|
[1] J. M. Herbert, Ceramic Dielectrics and Capacitors, Gordon and Breach Science Publishers, NY, 1985. [2] J. M. Wilson, “Producer of World Class Dielectrics for the Electronics Industry,” Am. Ceram. Soc. Bull., 74 [6] 107-10 (1995). [3] D M. Zogbi, Fixed capacitors and Resistors World Markets, Paumanok Publications, 1995. [4] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, Wiely, NY, 1976. [5] B. S. Rawal, K. Kahn, and W. R. Buessem, “Grain Core-Grain Shell Structure in Barium Titanate-Based Dielectrics”; pp. 172-88 in Advances in Ceramics, Vol. 1, Grain Boundary Phenomena in Electronic Ceramics. Edited by L. M. Levinson. American Ceramic Society, Columbus, OH, 1981. [6] R. Gerson, and T. C. Marshall, “Dielectric Breakdown of porous ceramics,” J. Appl. Phys., 30 [11] 1650-53 (1959). [7] I. C. Ho, “Low Firing of Barium Titanate PTC Thermistor”; p. 64 in Abstracts of The Third International Ceramic Science and Technology Congress Meeting (San Francisco, CA, Nov. 1-4, 1992). American Ceramic Society, Westerville, OH, 1992. [8] J. G. Fagan, and V. R. W. Amarakoon, “Reliability and reproducibility of Ceramic Sensors: Part II, PTC thermistors,” Am. Ceram. Soc. Bull., 72 [2] 69-76 (1993). [9] B. S. Chiou, S. T. Lin, J. G. Duh, and P. H. Chang, “Equivalent circuit model in grain boundary barrier layer capacitors,” J. Am. Ceram. Soc. 72 [10] 1967-75 (1989). [10] K. H. Hardtl, Ferroelectrics, 12, 9 (1976). [11] B. Jaffe, W. R. Cook, Jr. and H. Jaffe, Piezoelectric Ceramics, Academic Press, New York, 1971. [12] T. Chartier, “Tape Casting”; pp. 2763-67 in The Encyclopedia of Advanced Materials. Edited by D. Brook, M. C. Flemings and S. Makajan, Pergamon Press, Chambridge, 1994. [13] R. E. Mistler, D. J. Shanefield, and R. B. Runk, “Tape Casting of Ceramics”; pp. 411-88 in Ceramic Processing Before Firing. Edited by G. Y. Onoda, and L. L. Hench, Wiely, New york, 1978. [14] J. C. William, “Doctor-Blade Process”; pp. 173-98 in Treatise on Materials Science and Technology, Vol. 9, Ceramic Fabrication Process, Edited by F. Y. Y. Wang, Academic Press, New York, 1976. [15] R. Moreno, “The role of Slip Additives in Tape-Casting Technology: Part I — Solvents and Dispersants,” Am. Ceram. Soc. Bull., 71 [10] 1521-31 (1992). [16] R. Moreno, “The role of Slip Additives in Tape-Casting Technology: Part II — Binders and Platicizers,” Am. Ceram. Soc. Bull., 71 [11] 1647-57 (1992). [17] P. Nahass, W. E. Rhine, R. L. Pober, H. K. Bowen, and W. L. Robbins, “Comparison of Aqueous and Non-Aqueous Slurries for Tape-Casting”; pp. 355-64 in Ceramic Transactions, Vol. 15, Materials and Process in Microelectronics Systems. Edited by K. M. Nair, R. Pohanca and R. C. Buchanan.,. American Ceramic Society, Werterville, OH, 1990. [18] D. Hotza, and P. Greil, “Review: Aqueous Tape-Casting of Ceramic Powders,” Materials Science and Engineering, A202, 206-17 (1995). [19] R. A. Gardner, and R. W. Nufer, “Properties of Multilayer Ceramic Green Sheets,” Solid State Tech., 5, 5-12 (1993). [20] C. Fiori, and G. De Portu, “A Technique for Preparing and Studying New Materials,” Br. Ceram. Proc., 38, 213-25 (1986). [21] R. E. Mistler, “Tape-Casting: The Basic Process for Meeting the needs of the Electronics Industry,” Am. Ceram. Soc. Bull., 69 [6] 1022-26 (1990). [22] E. P. Hyatt, “Making Thin, Flat Ceramics: A Review,” Am. Ceram. Soc. Bull., 65 [4] 637-38 (1986). [23] P. Boch, and T. Chartier, “Ceramic Processing Techniques: The Case of Tape-Casting,” Ceram. For. Int., 4, 55-67 (1989). [24] A. Roosen, “Basic Requirements for Tape-Casting of Ceramic Powders”; pp. 675-92 in Ceramic Transactions, Vol. 1, Ceramic Powder Science II. Edited by G. L. Messing, E. R. Fuller and H. Hausner, American Ceramic Society, Westerville OH, 1988. [25] G. N. Howatt, R. G. Breckenridge, and J. M. Brownlow, “Fabrication of Thin Ceramic Sheets for Capacitors,” J. Am. Ceram. Soc. 30 [8] 237-42 (1947). [26] P. Nahass, R. L. Pober, W. E. Rhine, W. L. Robbins, and H. K. Bowen, “Prediction and Explanation of Aging Shrinkage in Tape-Cast Ceramic Green Sheets,” J. Am. Ceram. Soc., 75 [9] 2373-78 (1992). [27] R. C. Chiu, T. J. Carino, and M. J. Cima, “Drying of Granular Ceramic Films: I, Effect of Processing Variables on the Cracking Behavior,” J. Am. Ceram. Soc., 76, 2257-64 (1993). [28] R. C. Chiu, and M. J. Cima, “Drying of Granular Ceramic Films: II, Drying Stress and Saturation Uniformity,” J. Am. Ceram. Soc., 76, 2769-77 (1993). [29] J. A. Lewis, K. A. Blackman, A. L. Ogden, J. A. Payne, and L. F. Francis, “Rheological Property and Stress Development During Drying of Tape-Cast Ceramic Layers,” J. Am. Ceram. Soc., 79, 3225-34 (1996). [30] D. H Napper, polymeric stabilization of Colloidal Dispersions; pp. 4-13. Academic Press, London, 1983. [31] P. C. Hiemenz, Principles of Colloid and Surface Chemistry, Marcel Dekker, New York, 1986. [32] J. N. Israilachvili, Intermolecular and Surface Force, Academic Press, London, 1985. [33] T. Sato and R. Ruch, Stabilization of Colloidal Dispersion by Polymer Adsorption, Marcel Dekker, New York, 1980. [34] R. J. Hunter, Zeta Potential in Colloidal Science, Academic Press, London, 1981. [35] R. J. Hunter, Foundation of Colloidal Science, Clarendon Press, Oxford, 1987. [36] G. D. Parfitt (Ed.), Dispersion of Powders in Liquids, Applied Science Publishers, New York, 1981. [37] D. J. Shaw, Introduction to Colloid and Surface Chemistry, Butterworths, Boston, MA, 1980. [38] H. C. Hamaker, “The London-van der Waals Attraction between Spherical Particles,” Physica, 4, 1058-72 (1937). [39] E. J. W. Verwey, and J. Th. G. Overbeek, Theory of Stability of Lyophobic Colloids, Elsevier. Amsterdam, Netherlands, 1948. [40] R. Evans, and D. H. Napper, “Kolloid Steric Stabilization 2. A Generalization of Fischer’s Solvency Theory,“ Kolloid-Z. Z. Polymere, 251, 329 (1973). [41] S. Asakura and F. Oosawa, “On Interactions between Two Bodies Immersed in a Solution of Macromolecules,” J. Chem. Phys., 22, 1255 (1955). [42] S. Asakura and F. Oosawa, “Interactions between Particles Suspended in Solutions of Macromolecules,” J. Polym. Sci., 33, 183 (1958). [43] D. H. Napper, “Steric Stabilization,” J. Colloid Interface Sci., 58 [2] 390-407 (1977). [44] J. T. G. Overbeeck, “The Interaction Between Colloidal Particles”; pp. 245-71 in Colloid Science. Edited by H. R. Kruyt. Elsevier, Amsterdam, Netherlands, 1952. [45] J. A. Lewis, “Colloidal Processing of Ceramics,” J. Am. Ceram. Soc., 83 [10] 2341-59 (2000). [46] B. Vincent, J. Edwards, S. Emmett, and A. Jones, “Depletion Flocculation in Dispersions of Sterically Stabilized Particles (“Soft Spheres”),” Colloids Surf., 18, 261 (1986). [47] M. R. Bohmer, O. A. Evers, and H. M. Scheutjens, “Weak Polyelectrolytes between Two Surfaces: Adsorption and Stabilization,” Macromolecules, 23, 2288-301 (1990). [48] J. Israelachvili, “Solvation Forces and Liquid Structure, As Probed by Direct Forces Measurements,” Acc. Chem. Res., 20, 415-21 (1987). [49] H. K. Christension, “Interactions between Hydrocarbon Surfaces in a Nonpolar Liquid: Effect of Surface Properties on Solvation Forces,” J. Phys. Chem., 90, 4-6 (1990). [50] J. H. Jean and H. R. Wang, “Stabilization of Aqueous BaTiO3 Suspensions with Ammonium Salt of Poly(acrylic acid) at Various pH Values,” J. Mater. Res., 13, 2245-50 (1998). [51] J. H. Jean and H. R. Wang, “Dispersion of Aqueous Barium-Titanate Suspensions with Ammonium Salt of Poly(methacrylic acid),” J. Am. Ceram. Soc., 81 [6] 1589-99 (1998). [52] Allan F.M. Barton, CRC handbook of solubility parameters and other cohesion parameters, 2nd ed., CRC Press; Boca Raton, Fl, 1991. [53] I. Langmuir, Science, 88, 450-55 (1938). [54] R. J. Hunter, Introduction to Modern Colloid Science, Oxford: New York, 1993. [55] Z. C. Chen, T. A. Ring and J. Lemaître, “Stabilization and Processing of Aqueous BaTiO3 Suspensions with Polyacrylic Acid,” J. Am. Ceram. Soc., 75 [12] 3201-208 (1992). [56] A. W. M. de Laat, G. L. T. van den Heuvel, and M. R. Böhmer, “kinetic Aspects in the Adsorption of Polyacrylic Acid Salts onto BaTiO3,” Colloids Surf. A, 98, 61-71 (1995). [57] Z. C. Chen, “Powder Processing of Barium Titanate Ceramics with Polyacrylic Acid”; Ph. D. Thesis. Swiss Federal Institute of Technology, Lausanne, Switzerland, 1992. [58] Z. C. Chen and T. A. Ring, “FT-IR Analysis of Adsorption and Pyrolysis of Polyacrylic Acid on BaTiO3 Surface,” Analysis, 21 [5] 38-42 (1993). [59] J. Cesarano III, I. A. Aksay, and A. Blier, “Stability of Aqueous—Alumina Suspensions with Poly(methacrylic acid) Polyelectrolyte,” J. Am. Ceram. Soc., 71 [4] 250-55 (1988). [60] J. Cesarano III and I. A. Aksay, “Processing of Highly Concentrated Aqueous—Alumina Suspensions Stabilized with Polyelectrolytes,” J. Am. Ceram. Soc., 71 [12] 1062-67 (1988). [61] S. Mizuta, M. Parish, and H. K. Bowen, Dispersion of BaTiO3 powders, Part 1. Ceramics International, 10, 43-48 (1984). [62] N. Ushifusa and M. J. Cima, “Aqueous Processing of Mullite-Containing Green Sheets,” J. Am. Ceram. Soc., 74 [10] 2443-47 (1991). [63] J. H. Jean and H. R. Wang, “Effects of Solids Loading, pH, and Polyelectrolyte Addition on the Stabilization of Concentrated Aqueous BaTiO3 Suspensions,” J. Am. Ceram. Soc., 83 [2] 277-80 (2000). [64] H. W. Nesbitt, G. M. Bancroft, W. S. Fyfe, S. N. Karkhanis, and A. Nishijima, “Thermodynamic Stability and Kinetics of Perovskite Dissolution,” Nature, 289 [29] 358-62 (1981). [65] M. M. Lencka, and R. E. Riman, “Thermodynamic Modeling of Hydrothermal Synthesis of Ceramic Powders,” Chem. Mater., 5, 61-70 (1993). [66] K. Osseo-Asare, F. J. Arriagada, and J. H. Adair, “Solubility Relationships in the Coprecipitation Synthesis of Barium Titanate: Heteroqeneous Equilibria in the Ba-Ti-C2O4-H2O”; pp. 47-53 in Ceramic Transactions, Vol. 1, Ceramic Powder Science IIA. Edited by G. L. Messing, E. R. Fuller Jr., and H. Hausner, American Ceramic Society, Westerville, OH, 1988. [67] P. Bendale, S. Venigalla, J. R. Ambrose, E. D. Verink, Jr., and J. H. Adair, “Preparation of Barium Titanate Films at 55oC by an Electrochemical Method,” J. Am. Ceram. Soc., 76 [10] 2619-27 (1993). [68] D. A. Anderson, J. H. Adair, D. Miller, J. V. Biggers, and T. R. Shrout, “Surface Chemistry Effects on Ceramic Processing of BaTiO3 Powders”; pp. 485-92 in Ceramic Transactions, Vol. 1, Ceramic Powder Science II. Edited by G. L. Messing, E. R. Fuller Jr., and H. Hausner, American Ceramic Society, Columbus, OH, 1988. [69] D. V. Miller, J. H. Adair, and R. E. Newnham, “Dissolution of Barium from Barium Titanate in Nonaqueous Solvents”; see Ref. 64, pp. 493-500. [70] S.-I. Hirano, “Hydrothermal Processing of Ceramics,” Am. Ceram. Soc. Bull., 66 [9] 1342-44 (1987). [71] Z. Zhang, P. J. Pigram, J. Nowotny, and R. N. Lamb, “Surface Cation Nonstoichiometry in Undoped BaTiO3,” J. Aust. Ceram. Soc., 34 [1] 254-62 (1998). [72] C. W. Chiang and J. H. Jean, “Effect of Barium Dissolution on Dispersing Aqueous Barium Titanate Suspensions,” J. Mater. Res., in review, 2002. [73] M. C. Blanco-Lopez, B. Rand, and F. L. Riley, “The Properties of Aqueous Phase Suspensions of Barium Titanate,” J. Eur. Ceram. Soc., 17 [3] 281-87 (1997). [74] M.C. Blanco-Lopez, G. Fourlaris, and F. L. Riley, “Interaction of Barium Titanate Powders with an Aqueous Suspending Medium,” J. Eur. Ceram. Soc., 18, 2183-92 (1998). [75] M. C. Blanco-Lopez, B. Rand, and F. L. Riley, “The Isoelectric Point of BaTiO3,” J. Eur. Ceram. Soc., 20, 107-18 (2000). [76] A. Neubrand, R. Lindner, and P. Hoffmann, “Room-Temperature Solubility Behavior of Barium Titanate in Aqueous Media,” J. Am. Ceram. Soc., 83 [4] 860-64 (2000). [77] U. Paik, “Influence of Solids Concentration on the Isoelectric Point of Aqueous Barium Titanate,” J. Am. Ceram. Soc., 83 [10] 2831-84 (2000). [78] J. S. Reed, Principles of Ceramic Processing, 2nd ed., Ch. 3, Wiley, New York, 1976. [79] M. D. Rigterink, J. Can. Ceram. Soc., 37, LVI-LX (1968). [80] C. Hérard, A. Faivre, and J. Lemaître, “Surface Decontamination Treatments of Undoped BaTiO3─Part I: Powder and Green Body Properties,” J. Eur. Ceram. Soc., 15, 135-43 (1995). [81] C. Hérard, A. Faivre, and J. Lemaître, “Surface Decontamination Treatments of Undoped BaTiO3─Part II: Influence on Sintering,” J. Eur. Ceram. Soc., 15, 143-53 (1995). [82] M. C. Blanco-Lopez, G. Fourlaris, B. Rand, and F. L. Riley, “Characterization Barium Titanate Powders: Barium Carbonate Identification,” J. Am. Ceram. Soc., 82 [7] 1777-86 (1999). [83] A. W. M. de Laat, and G. L. T. van den Heuvel, “Competitive and Displacement Adsorption of Polyvinyl Alcohol and the Ammonium Salt of a Polyacrylic Acid on BaTiO3,” Colloids Surf. A, 70, 179-87 (1993). [84] J. K. Sears and J. R. Darby, The Technology of Plasticizers, John Wiely & Sons Ins, Chapter 1, 1982. [85] I. C. Ho, “Semiconducting Barium-Titanate Ceramics Prepared by Boron-Containing Liquid-Phase Sintering,” J. Am. Ceram. Soc., 77, 829-32 (1994). [86] J. F. Fernandez, A. C. Caballero, P. Duran, and C. Moure, “Improving Sintering Behavior of BaTiO3 by Small Doping Additions,” J. Mater. Sci., 31, 975-81 (1996). [87] A. Hirata and T. Yamaguchi, “Interfacial Reaction of BaTiO3 Ceramics with PbO-B2O3 Glasses,” J. Am. Ceram. Soc., 80 [1] 79-84 (1997). [88] J. M. Wu and H. L. Huang, “Effect of Crystallization on Microwave Dielectric Properties of Stoichiometric Cordierite Glasses Containing B2O3 and P2O5,” J. Mater. Res., 15 [1] 222-27 (2000). [89] S. M. Rhim, S. Hong, H. Bak, and O. K. Kim, “Effects of B2O3 Addition on the Dielectric and Ferroelectric Properties of Ba0.7Sr0.3TiO3 Ceramics,” J. Am. Ceram. Soc., 83 [5] 1145-48 (2000). [90] J. M. Wu and S. P. Hwang, “Effect of (B2O3, P2O5) Additives on Microstructural Development and Phase-Transformation Kinetics of Stoichiometric Cordierite Glasses,” J. Am. Ceram. Soc., 83 [5] 1259-65 (2000). [91] J. H. Lee and J. J. Kim, “Observation of Intergranular Films in BaB2O4-added BaTiO3 Ceramics,” J. Mater. Res., 15 [7] 1600-04 (2000). [92] I. Sakurada, Polyvinyl Alcohol Fibers, Marcel Dekker, New York, 1985. [93] G. L. Roy, A. L. Laferriere and J. O. Edwards, “A Comparative Study of Polyol Complexes of Arsenite, Borate, and Tellurate Ions,” J. Inorg. Nucl. Chem., 4, 106-14 (1957). [94] S. W. Sinton, “Complexation Chemistry of Sodium Borate with Poly(vinyl alcohol) and Small Diols. A 11B NMR Study,” Macromolecules, 20, 2430-41 (1987). [95] M. Shibayama, M. Sato, Y. Kimura, H. Fujiwara and S. Nomura, “11B n.m.r. Study on the Reaction of Poly(vinyl alcohol) with Boric Acid,” Polymer, 29, 336-40 (1988). [96] M. Shibayama, H. Yoshizawa, H. Kurokawa, H. Fujiwara and S. Nomura, “Sol-gel transition of Poly(vinyl alcohol)-Borate Complex,” Polymer, 29, 2066-71 (1988). [97] E. Pezron, L. Leibler, A. Ricard, F. Lafuma and R. Audebert, “Complex Formation in Polymer-Ion Solutions. 1. Polymer Concentration Effects,” Macromolecules, 22, 1169-74 (1989). [98] E. Pezron, L. Leibler and F. Lafuma, “Complex Formation in Polymer-Ion Solutions. 2. Polyelectrolyte Effects,” Macromolecules, 22, 2656-62 (1989). [99] J. M. Maerker and S. W. Sinton, “Rheology Resulting from Shear-Induced Structure in Associating Polymer Solutions,” J. Rheol., 30 [1], 77-99 (1986). [100] M. J. S. Dewar and R. Jones, “New Heteroaromatic Compounds. XXV. Studies of Salt Formation in Boron Oxyacids by 11B Nuclear Magnetic Resonance,” J. Am. Chem. Soc., 88, 2408-10 (1967). [101] R. K. Momii and N. H. Nachtrieb, “Nuclear Magnetic Resonance Study of Borate-Polyborate Equilibria in Aqueous Solution,” Inorg. Chem., 6, 1189-92 (1967). [102] J. M. Conner and V. C. Bulgrin, “Equilibria between Borate Ion and some Polyols in Aqueous Solution,” J. Inorg. Nucl. Chem., 29, 1953-61 (1967). [103] H. Ochiai, Y. Fujino, Y. Tadokoro and I. Murakami, “Binding of Borax to Poly(vinyl alcohol) in Aqueous Solution,” Polymer, 21, 485-87 (1980). [104] J. S. Reed, Introduction to the Principles of Ceramic Processing, Ch. 11-12. Wiley, New York, 1988. [105] M. J. Cima, J. A. Lewis, and A. D. Devoe, “Binder Distribution in Ceramic Greenware During Thermolysis,” J. Am. Ceram. Soc., 72 [7] 1192-99 (1989). [106] R. Moreno, “The Role of Slip Additives in Tape Casting Technology: Part 2-Binder and Plasticizer,” Am. Ceram. Soc. Bull., 71 [11] 157-64 (1992). [107] M. Descamps, M. Mascart, B. Thierry, and D. Leger, “How to Control Cracking of Tape-Cast Sheets,” Am. Ceram. Soc. Bull., 74 [3] 89-92 (1995). [108] J. H. Jean and H. R. Wang, “Organic Distributions in Dried Alumina Green Tape,” J. Am. Ceram. Soc., 84 [2] 267-72 (2001). [109] Y. Zhang, N. Uchida, and K. Uematsu, “Direct Observation on Non-uniform Distribution of PVA Binder in Alumina Green Body,” J. Mater. Sci., 30, 1357-60 (1995). [110] Y. Zhang, T. Suga, M. Kawasaki, X. Tang, N. Uchida, and K. Uematsu, “Effect of Poly(Vinyl Alcohol) Adsorption on Binder Segregation during Drying,” J. Am. Ceram. Soc., 79 [2] 435-40 (1996). [111] Y. Zhang, X. Tang, N. Uchida, and K. Uematsu, “Binder Surface Segregation during Spray Drying of Ceramic Slurry,” J. Mater. Res., 13 [7] 1881-87 (1998). [112] G. W. Scherer, “Theory of Drying,” J. Am. Ceram. Soc., 73 [1] 3-14 (1990). [113] P. Bernada and D. Bruneau, “Modeling Binder Migration during Drying of a Paper Coating,” Tappi J., 79 [9] 130-43 (1996). [114] A. C. Young, O. O. Omatete, M. A. Janney, and P. A. Menchhofer, “Gelcasting of Alumina,” J. Am. Ceram. Soc., 74 [3] 612-18 (1991). [115] M. A. Janney, “Gelcasting-A New Way to Form Large Near-Net-Shape Ceramic Parts,” Mater. Tech., 9 [5-6] 97-99 (1994). [116] G. Grader, “Tape Casting Slip Preparation by In-Situ Polymerization,” J. Am. Ceram. Soc., 76 [7] 1809-14 (1993). [117] H. D. Lee, R. L. Pober, P. D. Calvert, and H. K. Bowen, “Photopolymerizable Binders for Ceramics,” J. Mat. Sci. Lett., 5, 81-83 (1986). [118] T. Chartier, R. Penarroya, C. Pagnoux and J. F. Baumard, “Tape Casting Using UV Curable Binders,” J. Eur. Ceram. Soc., 17, 765-71 (1997). [119] R. R. Landham, P. Nahass, D. K. Leung, M. Ungureit, W. E. Rhine, H. K. Bowen, and P. D. Calvert, “Potential Use of Polymerizable Solvents and Dispersants for Tape Casting of Ceramics,” Am. Ceram. Soc. Bull., 60 [10] 1513-16 (1987). [120] S. L. Morissette and J. A. Lewis, “Chemorheology of Aqueous-Based Alumina-Poly(Vinyl Alcohol) Gelcasting Suspensions,” J. Am. Ceram. Soc., 82 [3] 521-28 (1999). [121] M. A. Huha, and J. A. Lewis, “Polymer Effects on the Chemorheological and Drying Behavior of Alumina-Poly(Vinyl Alcohol) Gelcasting Suspensions,” J. Am. Ceram. Soc., 83 [8] 1957-63 (2000). [122] S. L. Morissette, L. Sherry, J. A. Lewis, Joseph III Cesarano, D. B. Dimos, and T. Baer, “Solid Freeform Fabrication of Aqueous Alumina-Poly(Vinyl Alcohol) Gelcasting Suspensions,” J. Am. Ceram. Soc., 83 [10] 2409-16 (2000). [123] Y. N. Sun, M. D. Sacks and J. W. Williams, pp. 538 in Ceramic Transactions, Vol. 1, Ceramic Powder Science II. Edited by G. L. Messing, E. R. Fuller and H. Hausner, American Ceramic Society, Westerville OH, 1988. [124] Y. N. Sun, Pyrolysis Behavior of Polymeric Binders, University Microfilms International, USA, 1988. [125] Y. Tsuchiya and K. Sumi, “Thermal Decomposition Products of Poly(vinyl Alcohol),” J. Polym. Sci. Part. A-1, 7, 3151-58 (1969). [126] C. Vasile, L. Odochian, S. F. Patachia, and M. Popoutanu, “Thermal Degradation of Vinyl Alcohol/Vinyl Acetate Copolymers V. Study of the Reaction Products of Statistical Copolymers,” J. Polym. Sci. Polym. Chem. Ed., 23, 2579-87 (1985).
|