose and D. K. Basa, “Electrical conduction studies of plasma enhanced chemical vapor deposited silicon nitride films”, J. Vac. Sci. Technol. A, vol. 19, pp41 (2001).
[33] 陳力俊等, “材料電子影微鏡學”修訂版, 科儀叢書3, 國科會精儀中心, 新竹市 (1994)
[34] S. P. Murarak. C. C. Chang and A. C. Adams, J. Electrochem. Soc., vol. 129, pp996 (1979).
[35] I. J. R Baumvol, F. C. Stedile, J. J. Ganem, S. Rigo, and I. Trimaille, “Mechanisms of thermal nitridation of silicon”, J. Electrochem. Soc., vol. 142, pp1205 (1995).
[36] R. M. C. de Almeida and I. J. R Baumvol, “Reaction-diffusion model for thermal growth of silicon nitride films on Si”, Physical Review B, vol. 62, pp16-255 (2000).
[37] Z. H. Loh and H. C. Kang, “Chemisorption of NH3 on Si(100)-(2×1): A study by first-principles ab initio and density functional theory”, Joural of Chemical Physics, vol. 112, pp2444 (2000).
[38] R. Miotto and G. P. Srivastave, “ Dissociative adsorption of NH3 on Si(001)-(2×1)”, Physical Review B, vol. 58, pp7944 (1998).
[39] Y. Widjaja and C. B. Musgrave, “ab initio study of the initial growth mechanism of silicon nitride on Si(100)-(2×1) using NH3”, Physical Review B, vol. 58, pp7944 (1998).
[40] S. Ishidzuka, Y. Igari, T. Takaoka, and I. Kusunoki, “ Nitridation of Si(100) surface with NH3”, Applied Surface Science, vol. 130, pp107 (1998).
[41] W. Hansch, A. Nakajima, and S. Yokoyama, “Characterization of silicon/oxide/nitride layers by X-ray photoelectron spectroscopy”, Applied Physics Letters, vol. 75, pp 1535 (1999).
[42] A. Omeltchenko et al., “Stress Domains in Si/a-Si3N4 Nanopixed: Ten-Million-Atom Molecular Dynamics Simulations on Paralled Computers”, Physcial Review Letters, vol. 84, pp318 (2000).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top