跳到主要內容

臺灣博碩士論文加值系統

(3.239.4.127) 您好!臺灣時間:2022/08/16 04:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施百勝
論文名稱:以過濾式陰極電弧沉積系統合成碳氮薄膜及其鑑定之研究
論文名稱(外文):Characterization and Synthesis of Carbon Nitride Films by a Filtered Cathodic Evaporation System
指導教授:施漢章
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:過濾式陰極電弧沉積系統
相關次數:
  • 被引用被引用:2
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇研究論文探討過濾式陰極電弧沉積系統合成非晶質碳氮薄膜為主,隨著基材偏壓的改變觀察碳氮薄膜性質的變化,以及將試片做退火處理觀察碳氮薄膜經過退火後結構之變化。
應用過濾式陰極電弧沉積系統合成非晶質碳氮薄膜後,以拉曼光譜儀分析碳氮薄膜在基材偏壓和退火溫度改變後sp2鍵結變化及分佈情形,隨著基材偏壓的增加ID / IG之比值上升至偏壓為-350 V達最高值,之後基材偏壓再增加時ID / IG之比值反而下降,原因為基材偏壓過大以致於產生脫附(desorption)現象。以FTIR分析碳氮膜內碳氮官能基的變化,發覺在偏壓為-350 V時碳氮單鍵之強度最高且此時象徵懸浮鍵的特徵峰也最明顯。應用XPS分析碳氮薄膜內之化學成分,並且對碳元素及氮元素做細部掃描分析其束縛能及化學位移量的變化,計算碳氮膜內之碳氮鍵結比。從AFM分析中證明隨著基材偏壓的增加而碳氮薄膜之平均粗糙度亦隨之增加。以SEM之平面視圖(Plan view)觀察微粒的分佈情形,且以橫斷面視圖(cross-section view)量測膜厚,進而佐證脫附之現象。接著以EPR分析碳氮薄膜內懸浮鍵密度的變化。Nano-indentation 分析碳氮薄膜內交鏈結構(cross-linked)對彈性回復率的影響。以低掠角X光繞射分析碳氮薄膜之微結構,於入射角為5°時發現一特徵峰值,經由比對JCPDS資料庫及TEM之SAD圖後得證在碳氮薄膜內部具有奈米級鑽石微結構(Nano-crystalline diamond structure) 。
從上述各項分析中取一最佳參數做退火處理,觀察碳氮薄膜經由退火處理後薄膜微結構的變化,以及碳氮鍵結的熱穩定性。
The purpose of this thesis is to study the properties and synthesis of amorphous carbon nitride films using the filtered cathodic arc evaporation (FCAE) system .Various superior properties of carbon nitride thin films under substrate bias voltages and annealing temperatures have been observed.
The Raman spectroscopy showed that all the amorphous carbon nitride films had a graphite structure and sp2 binding distribution ,The ID / IG ratio reached a maximum when substrate bias was controlled at —350 V,then began to decrease when substrate bias increased. It is apparently due to the ion bombardment with higher energy so that carbon nitride bonds were broken to decrease the ID / IG ratio.
The strong absorption band of the FTIR spectrum in the range 1330-1560 cm-1 is the evidence of the nitrogen that incorporated into carbon network,when substrate is biased at —350V,where carbon and nitrogen single bond number and dangling bond density reaches the highest. The chemical components of carbon nitride thin film and the calculated N/C ratio were analyzed by XPS. AFM showed that Rrms increased with increasing substrate bias,resulting from the effect of ion bombardment. The distribution of macroparticles was measured by SEM plan view and the thickness of carbon nitride film was examined by SEM cross-section view. The variation of dangling bond density was analyzed by EPR. The acquired Young’s modulous and the recovery ratio was made by nano-indentation. The microstructure of the carbon nitride films was studied by the grazing incident x-ray diffraction;a peak through the comparison with JCPDS database and SAD (Selected area diffraction ) prove the existence of Nano-crystalline diamond structure. The graphitization and thermal stability of carbon nitride films with the annealing process were discussed.
摘要……………………………………………………..Ⅰ
abstract…………………………………………………Ⅲ
誌謝……………………………………….…………….Ⅴ
第一章 文獻回顧……………………………………….1
第二章 陰極電弧簡介…………………………..…..….6
2.1 陰極電弧沉積原理………………………….……...………….…6
2.2 鍍膜成長機制…………………………………..…………….…..9
2.3 電漿與壓力之關係………………………………………………11
2.4 真空電弧 ……………………..…………………………………11
2.5 電弧源………………………...………………………………….13
2.6 電漿之輝光放電過程……………………………………...…….14
2.7 微粒……………………………………...……………………….16
2.8 靶座之外加磁場………………………………...……………….16
2.9 微粒過濾裝置…………………………………………...……….17
第三章 實驗步驟與流程………………………………20
3.1試片準備………………………………………………………….20
3.2試片清洗………………………………………………………….20
3.3合成非晶質碳氮薄膜系統……………………………………….20
3.4實驗流程……………………………………….………………….25
3.5實驗參數………………………………………….……………….26
3.6熱處理…………………………………………………….……….27
3.7分析儀器及量測原理……………………………….…………….27
3.7.1拉曼光譜分析……………………………………….27
3.7.1.1拉曼光譜儀原理………………………….27
3.7.1.2拉曼光譜的測定方式……….……………29
3.7.2傅立葉轉換紅外線光譜儀………………….………30
3.7.3化學分析電子儀分析…………………….…...…….32
3.7.4原子力顯微鏡……………………..……….….…….34
3.7.4.1 探針與材料表面間的交互作用力….…...35
3.7.4.2 懸臂彎曲的量測…………………………35
3.7.4.3 操作模式比較……………….….………..36
3.7.5 掃描式電子顯微鏡…………………………………37
3.7.6電子順磁共振…………………..…………..……….39
3.7.7 機械性質量測………………………..…..…………40
3.7.7.1硬度…………………………….…………41
3.7.8 X光繞射…………………………………………..43
3.7.9 穿透式電子顯微鏡…………………………………45
第四章 結果與討論…………………………………47
4.1拉曼光譜特性分析……………………………………….……….47
4.2傅立葉轉換紅外線光譜特性分析……………………….……….54
4.3 X光光電子能譜特性分析……………………………….……….58
4.4原子力顯微鏡特性分析………………………………….……….64
4.5 掃描式電子顯微鏡特性分析…………………………….………66
4.6電子順磁迴旋特性分析………………………………….……….72
4.7奈米硬度特性分析……………………………………….……….75
4.8 低掠角X光繞射分析法……………………………….………...80
4.9 高解析度穿透式電子顯微鏡分析…………………….…………84
4.10碳氮薄膜之退火效應分析…………………………….………...89
4.10.1拉曼光譜分析……………….……………………..89
4.10.2傅立葉轉換紅外線光譜分析…….………………..92
4.10.3 X光光電子能譜特性分析………….……………..94
4.10.4電子順磁迴旋特性分析…………………….……..97
第五章 結論……………………………….……..…….99
第六章 未來研究方向…………………………...…...101
參考文獻………………………………....……………102
圖目錄
圖 1 所示為β-C3N4之結構圖,此結構位於a-b平面,c軸為垂直
此平面之方向,此平行四邊型為β-C3N4結構之
單位晶胞……………..……………………………….………...2
圖 2.1真空電弧內陰極弧點之激發粒子種類示意圖………………..8
圖 2.2過濾式陰極電弧沉積系統之鍍膜成長機制……………..…..10
圖 2.3電漿溫度與壓力之關係圖…………………………..………..12
圖 2.4各種不同幾何形狀之過濾器型式……………………..……..19
圖 3.1過濾式陰極電弧沉積系統(FCAE)示意圖…………...………23
圖 3.2過濾器內部磁場之磁力分佈圖………………..……………..24
圖 3.3實驗流程示意圖…………………………………..…………..25
圖 3.4拉曼散射機制示意圖………………………………..………..28
圖 3.5拉曼光譜測定方式…………………………………..………..29
圖 3.6傅立葉轉換紅外線光譜儀。系統一,S1代表紅外光
的輻射路徑,系統二,S2、系統三,S3分別代表雷射
及白光干涉路徑………………………………….…….……..31
圖3.7光電子發生原理示意圖………………………….……………33
圖3.8 Tapping mode AFM 掃描原理………………...……………...37
圖3.9 SEM構造示意圖………………………………………..……..38
圖3.10磁場強度與能階分裂之關係示意圖…………………………40
圖3.11各種壓痕形狀所表示的各種曲線圖…………………………41
圖3.12針頭有校正與沒有校正的壓痕深度與硬度曲線圖…………42
圖3.13 X光繞射原理示意圖…………………………………………44
圖4.1 (a)、(b)、(c)、(d)鑽石薄膜(e)無定型碳及(f)石墨之拉曼光譜圖.48
圖4.2石墨之E2g振動模式……………………………………………49
圖4.3基材偏壓分別為(a)0V、(b)-350V (c)-650V時之拉曼光譜圖52
圖4.4基材偏壓與(a) ID/IG (b)G峰中心位置之關係圖………………53
圖4.5不同基材偏壓條件(a)-100V(b)-350V(c)-650V之FTIR吸收
光譜圖………...…………..…………………………………...57
圖4.6不同基材偏壓條件(a)-100V(b)-350V(c)-650V survey scan
能譜圖………………………………………..………………..60
圖4.7應用FCAE所合成碳氮膜XPS之 C(1s)細部掃瞄圖……….61
圖4.8應用FCAE所合成碳氮膜XPS之 N(1s)細部掃瞄圖………62
圖4.9不同基材偏壓條件下碳氮鍵結比之關係圖……………….…63
圖4.10 基材偏壓為-350V時之AFM立體影像圖及粗糙度分析圖65
圖4.11 基材偏壓為-650V時之AFM立體影像圖及粗糙度分析圖65
圖4.12 SEM之平面視圖 (a) 應用本系統之90o 過濾器,所合成
碳氮膜上之微粒分佈情形。(b) 應用直線式導管過濾器,
所合成碳氮膜上之微粒分佈情形………….………………..68
圖4.13 基材偏壓為-350 V時碳氮薄膜之斷面視圖…………….…69
圖4.14基材偏壓與膜厚之關係圖…………………………………..70
圖4.15 基材偏壓為-350 時之碳氮薄膜沉積速率示意圖………....71
圖4.16基材偏壓(a)-100V、(b)-350V時之電子順磁迴旋共振
光譜圖………………………………………………………....73
圖4.17基材偏壓與懸浮鍵密度之關係圖……………………………74
圖4.18基材偏壓為-350V時之負載與位移關係圖………………….76
圖4.19 碳氮薄膜內之交鏈結構(cross linked)示意圖………………77
圖4.20 碳氮薄膜內之一個氮原子(y’,y)取代兩個碳原子示意圖…77
圖4.21不同基材偏壓與(a)彈性恢復程度(b)楊氏係數之關係圖…..79
圖4.22 掠角X光繞射法的幾何關係示意圖………………………..81
圖4.23 基材偏壓為-350 V時之不同掠角角度X光繞射圖形……..83
圖4.24 TEM鑑定材料之主要功能示意圖……………………….….86
圖4.25為基材偏壓-350 V時之TEM明視野圖…………………….87
圖4.26為基材偏壓-350 V時之(a) nano-crystalline diamond
選區繞射圖和(b)非晶質碳基底之環狀繞射圖…………….88
圖4.27基材偏壓-350 V時不同退火溫度之拉曼光譜圖……………91
圖4.28 退火溫度與(a) G峰中心位置、(b) ID / IG值之關係圖……..92
圖4.29 不同退火溫度之FTIR吸收光譜圖…………………………94
圖4.30 As deposition及不同退火溫度條件下之XPS Survey scan
訊號圖…………………..…….……….………………………96
圖4.31 退火溫度與碳氮鍵結比之關係圖…….…………………….97
圖4.32 不同退火溫度與EPR光譜圖之關係圖…..…………………99
表目錄
表 1共價鍵之鍵結能量及鍵結長………..……………………………3
表3.1實驗參數對照表………….…………………………………….26
表4-1 A Simplified Correlation Chart………………………………....56
參考文獻
[1] Marvin L. Cohen,”Calculation of bulk moduli of diamond and
Zinc-blende solids”, Phys. Rev. B,32(1985) 7988.
[2] A.Y. Liu and M.L. Cihen, “Prediction of new low compressibility
solids ”,Science, 245(1989) 841.
[3] David M. Teter and Russell J. Hemley, “Low-compressibility
carbon nitrides ”, Science, 271(1996) 53.
[4] O.Matsumoto, T. Kotaki, H. Shikano, K. Takemura and S. Tanaka,
“Synthesis of carbon nitride in plasma-arc ”,J. Electrochem. Soc,.
141 (1994) L16.
[5] K. M. Yu, M. L. Cohen, E. E. Haller, W. L. Hansen, A. Y. Liu and I.
C. Wu, “Observation of crystalline C3N4”,Phys. Rev. B,49(1994)
5034
[6] C. Y. Hsu, and F. C. N. Hong ,” Enhanced growth of Beta-C3N4
crystallites at a high substrate temperature ”, Jpn. J. Appl. Phys.,
37 (1998)L675
[7] F. Fujimoto and K. Ogata,”Formation of carbon nitride films by
means of Ion Assisted Dynamic Mixing (IVD) Method ”, Jpn. J.
Appl. Phys., 32 (1993)L420
[8] L. Sung, T. G. Tsai, K. P. Huang, J. H. Huang and H. C. Shih,” The
effect of DC bias on the synthesis of crystalline carbon nitrides on
silicon by microwave plasma enhanced chemical vapor
deposition”, Jpn. J. Appl. Phys., 37 (1998)L148.
[9] C. M. Niu, Y.Z. Lu and C. M. Lieber,”Experimental ealization of
the Covalent Solid Carbon Nitride ”, Science, 261 (1993)334
[10] C. M. Lieber and Z. J. Zhang,” Synthesis of covalent carbon-nitride solids : Alternative to Diamonds ? ”, Adv. Mater., 6(1994)497
[11] B. S. Satyanarayana, A. Hart, W. I. Milne, and J. Robertson,
“Field emission from tetrahedral amorphous carbon ”,Appl. Phys.
Lett. 71, 1430(1997)
[12] E. J. Chi, J. Y. Shim, D. J. Choi, and H.K Baik,”Effects of heat
treatment on the field ”, J. Vac. Sci. Technol. B16, 1219(1998)
[13] K. C.Park, J. H. Moon, S. J. Chang, and J. H. Jang,” Field
emission property of amorphous carbon nitride ”, J. Vac. Sci.
Technol. B15, 431 (1997).
[14] A.Modinos and J. P. Xanthakis ,”Electron emission from
amorphous carbon nitride films ”, Appl. Phys. Lett. 73, 1874(1988)
[15] R.L. Boxman and S. Goldsmith, ” Macroparticle contamination in
cathodic arc coatings : generation , transport and control ”, Surf. Coat. Technol., 52(1992)39.
[16] Z.Q. Ma, Y. Kido,”The atomic displacements on surface generated
by low-energy projectile ”, Thin Solid Films 359(2000)288-292
[17] R.L. Boxman, P.J. Martin, D. Sanders (Eds.) , Handbook of
Vacuum Arc Science and Technology, Noyes, New York, 1996.
[18] P. Siemroth, T. Schülke, T. Witke, “High-Current arc — a new source for high —rate deposition ”, Surf. Coat Technol. 68(1994) 314-319
[19] T. Schuelke, T. Writke, H-J. Scheibe, P. Siemroth, B. Schultrich,
O. Zimmer, “Comparison of DC and AC arc films deposition
techniques ”,J. Vetter, Surf. Coat. Technol. 120(1999)226-232
[20] F. Kaufman, Adv. Chem. Ser, 80(1969)29
[21] E. Erturk, H.-J. Heuvel and H.-G. Dedrich, ” CRN and (Ti , Al)N
coatings deposited by the steered arc and random arc
techniques ” , Surf. Coat. Technol., 39(1989)455.
[22] H.-D. Steffens, M.Mack, K. Moehwald and K. Reichel,
“ Reduction of droplet emission in random arc technology ”,Surf. Coat. Technol., 46(1991)65.
[23] A. Anders, “Approaches to rid cathodic arc plasmas of macro and
nanoparticles : a review ”,Surf. Coat. Technol. 20-121(1999)319-330
[24] K. Miernik, J. Walkowicz,”Spatial distribution of microdroplets
generated in the cathode spots of vacuum arcs ”, Surf. Coat.
Technol. 125 (2000) 161-166.
[25] J. S. Yoon, J. G. Han,”The ion current density and spectroscopic
study in a straight magnetic filtering arc deposition system ”, Surf Coat, Technol. 94 (1997)201-206
[26] A. Anders, R. A. Macgill,” Twist filter for the removal of
macroparticles from cathodic arc plasmas.”, Surf. Coat. Technol.
133-134(2000)96-100.
[27] S. Anders, A. Anders, M.R. Dickenson, R. Macgill, I.G.
Brown, ”S-Shaped magnetic macroparticle filter for cathodic arc
deposition ” IEEE. Trans. Plasma Sci 25(1997)670-675.
[28] 艾啟峰,2001年中華民國鍍膜科技研討會及國科會計畫研究成果
發表會,2001,08,30.
[29] 汪建民, 材料分析, 中國材料科學學會 (1998 ).
[30] 洪英欽,”儀器分析實驗”,正修工專化工編輯委員會,1986.
[31] Bharat Bhushan “Handbook of micro/nano tribology”2nd , 2000.
[32] E.E.Simonyi, K.W.Lee, R.F.Cook, E.G.Liniger, and J.Speidell
“Characterization of Spin-On Glass by Microindentation”
Mat.Res.Soc.Symp.Proc. Vol.511 pp157-164 (1998).
[33] W.C.Oliver et.al, “An improved technique for determining
hardnessand elastic modulus using load and displacement sensing
indentation experiments”, J.Mater.Res., Vol.7, No.6, (1992).
[34] Y.T Cheng , C.M. Cheng “Relationships between hardness , elastic
modulus ,and the work of indentation” Appl.Phys.Lett.,Vol.73,No.
53 Aug ,(1998).
[35] G.M.Pharr “Measurement of mechanical properties by ultra-low
load indentation” Mater.Sci.and Engineering A253,pp151-159
(1998).
[36] F. Tuinstra and J. Koening ” Raman Spectrum of Graphite ”, J. L.
Chem. Phys. 53,1126 (1970).
[37] P. C. Eklund, J. M. Holden, and R. A. Jishj , “ Vibrational modes
of carbon nanotubes ; spectroscopy and theory ”, Carbon,
Vol.33,No 7.pp.959-972.
[38] S. Prawer, K. W. Nugent, ”Systematic Variation of the Raman spectra of DLC film as a function of SP2:SP3 composition “ , Diamond. Relate. Mater, 5, 433(1996).
[39] Ming Y. Chen, “Analytical electron microscopy and Raman
Spectroscopy studies of carbon nitride thin films”J. Vac. Sci.
Technol. A11,(1993) 521.
[40] M. A. Tamor and W. C. Vassell,” Raman fingerprintering of
amorphous carbon films, J. Appl. Phys. 76, (1994) 3823.
[41] J.H.Kaufman and S.Metin,” Symmetry breaking in
nitrogen-doped amorphous carbon : Infrared observation of the
Raman-active G and D bands”, Phys. Rev. B, vol 39,number
18 ,13053
[42] H. Sjöström, S. Stafström, M. Boman, and J,-E. Sundgren , ” Superhard and Elastic Carbon Nitride Thin Films Having
Fullerenelike Microstructure”, Phys Rev lett, vol 75, number 7,1336
[43] D. Marton, K. J. Boyd, A. H. Al-Bayati, S. S. Todorov and J. W.
Rabalais, “Carbon Nitride Deposited Using Energetic Species: A
Two-Phase System ”Phys. Rev. B, 73 (1994) 118.
[44] M. Hakovirta, K. C. Walter, B. P. Wood, and M. Nastasi,” Graphite macroparticle filtering efficiency of three different magnetic filter designs used in the filtered cathodic vacuum arc deposition of tetrahedral amorphous carbon films ”,J. Vac. Sci. Technol. A 17(5),1999,3077.
[45] B. C. Holloway, O. Kraft, D. K. Shuh,” Interpretation of X-ray
photoelectron spectra of elastic of elastic amorphous carbon
nitride thin films”, APP Phys Lett, vol 74, number 22, 3290, 1999.
[46] H. Sjöström, S. Stafström, M. Boman, and J. —E. Sundgren,”
Superhard and Elastic Carbon Nitride Thin Films”, Phys Rev
Lett, vol 75, number 7, 1336, 1995.
[47] David B William and C. Barry carter,” Transmission Electron
Microscopy Basic Diffraction Imaging Spectrometry”, P312,1996.
[48] Yuejin Guo,William A. Goddard Ⅲ”Is carbon nitride harder
than diamond ? No, but its girth increase when stretched negative
Poisson ratio”, 237, 72, 1995.
[49] A. R. Merchant and D. G. McCulloch, ”Structure investigation of
two carbon nitride solids produced by cathodic arc deposition and nitrogen implantation”, 79, 1996, 6914.
[50] D. G. McCulloch, A.R. Merchant,” The effect of annealing on the
structure of cathodic arc deposited amorphous carbon nitride
films”,290-291,1996,99-102.
[51] Malek Tabbal, Philippe Merel, Simona Moisa, Mohamed
Chaker,”X-ray photoelectron spectroscopy of carbon nitride films
deposited by graphite laser ablation in a nitrogen postdischarge”, Appl.Phys. Lett, 69, 1996, 1698.
[52] Yun-Hi Lee , Dong-Ho Kim , Yoon-Taek jang ,Byeong-Kwon
ju ,and Myung-Hwan Oh, “Decrease of electron paramagnetic defect density and enhancement of electron field emission in annealed carbon films”,
J. Appl. Phys, 87 , 2000 , 7519.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top