跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.251) 您好!臺灣時間:2022/08/17 00:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林志光
研究生(外文):Lin Zhi-Guang
論文名稱:鈷-鈀雙金屬奈米微粒之製備與特性探討
論文名稱(外文):Preparation and Characterization of Cobalt-Palladium Bimetallic Nanoparticles by Chemical Reduction Method
指導教授:金重勳金重勳引用關係
指導教授(外文):Chin Tsung-Shune
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:多元醇法雙金屬奈米微粒
外文關鍵詞:polyol processbimetallic nanoparticles
相關次數:
  • 被引用被引用:1
  • 點閱點閱:123
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以化學還原法中的多元醇還原法,進行還原鈷-鈀雙金屬奈米微粒,選用乙二醇作為還原劑,PVP當保護劑,並添加氫氧化鈉溶液,調整溶液酸鹼值至11,再進行還原反應,所得結果論述如下:
由紫外光-可見光光譜推算得生成動力曲線圖得知,當反應進行經過270分鐘後,所生成的微粒之成長趨於穩定。由電子顯微鏡觀察得知,還原的鈷-鈀微粒粒徑約2.5 ~ 5nm。且由電子繞射圖得知為面心立方體結構,但隨著鈷含量的增加,粉末結晶性下降。當微粒乾燥並經過不同溫度退火後,經由X光粉末繞射儀檢測得知,隨著退火溫度的上升,粉末的結晶性變佳;且所出現的繞射峰會隨著成分比例的變化而發生位移。由XRD及VSM的結果知,所合成出來的CoxPd100-x微粒粉末在組成Co 25 ~ 50 at%之間與Co 55 ~ 75 at%之間,有尚未鑑定出來的新相(化合物)產生。

The purpose of this study is to obtain Co-Pd nano-bimetallic particles. A chemical reduction method is performed by polyol process. In the polyol process, glycol is as a reducing agent while PVP is as a protective agent. In addition, NaOH solution is added to adjust pH value and maintain at 11, and the reduction process is performed.
According to the results of ultraviolet/visible spectra, after reaction for 270 min., the nano-particles become stable. Based on TEM studies, the average size of nano-particles is 2.5 ~ 5 nm. In addition, the nano-particle possesses FCC structure, identified using selected area diffraction pattern, while the crystallinity decreases with increasing Co content. Properties of nano-particles after annealing at various temperatures were also explored. From XRD analyses, the crystallinity improves with increasing annealing temperature, but unobvious as Co content increases. And the diffraction peaks shift manifestly with different component ratios. From XRD and VSM analyses, there are new Co-Pd compounds synthesized between 25 ~ 50 at% and 55 ~ 75 at% Co.

總 目 錄
壹、緒論………………………………………………………………………01
1.1前言……………………………………………………………………… 01
1.2奈米材料簡介…………………………………………………………… 02
1.3奈米粒子的特性………………………………………………………… 03
1.4奈米粒子的製備方法…………………………………………………… 06
1.5奈米粒子的應用………………………………………………………… 06
貳、文獻回顧…………………………………………………………………09
2.1物理方法………………………………………………………………… 09
2.1.1研磨法………………………………………………………………… 09
2.1.2物理氣相沉積法……………………………………………………… 10
2.2化學方法………………………………………………………………… 11
2.2.1多元醇方法…………………………………………………………… 12
2.2.2水溶液程序…………………………………………………………… 17
2.2.3光化學法……………………………………………………………… 20
2.2.4噴霧煆燒法…………………………………………………………… 22
2.2.5微乳化法/逆微胞法……………………………………………………24
2.2.6化學氣相沉積法……………………………………………………… 25
參、儀器與方法………………………………………………………………28
3.1藥品……………………………………………………………………… 28
3.2儀器……………………………………………………………………… 29
3.3鈷-鈀雙金屬奈米粒子製備與分析………………………………………31
3.3.1鈷-鈀雙金屬奈米粒子之製備…………………………………………31
3.3.2鈷-鈀雙金屬奈米粒子之分析…………………………………………32
肆、結果與討論………………………………………………………………35
4.1雙金屬膠體粒子團的合成……………………………………………… 35
4.2 Co-Pd雙金屬奈米微粒特性分析……………………………………… 36
4.2.1 TEM分析……………………………………………………………… 36
4.2.2結構分析……………………………………………………………… 37
4.2.3成分與轉化率分析…………………………………………………… 40
4.2.4 UV光譜分析……………………………………………………………40
4.2.5熱重分析與磁性分析………………………………………………… 42
伍、結論………………………………………………………………………45
未來工作…………………………………………………………………47
陸、參考文獻…………………………………………………………………48
表 目 錄
表1-1 粒徑與表層原子比例之關係…………………………………………56
表1-2 銅粒子粒徑與表面能量比例…………………………………………56
表1-3 金屬奈米粒子的融點及燒結溫度……………………………………56
表2-1 代表性金屬微粒合成條件與添加物…………………………………57
表2-2 若干常見金屬與還原劑之半反應標準電位…………………………58
表2-3 多元醇法製備粉體製程變數和產物的關係…………………………59
表4-1 CoxPd100-x微粒之原子平面間距與晶格參數的變化………………60
表4-2 轉化率與SEM-EDS成分分析………………………………………… 61
表4-3 剛製作完成CoxPd100-x微粒粉末,在Ar氣氛下,經300℃、400℃、500℃、600℃ 30分鐘退火處理,表面殘留高分子的比例 ………………62
圖 目 錄
圖1.1 奈米材料科學研究架構………………………………………………63
圖1.2 金粒子的融點與粒徑的關係…………………………………………64
圖1.3 尺寸效應對表面原子比例的影響……………………………………64
圖1.4 不同粒徑CdS的UV/VIS吸收光譜…………………………………… 65
圖1.5 合成奈米結構示意圖…………………………………………………65
圖2.1 物理法及化學法製備奈米粒子示意圖………………………………66
圖2.2 噴霧煆燒法的程序步驟………………………………………………66
圖4.1 Co-Pd 氫氧化物膠體(Co/Pd = 35/65)經電子顯微鏡觀察之明視野影像及選區繞射圖……………………………………………………………67
圖4.2 Co15Pd85 雙金屬奈米微粒經電子顯微鏡觀察之明視野影像及選區繞射圖…………………………………………………………………………68
圖4.3 Co25Pd75 雙金屬奈米微粒經電子顯微鏡觀察之明視野影像及選區繞射圖…………………………………………………………………………69
圖4.4 Co35Pd65 雙金屬奈米微粒經電子顯微鏡觀察之明視野影像及選區繞射圖…………………………………………………………………………70
圖4.5 Co45Pd55 雙金屬奈米微粒經電子顯微鏡觀察之明視野影像及選區繞射圖…………………………………………………………………………71
圖4.6 Co50Pd50 雙金屬奈米微粒經電子顯微鏡觀察之明視野影像及選區繞射圖…………………………………………………………………………72
圖4.7 Co55Pd45 雙金屬奈米微粒經電子顯微鏡觀察之明視野影像及選區繞射圖…………………………………………………………………………73
圖4.8 Co65Pd35 雙金屬奈米微粒經電子顯微鏡觀察之明視野影像及選區繞射圖…………………………………………………………………………74
圖4.9 Co75Pd25 雙金屬奈米微粒經電子顯微鏡觀察之明視野影像及選區繞射圖…………………………………………………………………………75
圖4.10 Co85Pd15 雙金屬奈米微粒經電子顯微鏡觀察之明視野影像及選區繞射圖…………………………………………………………………………76
圖4.11 Co95Pd05 雙金屬奈米微粒經電子顯微鏡觀察之明視野影像及選區繞射圖…………………………………………………………………………77
圖4.12 剛製作完成的CoxPd100-x微粒粉末的XRPD檢測結果…………… 78
圖4.13 剛製作完成的CoxPd100-x微粒粉末,在Ar氣氛下,經30分鐘300℃退火後,XRPD的檢測結果……………………………………………………79
圖4.14 剛製作完成的CoxPd100-x微粒粉末,在Ar氣氛下,經30分鐘400℃退火後,XRPD的檢測結果……………………………………………………80
圖4.15 剛製作完成的CoxPd100-x微粒粉末,在Ar氣氛下,經30分鐘500℃退火後,XRPD的檢測結果……………………………………………………81
圖4.16 剛製作完成的CoxPd100-x微粒粉末,在Ar氣氛下,經30分鐘600℃退火後,XRPD的檢測結果……………………………………………………82
圖4.17 剛製作完成的CoxPd100-x微粒粉末,在Air氣氛下,從25℃加熱到700℃進行TGA/DTA檢測後,XRPD的檢測結果………………………………83
圖4.18 經過不同退火溫度處理的Co15Pd85微粒粉末的XRPD檢測結果… 84
圖4.19 經過不同退火溫度處理的Co25Pd75微粒粉末的XRPD檢測結果… 85
圖4.20 經過不同退火溫度處理的Co35Pd65微粒粉末的XRPD檢測結果… 86
圖4.21 經過不同退火溫度處理的Co45Pd55微粒粉末的XRPD檢測結果… 87
圖4.22 經過不同退火溫度處理的Co50Pd50微粒粉末的XRPD檢測結果… 88
圖4.23 經過不同退火溫度處理的Co55Pd45微粒粉末的XRPD檢測結果… 89
圖4.24 經過不同退火溫度處理的Co65Pd35微粒粉末的XRPD檢測結果… 90
圖4.25 經過不同退火溫度處理的Co75Pd25微粒粉末的XRPD檢測結果… 91
圖4.26 經過不同退火溫度處理的Co85Pd15微粒粉末的XRPD檢測結果… 92
圖4.27 經過不同退火溫度處理的Co95Pd05微粒粉末的XRPD檢測結果… 93
圖4.28 剛製作完成的Co15Pd85微粒粉末經SEM-EDS檢測的結果…………94
圖4.29 剛製作完成的Co25Pd75微粒粉末經SEM-EDS檢測的結果…………94
圖4.30 剛製作完成的Co35Pd65微粒粉末經SEM-EDS檢測的結果…………95
圖4.31 剛製作完成的Co45Pd55微粒粉末經SEM-EDS檢測的結果…………95
圖4.32 剛製作完成的Co50Pd50微粒粉末經SEM-EDS檢測的結果…………96
圖4.33 剛製作完成的Co55Pd45微粒粉末經SEM-EDS檢測的結果…………96
圖4.34 剛製作完成的Co65Pd35微粒粉末經SEM-EDS檢測的結果…………97
圖4.35 剛製作完成的Co75Pd25微粒粉末經SEM-EDS檢測的結果…………97
圖4.36 剛製作完成的Co85Pd15微粒粉末經SEM-EDS檢測的結果…………98
圖4.37 剛製作完成的Co95Pd05微粒粉末經SEM-EDS檢測的結果…………98
圖4.38 Pd2+、Co2+及( Pd2+ - Co2+ )氫氧化物膠體,溶於乙二醇/去離子水中之UV-vis光譜圖………………………………………………………99
圖4.39 鈷-鈀雙金屬奈米微粒在不同的還原時間,所對應的UV-vis光譜圖,及其所對應出來的生成動力曲線圖………………………………… 100
圖4.40 生成Co15Pd85微粒所對應之UV-vis光譜圖所推導出來的生成動力曲線圖……………………………………………………………………… 101
圖4.41 生成Co25Pd75微粒所對應之UV-vis光譜圖所推導出來的生成動力曲線圖……………………………………………………………………… 101
圖4.42 生成Co35Pd65微粒所對應之UV-vis光譜圖所推導出來的生成動力曲線圖……………………………………………………………………… 102
圖4.43 生成Co45Pd55微粒所對應之UV-vis光譜圖所推導出來的生成動力曲線圖……………………………………………………………………… 102
圖4.44 生成Co50Pd50微粒所對應之UV-vis光譜圖所推導出來的生成動力曲線圖……………………………………………………………………… 103
圖4.45 生成Co55Pd45微粒所對應之UV-vis光譜圖所推導出來的生成動力曲線圖……………………………………………………………………… 103
圖4.46 生成Co65Pd35微粒所對應之UV-vis光譜圖所推導出來的生成動力曲線圖……………………………………………………………………… 104
圖4.47 生成Co75Pd25微粒所對應之UV-vis光譜圖所推導出來的生成動力曲線圖……………………………………………………………………… 104
圖4.48 生成Co85Pd15微粒所對應之UV-vis光譜圖所推導出來的生成動力曲線圖……………………………………………………………………… 105
圖4.49 生成Co95Pd05微粒所對應之UV-vis光譜圖所推導出來的生成動力曲線圖……………………………………………………………………… 105
圖4.50 不同組成比例之還原反應,達穩定態所需之時間………………106
圖4.51 CoxPd100-x微粒粉末在Air氣氛下,由25℃加熱至700℃,進行TGA檢測的結果………………………………………………………………… 107
圖4.52 Co85Pd15微粒粉末在Ar氣氛下,仿CoxPd100-x微粒粉末所做的退火條件,進行TGA檢測的結果………………………………………………108
圖4.53 Co15Pd85微粒粉末在Air氣氛下,由25℃加熱至700℃,進行TGA/DTA檢測的結果…………………………………………………………109
圖4.54 CoxPd100-x微粒粉末經不同溫度退火處理,其矯頑磁場的變化情形…………………………………………………………………………… 110
圖4.55 CoxPd100-x微粒粉末經不同溫度退火處理,其殘餘磁化量的變化情形………………………………………………………………………… 111
圖4.56 CoxPd100-x微粒粉末經不同溫度退火處理,其飽和磁化量的變化情形………………………………………………………………………… 112

1. “WTEC Panel Report on Nanostructure Science and Technology R&D Status and Trends in Nanoparticles, Nanostructured Materials, and Nanodevices,” U.S.A National Report (1999).
2. Rodriguez, N.M., Oh, S. G, Dalla-Betta, R. A., and Baker, R. T. K., “In-Situ Electron-Microscopy Studies of Palladium Supported on Al2O3 , SiO2, and ZrO2 in Oxygen”, J. Catalysis, 157, 676 (1995).
3. Gao, M., Yang, Y, Yang, B., Biran, F. and Shen, J., “Synthesis of PbS Nanoparticles in Polymer Matrices”, J. Chem. Soc. Chem. Commum., 2779 (1994).
4. Bonet, F., Delmas, V., Grugeon, S., Herrera Urbina, R., and Silvert, P-Y., “Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol” ,Nanostructured Mater., 11, 1277 (1999).
5. Ducamp-Sanguesa, C., Herrera-Urbina, R., and Figlarz, M., “Synthesis and Characterization of Fine and Monodisperse Silver Particles of Uniform Shape” , J. Solid State Chem., 100, 272 (1992).
6. 莊萬發編撰 , 超微粒子理論應用 , 復漢出版社(1995).
7. 蘇品書編撰 , 超微粒子材料技術 , 復漢出版社(1989).
8. Schmid, G.(ed.), “Clusters and colloids: from theory to applications” , VCG, Weinheim(1994).
9. Boutonnet, M., Kizling, J., Mintsa-Eya, V., Choplin, A., Touroude, R., Maire, G, and Stenius, P., “Monodisperse Colloidal Metal Particles from Nonaqueous Solutions - Catalytic Behavior in Hydrogenation of But-1-Ene of Platinum, Palladium, and Rhodium Particles Supported on Pumice”, J. Catalysis, 103, 95 (1987).
10.Henglein, A., “Small-Particle Research - Physicochemical Properties of Extremely Small Colloidal Metal and Semiconductor Particles”, Chem. Rev., 89, 1861(1989).
11.Eicke, H.F., Rehak, J., “On the Formation of Water/Oil-Micro- emulsions”, Helv. Chim. Acta, 59, 2883(1976).
12.Babock, J.R., Zehner, R.W., Sita, L.R., “A Heterocumulene Metathesis Route to Cd[EsiMe3]2 and Passivated CdE(E = S and Se) Nanocrystals”, Chemistry of Materials, 10, 2027(1998).
13.史宗淮 , 微粉製程技術簡介 , 化工 , 42(6) , 28(1995).
14.Ezaki, H., Nambu, T., Morinaga, M., Udaka, M., and Kawasaki, K., “Development of Low Hydrogen Overpotential Electrodes Utilizing Metal Ultra-Fine Particles”, Int. J. Hydrogen, 21(10), 877 (1996).
15.Kawahara, M., Ogawa, S., and Ichikawa, S., “Effect of palladium particle size on the appearance of superstructure of graphite in palladium/graphite model catalyst”, Surface Science, 344, L1259 (1995).
16.Ohsaki, K., Uda, M., and Okazaki, K., “Preparation of ultrafine titanium powder by arc-plasma process”, Mater. Transactions, JIM, 36, 1386(1995).
17.Teng, M.H., Host, J.J., Huang, J.H., Elliott, B.R., Weertman, J.R., Mason, T.O., Dravid, V.P., and Johnson, D.L., “Nanophase Ni particles produce by a brown arc method”, J. Mater. Res., 10, 233(1995).
18.Huang, C.Y. and Sheen, S.R., “Synthesis of nanocrystalline and monodispersed copper particles of uniform spherical shape”, Mater. Lett. , 30, 357(1997).
19. Fievet, F., Fievet-Vincent, F., Lagier, J.P., Dumont, B., and Figlarz, M., “Controlled nucleation and growth of micrometer-size copper particles prepared by the polyol process”, J. Mater. Chem., 3(6), 627(1993).
20.Yamasaki, N. and Liang, H., “Reduction kinetics of Ni(OH)2 to nickel powder preparation under hydrothermal conditions”, Metall. Trans. B, 24, 557(1993).
21.Nagashima, K., Wada, M., and Kato, A., “Preparation of fine Ni particles by the spray-pyrolysis technique and their film forming properties in the thick film method”, J. Mater. Res., 5(12), 2828(1990).
22.Stopic, S., Ilic, I., and Uskokovic, D., “Structural and morphological transformations during NiO and Ni particles generation from chloride precursor by ultrasonic spray pyrolysis”, Mater. Lett., 24 ,369 (1995).
23.Zhu, Y., Qian Y., Zhang, M., Chen, Z., Chen, M., Zhou, G., “Preparation and characterization of nanocyrstalline nickel powders by the γ-radiation method”, J. Mater. Sci. Lett., 13,1243(1994).
24.Zhang, Z., Zhao, B., and Hu, L., “PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes”, J. Solid State Chem., 121, 105(1996).
25.Kieda, N. and Messing, G.L., “Preparation of silver particles by spray pyrolysis of silver-diammine complex solutions”, J. Mater. Res., 13(6), 1660(1998).
26.Silvert, P.-Y., Herera-Urbina, R., Duvauchelle, N., Vijayakrishnan, V. and Tekaia-Elhsissen, K., “Preparation of Colloidal Silver Dispersions by the Polyol Process I. Synthesis and Characterization” ,J. Mater. Chem., 6(4), 573 (1996).
27.Michaelis, M., Henglein, A., and Mulvaney, P., “Composite Pd-Ag particles in aqueous solution”, J. Phys. Chem., 98, 6212(1994).
28.Silvert, P.-Y., Vijayakrishman, V., Vibert, P., Herrera-Urbina, R. and Tekaia-Elhsissen, K., “Synthesis and characterization of nanoscale Ag-Pd alloy particles” ,NanoStructured Mater, 7(6), 611(1996).
29.Torigoe, K., Nakajima, Y., and Esumi, K., “Preparation and characterization of colloidal silver-platinum alloys”, J. Phys. Chem., 97, 8304(1993).
30.Toshima, N., Wang, Y., “Preparation and Catalysis of Novel Colloidal Dispersions of Copper/Noble Metal Bimetallic Clusters”, Langmuir, 10, 4574(1994).
31.Tu, W., Liu, H., Liew, K.Y., “Preparation and Catalytic Properties of Amphiphilic Copolymer-Stabilized Platinum Metals Colloids”, J. Colloid Inter. Sci., 229,453(2000).
32.Esumi, K., Shiratori, M., Ishizuka, H., Tano, T., Torigoe, K., Meguro, K., “Preparation of Bimetallic Pd-Pt Colloids in Organic Solvent by Solvent Extraction-Reduction”, Langmuir, 7,457(1991).
33.Teranishi, T., Kiyokawa, I., and Miyake, M., “Synthesis of mono- disperse gold nanoparticles using linear polymers as protective agents”, Adv. Mater., 10(8), 596(1998).
34.Petit, C., Pileni, M.P., “Physical properties of self-assembled nanosized cobalt particles”, Appl. Surf. Sci., 162-163, 519(2000).
35.Yu., W, Wang, Y., Lin, H., and Zheng, W., “Preparation and characterization of polymer-protected Pt/Co bimetallic colloids and their catalytic properties in the selective hydrogenation of cinnamaldehyde”, J. Mol. Cata. A, 112, 105(1996).
36.Yiping, L., Tang, Z.X., Hadjipanayis, G.C., Sorensen, C.M., Klabunde, K.J., “Co-Pt-B Particles Prepared by Chemical Reduction”, IEEE. Trans. Magn., 29(6), 2646(1993).
37.Lide, D.R., editor-in-chief, “CRC Handbook of Chemistry and Physics, 78 th ed.”, CRC Press, Boca Raton, USA(1998).
38.Shafi, K.V., A.-Gedanken, P.M., and Prozorov, R., “Surfactant- assisted self-organization of cobalt nanoparticles in a magnetic fluid”, Adv. Mater., 10(8), 590(1998).
39.Hegde, M. S., Larcher, D., Dupont, L., Beaudoin, B., Tekaia-Elhsisen, K. and Trascon, J.-M., “Synthesis and Chemical-Reactivity of Polyol Prepared Monodisperse Nickel Powders” ,Solid state Ion., 93, 33(1997).
40.Silvert, P.-Y., Herera-Urbina, R. and Tekaia Elhsissen, K., “Preparation of Colloidal Silver Dispersions by the Polyol Process.II. Synthesis and Characterization” ,J. Mater. Chem., 7, 293 (1997).
41.Silvert, P-Y. and Tekaia-Elhsissen, K., “Synthesis of Monodisperse Submicronic Gold Particles by the Polyol Process” , Solid State Ion., 82, 53 (1995).
42.Ducamp-Sanguesa, C., Herrera-Urbina, R. and Figlarz, M., “Fine Palladium Powders of Uniform Particle-Size and Shape Produced in Ethylene-Glycol” , Solid state Ion., 63-65, 25 (1993).
43.Kurihara, L. K., Chow, G. M. and Schoen, P. E., “Nanocrystalline metallic powders and films produced by the polyol method”, NanoStructured Mater., 5(6), 607(1995).
44.Ayyappan, S., Subbanna, G N., Srinvasa-Gopalan, R., and Rao, C. N. R., “Nanoparticles of Nickel and Silver Produced by the Polyol Reduction of the Metal-Salts Intercalated in Montmorillonite” , Solid State Ion., 84,271(1996).
45.Bonet, F., Guery, C., Guyomard, D., Herera-Urbina, R. and Tekaia--Elhsissen, K., “Electrochemical reduction of noble metal compounds in ethylene glycol”, J. Inorg. Mater., 1, 47 (1999).
46.Toneguzzo, Ph., Viau, G., Acher, O., Guillet, F., Bruneton, E., Fievet-Vincent, F. and Fievet, F., “CoNi and FeCoNi Fine Particles Prepared by the Polyol Process: Physico-Chemical Characterization and Dynamic Magnetic Properties”, J. Mater. Sci., 35, 3767 (2000).
47.Ammar, S., Helfen, A., Jouini, N., Fievet, F., Rosenman, I., Villain, F., Molinie, P. and Danot, M., “Magnetic properties of ultrafine cobalt ferrite particles synthesized by hydrolysis in a polyol medium”, J. Mater. Chem., 11, 186(2001).
48.Tekaia-Elhsissen, K., Bonet, F., Silvert, P.-Y. and Herrera-Urbina, R., “Finely Divided Platinum-Gold Alloy Powders Prepared in Ethylene-Glycol”, J. alloys Comp., 292, 96 (1999).
49.Miyazaki, A., Takeshita, K., Aika, K.-I. And Nakano, Y, “Formation of Ruthenium Colloid in Ethylene-Glycol”, Chem. Lett., 361(1998).
50.Wilcoxon, J. P., Martino, A., Baughmann, R. L., Klavetter, E., and Sylwester, A. P., “Synthesis of Transition Metal Clusters and Their Catalytic and Optical Properties”, Mat. Res. Soc. Symp. Proc., 286, 131(1993).
51.Chow, G.M., Kurihara, L.K., Kemmer, K.M., Schoen, P.E., Elam, W.T., Ervin, A., Keller, S., Zhang, Y.D., Bundinck, J., and Ambrose, T., “Structure, morphological , and magnetic study of nanocrystalline cobalt-copper powders synthesized by polyol process”, J. Mater. Res., 10(6), 1546(1995).
52.Ayyappan, S., Gopalan, R.S., Subbanna, G.N., and Rao, C.N.R., “Nanoparticles of Ag, Au, Pd, and Cu produced by alcohol reduction of the salts”, J. Mater. Res., 12, 398(1997).
53.Wells, S., Charles, S.W., Morup, S., Linderoth, S., J. van Woneterghem, Larsen, J., and Madsen, M.B., “A study of Fe-B and Fe-Co-B alloy particles produced by reduction with borohydride”, J. Phys.:Condens. Matter 1, 8199(1989).
54.Shen, J., Hu, Z.Z., Zhang, L., Li, Z., and Chen, Y., “The preparation of Ni-P ultrafine amorphous alloy particles”, Appl. Phys. Lett., 59, 3545(1991).
55.Ahmadi, T.S., Wang, Z.L., Henglein, A., and El-Sayed, M.A., “Cubic colloidal platinum nanoparticles”, Chem. Mater., 8,1161(1996).
56.Torigoe, K., and Esumi, K., “Preparation of bimetallic Ag-Pd colloids from Ag bis(oxolato)palladate (II)”, Langmuir, 9, 1664(1993).
57.Kelm, M., Lilie, J., Henglein, A., and Janata, E., “Pulse Radiolytic Study of Ni+ Nickel-Carbon Bond Formation”, J. Phy. Chem., 78,882(1974).
58.Marignier, J.L., Belloni, J., Delcourt, M.O., and Chevalier, J.P., “Microaggregates of non-noble metals and bimetallic alloys prepared by radiation-induced reduction”, Nature, 317, 344(1985).
59.Zhu, Y., Qian, Y., Zhang, M., Chen, Z., Liu, B., and Wang, C., “Preparation of nanocrystalline silver powders by γ-ray radiation combined with hydrothermal treatment”, Mater. Lett., 17, 314(1993).
60.Kapoor, S., Salunke, H.G., Pande, B.M., Kulshreshtha, S.K., and Mittal, J.P., “Radiolytic preparation of nanophase cubic cobalt metal particles”, Mater. Res. Bull., 33, 1555(1998).
61.Messing, G.L., Zhang, S.C., and Jayanthi, G.V., “Ceramic Powder Synthesis by Spray Pyrolysis”, J. Am. Ceram. Soc., 76,2707(1993).
62.Easom, K.A., Klabunde, K.J., Sorensen, C.M., and Hadjipanayis, G.C., “Nanoscale magnetic particles. New methods to surface protected metallic and immiscible bimetallic clusters/particles”, Polyhedron, 13(8), 1197(1994).
63.Majima, H., Hirto, T., Awaknra, Y., and Hibi, T., “Preparation of monosized ultilizing and emulsion-type liquid membrane technique”, Metallurgical transaction B, 22B, 397(1991).
64.陳東煌, 葉俊君, 黃定加, “在逆微胞中製備鉑超微粒子之研究”, 輸送現象及其應用專題研討會, 台灣大學, 台北, 551(1998).
65.Grafe, A., Heinen, R., Klein, F., Kruck, Th., Scherer, M., and Schober, M., “Precursor development for the CVD of Al、Cu、Pd”, App. Surf. Sci., 91, 187(1995).
66.Sordelli, L., Martra, G., Psaro, R., Dossi, C., and Coluccia, S., “Intrazeolite large Pd clusters prepared by organometallic CVD”, J. Chem. Soc. Dalton Trans., 765(1996).
67.Yu, W. and Liu, H., “Quntity Synthesis Clusters”, Chem. Mater., 10,1205(1998).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top