跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.74) 您好!臺灣時間:2022/08/12 07:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李嘉甄
研究生(外文):Chia-Chen Li
論文名稱:添加劑之間的交互作用對鈦酸鋇水系漿料分散性質的影響之研究
論文名稱(外文):Effects of Interactions of Additives on the Dispersion of Aqueous BaTiO3 Slurries
指導教授:簡朝和
指導教授(外文):Jau-Ho Jean
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:233
中文關鍵詞:水系漿料鈦酸鋇分散膠體穩定溶解乾燥氧化硼刮刀成型
外文關鍵詞:aqueous suspensionbarium titanatedispersioncolloidal stabilitydissolutiondryingboric oxidetape casting
相關次數:
  • 被引用被引用:2
  • 點閱點閱:465
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本篇論文乃探討鈦酸鋇水系漿料系統的穩定性質,與漿料中所含有之有機和無機添加劑之間的關係。在第一章的部份,除了簡述本論文的研究背景和理論基礎之外,並且回顧過去幾年來鈦酸鋇應用於水系漿料所遭遇的問題,以及本論文所著手的研究方向。在第二章中,首先探討水系漿料常用的分散劑─聚丙烯酸銨(PAA-NH4),與鈦酸鋇在水中所溶解出來的鋇離子之間的交互作用,及此交互作用對漿料穩定性質的影響。本章節乃利用核磁共振碳譜(13C NMR)鑑定PAA-NH4和鋇離子之間的反應機制,並藉由動態雷射散射法研究與鋇離子發生作用之PAA-NH4分子鏈的糾結行為。再進一步利用吸附和沈降實驗,比較在不同的鋇離子濃度和pH值時,鋇離子對PAA-NH4之分散效率的影響。而由黏度實驗所得到的凝膠穩定圖(colloidal stability map),清楚地顯示鋇離子的存在會降低鈦酸鋇水系懸浮液的穩定性,由此可得到在不同鋇離子含量與pH值時,欲達到穩定分散鈦酸鋇所需要的PAA-NH4最小添加量。
鈦酸鋇水系漿料中的鋇離子除了來自於鈦酸鋇粉末之外,亦有可能來自鈦酸鋇粉末當中的殘餘碳酸鋇。由於碳酸鋇的存在很難被移除,且對鈦酸鋇在水中的溶解和分散行為可能造成負面的作用。因此在第三章中,乃比較碳酸鋇和鈦酸鋇在水系漿料中的溶解性質和分散行為,以助於瞭解殘餘碳酸鋇對鈦酸鋇水系漿料之穩定性的影響。實驗內容包括探討各種電解質與碳酸鋇在水系懸浮液中之溶解性質和分散行為的關係,並和鈦酸鋇在水系懸浮液中的例子做一比較。由實驗結果我們發現碳酸鋇和鈦酸鋇在水中的溶解機制有明顯的差異,碳酸鋇的溶解主要受制於水溶液的酸鹼值;而鈦酸鋇的溶解則是由氫質子在溶解層中的擴散來控制。此外,鋇離子對碳酸鋇有特別吸附的現象,會改變碳酸鋇的列塔電位且降低碳酸鋇懸浮液的黏度值;但是水溶液中的其他的電解質如鉀離子、氯離子和碳酸根離子等,則與碳酸鋇的列塔電位及懸浮液的流變行為無顯著的關係。
在鈦酸鋇水系漿料中除了分散劑之外,使用的高分子添加物尚有黏結劑,其使用的目的乃是為了提供漿料乾燥後的生胚強度。對水系漿料而言,PVA是最普遍和常用的黏結劑。所以在第四章的部份,我們將PVA加入鈦酸鋇水系漿料系統中,以進一步探討PVA、鋇離子和PAA-NH4之間的交互作用,及此交互作用與漿料穩定性質之間的關係。在本章節中,我們先比較具有不同鹼化度(degree of hydrolysis)的PVA對鈦酸鋇之吸附行為的差異,然後再接著研究鋇離子對不同鹼化度之PVA和PAA-NH4,在鈦酸鋇粉體上競爭吸附行為的影響。實驗結果顯示較低鹼化度之PVA的分子構形和其對鈦酸鋇的吸附量,會受到pH值和懸浮液中鋇離子的影響;因此PVA與PAA-NH4在鈦酸鋇上的競爭吸附也會受到鋇離子的作用,其間競爭吸附的程度又與PAA-NH4和PVA之間相對添加的次序有關。若PVA添加於懸浮液的時間較早於PAA-NH4,則PAA-NH4受到PVA競爭吸附的情形會愈為明顯。
添加分散劑可以幫助穩定分散鈦酸鋇水系漿料;添加黏結劑可以使生胚得到所需要的物理性質。然而,為了調適陶瓷體所需要的介電性質或溫度特性,有必要再添加其他的無機氧化物粉末。所以在第五章中,乃探討常作為降低鈦酸鋇燒結溫度的助溶劑-氧化硼(B2O3),和分散劑(PAA-NH4)、黏結劑(PVA)之間的交互作用,及此交互作用對鈦酸鋇水系漿料之流變性質的影響。實驗當中觀察到B2O3和PVA之間有化學性的膠化反應(gelation),而此種結果會使鈦酸鋇懸浮液由假塑性或牛頓流體轉變為不穩定的膨脹性流體(dilatant flow)。又分散劑的使用不但無法改善此種不穩定的流變行為,反而會助長漿料的膠化現象。在本章中尚討論溫度和塑化劑對此膨脹性流體的影響。由B2O3和PVA的膠化反應所導致懸浮液的膨脹性流變行為,會隨著溫度的上升而轉變為假塑性或牛頓流體。添加乙二醇(EG)則可以有效地改善此種膨脹性的流變行為,藉由測量懸浮液的流變性質我們可製得含有B2O3之鈦酸鋇懸浮液的凝膠穩定圖。
在第六章中,接著繼續探討PVA和B2O3之間的膠化反應,對PVA在鈦酸鋇生胚中分佈的影響。PVA和B2O3之間的交聯反應會減少PVA在生胚乾燥方向上的不均勻分佈。隨著B2O3添加量的增加,生胚上下表面的PVA濃度差異愈小;當B2O3添加量固定時,可觀察到PVA在生胚中的分佈曲線幾乎不受到生胚厚度的影響。此外,添加乙二醇(EG)不但對PVA和B2O3之間的交聯反應有解凝膠的作用,而且會縮減鈦酸鋇水系漿料在乾燥過程中,使生胚形成3-D網狀結構所需要的時間tg。因此在鈦酸鋇水系漿料中添加B2O3和EG,對生胚乾燥方向上的PVA分佈有改善的作用。另一方面,本章節根據乾燥機制所建立的數學理論分析模型,可以準確地用來估算PVA在生胚中的分佈曲線,而且所得到的計算結果與實驗值非常吻合。
最後在第七章的部份,則更進一步地研究B2O3和PVA、PAA-NH4之間的交互作用,對PVA熱裂解行為的影響。實驗結果顯示PVA、B2O3與PAA-NH4之間的交互作用,會增高PVA所需要的熱裂解溫度,主要原因除了與PVA發生的化學性膠化反應有關之外,B2O3對PVA在熱裂解過程中的物理性包埋作用亦非常明顯。本章節另探討EG對PVA熱裂解行為的影響,結果顯示添加EG可以有效減少由化學作用導致的熱裂解延緩現象,並使含有B2O3之PVA所需要的熱裂解溫度得以降低。
The interaction between dissolved Ba+2 and dissociated ammonium salt of poly(acrylic acid) (PAA-NH4) in aqueous suspension has been studied. It is found that the dissolved Ba+2 causes flocculation of dissociated PAA-NH4, thus degrading its dispersing effectiveness in aqueous BaTiO3 suspensions. The concentration of PAA-NH4 required to stabilize aqueous BaTiO3 suspensions increases with increasing Ba+2 concentration at a given pH. A stability map, which is determined by rheology study, is constructed to describe the amount of PAA-NH4 required to have well-dispersed aqueous BaTiO3 suspensions as a function of Ba+2 concentrations at different pH values.
The interactions between added boric oxide (B2O3) and organic additives, and their effects on the colloidal stability of aqueous barium titanate (BaTiO3) suspensions have been investigated. The initially Newtonian or pseudoplastic aqueous BaTiO3 suspension with poly(vinyl alcohol) (PVA) becomes dilatant and its viscosity also increases dramatically, when a critical amount of B2O3, 0.4 wt%, is added. This has been attributed to a chemical reaction between dissociated borate ion (B(OH)4-) and PVA, which forms a gel-type structure in the aqueous BaTiO3 suspension. The dilatancy and viscosity of aqueous BaTiO3 suspension with PVA and B2O3 increase significantly when a dispersant of ammonium salt of poly(acrylic acid) (PAA-NH4) is present. The ionization of B2O3 is enhanced by the basicity of dissociated PAA-, promoting the formation of PVA-B(OH)4- gel-type structure in the aqueous BaTiO3 suspensions. With added plasticizer of 1,2- (e.g., ethylene glycol (EG)) or 1,3-diol (e.g., 1,3-propanediol (PPDL)) molecular structure, both the dilatancy and viscosity of aqueous BaTiO3 suspensions with PVA, B2O3 and PAA-NH4 reduce dramatically. Stable compounds of diol-B(OH)4- are formed before the dissociated B(OH)4- reacts with PVA, reducing the degree of gelation of aqueous BaTiO3 suspensions. A stability map is constructed to describe the amount of EG required to obtain colloidally stable aqueous BaTiO3 powder suspensions with PVA, PAA-NH4 and B2O3.
摘要 i
目錄 v
圖目錄 xi
表目錄 xix
第一章 簡 介 1
1.1 研究背景 1
1.2 分散原理 3
1.2.1 分散機制 3
1.2.2 吸附性質 5
1.2.3 流變行為 7
1.2.4 沈降性質和粒徑分析 8
1.3 文獻回顧 9
1.3.1 鈦酸鋇在水中的化學性質 9
1.3.2 有機添加劑的影響 11
1.3.3 玻璃添加劑的影響 12
1.3.4 生胚的乾燥原理 13
1.3.4.1 乾燥機制 14
1.3.4.2 凝膠鑄造 16
1.3.5 高分子添加劑的熱裂解性質 16
1.4 論文緣起 17
參考文獻 21
第二章 鈦酸鋇水系懸浮液中的溶解鋇離子與分散劑PAA-NH4之間的交互作用 29
2.1 前言 30
2.2 實驗方法 32
2.2.1 原料 32
2.2.2 UV-Visible-NIR量測 32
2.2.3 13C NMR量測 32
2.2.4 PAA-NH4的有效半徑量測 32
2.2.5 PAA-NH4的吸附量測 33
2.2.6 黏度量測 33
2.2.7沈降實驗 33
2.3 結果 34
2.3.1 鋇離子與PAA-NH4的交互作用 34
2.3.2 PAA-NH4的有效半徑 35
2.3.3沈降高度 35
2.4 討論 37
2.4.1 PAA-NH4在鈦酸鋇表面上的吸附行為 37
2.4.2 鈦酸鋇懸浮液的流變行為 39
2.4.3 鈦酸鋇/PAA-NH4系統之凝膠穩定圖 40
2.5 結論 41
參考文獻 42
第三章 碳酸鋇在水系漿料中的溶解性質及分散行為 44
3.1 前言 45
3.2 實驗方法 47
3.2.1 原料 47
3.2.2 溶解度測量 47
3.2.3 列塔電位和黏度量測 47
3.3 結果 49
3.3.1 碳酸鋇的溶解行為 49
3.3.2 碳酸鋇的分散性質 50
3.3.2.1 固含量的影響 50
3.3.2.2 鋇離子的作用 51
3.3.2.3 氯化鉀的作用 52
3.3.2.4 碳酸鉀的作用 52
3.4 討論 54
3.4.1 碳酸鋇的溶解機制 54
3.4.2電解質的影響 57
3.5 結論 60
參考文獻 61
第四章 鈦酸鋇懸浮液中的鋇離子與PVA和PAA-NH4之間的交互作用 64
4.1 前言 65
4.2 實驗方法 66
4.2.1 原料 66
4.2.2 一次微分滴定法 66
4.2.3 總有機碳分析法 66
4.2.4 小角度x-ray散射分析 67
4.2.5 列塔電位 67
4.3 結果與討論 69
4.3.1 PVA在水溶液中的物化性 69
4.3.2 pH值對PVA吸附行為的影響 70
4.3.3 鹼化度對PVA吸附行為的影響 72
4.3.4 PVA的旋轉半徑 73
4.3.5 PVA與PAA-NH4的競爭吸附 73
4.3.5.1 當[Ba2+] = 0 M 74
4.3.5.2 當[Ba2+] = 0.01 M 75
4.4 結論 77
參考文獻 78
第五章 PVA、PAA-NH4和B2O3之間的交互作用對鈦酸鋇水系懸浮液之流變行為的影響 80
5.1 前言 81
5.2 實驗方法 84
5.2.1 原料 84
5.2.2 黏度量測 84
5.2.3 UV-Vis-NIR及11B NMR量測 85
5.2.4 反應平衡常數量測 85
5.3 結果 86
5.3.1 B2O3和PAA-NH4的影響 86
5.3.2 溫度的影響 87
5.3.3 塑化劑的影響 88
5.3.4 鈦酸鋇/PAA-NH4/PVA/B2O3系統之凝膠穩定圖 89
5.4 討論 91
5.4.1 PAA-NH4的影響 91
5.4.2 塑化劑的影響 93
5.5 結論 97
參考文獻 98
第六章 B2O3對鈦酸鋇生胚中PVA分佈的影響 100
6.1 前言 101
6.2 實驗方法 104
6.2.1 原料 104
6.2.2 黏度量測 104
6.2.3 乾燥速率和熱重損失量測 104
6.2.4 吸附量測 105
6.2.5 本質黏度量測 105
6.3 結果 107
6.3.1 鈦酸鋇生胚的乾燥速率 107
6.3.1.1 生胚厚度的影響 107
6.3.1.2 B2O3的影響 107
6.3.1.3 EG的影響 108
6.3.2 PVA在鈦酸鋇生胚中的濃度分佈 110
6.3.2.1 生胚厚度的影響 110
6.3.2.2 B2O3的影響 110
6.3.2.3 EG的影響 111
6.4 討論 113
6.4.1 生胚厚度和B2O3的影響 113
6.4.2 EG的影響 115
6.5 結論 119
參考文獻 120
第七章 B2O3對PVA熱裂解行為的影響 123
7.1 前言 124
7.2 實驗方法 126
7.2.1 原料 126
7.2.2 熱重損失及SAM/SEM分析 126
7.2.3 FT-IR及11B Solid State NMR分析 126
7.3 結果和討論 128
7.3.1 B2O3和PAA-NH4對PVA熱裂解行為的影響 128
7.3.1.1 熱重損失及SAM/SEM分析 128
7.3.1.2 FT-IR及11B Solid State NMR分析 129
7.3.2 EG對PVA/B2O3熱裂解行為的影響 131
7.4 結論 133
參考文獻 134
第八章 總結 135
附錄 I 139
圖 1-1 不同元素之等價置換與鈦酸鋇相轉移溫度的關係….…………… 145
圖 1-2 兩顆粉體之間的位能曲線………………………………………………………. 146
圖 1-3 粉體、溶劑和高分子三者間的關係………………………………………… 147
圖 1-4 高分子對粉體的吸附行為………………………………………………………. 148
圖 1-5 鈦酸鋇懸浮液之pH值隨漿料球磨時間的變化情形…………….. 149
圖 1-6 鈦酸鋇懸浮液之鋇離子溶解量隨漿料球磨時間的變化情形…..……………………………………………………………………………………… 150
圖 1-7 鈦酸鋇粉末之固含量與鋇離子溶解量的關係………………………. 151
圖 1-8 Ba-Ti-CO2-H2O的相平衡圖…………………………………………………. 152
圖 1-9 PMAA-NH4和PAA-NH4之解離率與水溶液pH值的關係…. 153
圖1-10 PMAA鹽類的熱裂解機制………………………………………………………. 154
圖1-11 PVA的熱裂解機制………………………………………………………………….. 155
圖1-12 陶瓷水系漿料系統的三大主體………………………………………………. 156
圖1-13 不同pH值條件下,使PAA-NH4水溶液發生混濁現象所需要的鋇離子濃度………………………………………………………………………. 157
圖 2-1 紫外線-可見光-近紅外線光譜,波長600 nm光源對PAA-NH4水溶液的穿透度與水溶液中鋇離子濃度的關係…. 158
圖 2-2 13C NMR光譜,分別屬於(a) PAA-NH4(aq)和(b) PAA-NH4(aq)+ BaCl2(aq)的水溶液……………………………………………. 159
圖 2-3 PAA-NH4與醋酸銨(ammonium acetate)的分子結構式……. 160
圖 2-4 13C NMR光譜,分別屬於(a) 純醋酸銨(ammonium acetate)、(b) ammonium acetate + BaCl2 (莫耳比2:1)以及(c) ammonium acetate (過量) + BaCl2…………………………. 161
圖 2-5 PAA-NH4和鋇離子之間的交互作用示意圖…………………………. 162
圖 2-6 由動態雷射散射儀所測得之PAA-NH4的分子有效半徑與鋇離子添加濃度的關係………………………………………………………….. 163
圖 2-7 不同pH值之10 vol%鈦酸鋇懸浮液,所測得的沈降高度與懸浮液中含有之氯化鋇濃度的關係………………………………………. 164
圖 2-8 在pH = 7-12範圍內,PAA-NH4在鈦酸鋇粉體表面上的吸附量,與懸浮液中PAA-NH4平衡濃度的關係……………………… 165
圖 2-9 藉由Langmuir方程式將圖2-9重劃的結果………………………… 166
圖 2-10 含有[BaCl2]=0.01 M之PAA-NH4水溶液,由動態雷射散射儀所測得之PAA-NH4的分子有效半徑與pH值的關係………. 167
圖 2-11 含有[BaCl2]=0.01 M、pH = 7.5之10 vol%鈦酸鋇懸浮液所測得的黏度曲線與PAA-NH4添加量的關係………………………… 168
圖 2-12 10 vol%鈦酸鋇懸浮液於剪速度100 s-1時所測得的黏度值與pH值和氯化鋇濃度的關係,[BaCl2] = (a) 0.01 M、(b) 0.02 M和 (c) 0.03 M……………………………………………………………. 169
圖 2-13 鈦酸鋇的凝膠穩定圖-穩定分散粉末所需要的PAA-NH4臨界添加量與平衡pH值的關係……………………………………………. 170
圖 3-1 由不同初始pH值(pHo = 0.8-12.0)水溶液配成之10 vol%碳酸鋇懸浮液,其鋇離子溶解量與球磨時間的關係…………….. 171
圖 3-2 由不同初始pH值(pHo = 0.8-12.0)水溶液配成之10 vol%碳酸鋇懸浮液,其平衡pH值與球磨時間的關係…………………… 172
圖 3-3 由pHo = 1.6水溶液配成之碳酸鋇懸浮液,經球磨5小時後的鋇離子溶解量以及pH值與碳酸鋇固含量的關係…………….. 173
圖 3-4 2 g碳酸鋇粉末置於50 g、pHo = 0.5-12.0之水中,經5小時溶解後的粒徑大小與pHo的關係,包括粒徑分佈於10% (d10)、50% (d50)和90% (d90)處的粒徑值…………………………..… 174
圖 3-5 由電泳法所測得之0.5-20 vol%碳酸鋇懸浮液的列塔電位與懸浮液平衡pH值的關係……………………………………………………. 175
圖 3-6 20 vol%碳酸鋇懸浮液於剪速度為100 s-1測量之黏度值以及降伏應力,與懸浮液平衡pH值的關係……………………………… 176
圖 3-7 20 vol%碳酸鋇懸浮液於[BaCl2] = 0.001-0.5 M條件下,測得之列塔電位與懸浮液平衡pH值的關係…………………………….. 177
圖 3-8 20 vol%碳酸鋇懸浮液於pHo = 6.6、10.5和12.0條件下,測得之降伏應力和黏度值與鋇離子添加濃度的關係…………… 178
圖 3-9 20 vol%碳酸鋇懸浮液於[KCl] = 0.001-0.5 M條件下,測得之列塔電位與懸浮液平衡pH值的關係………………………………… 179
圖 3-10 20 vol%碳酸鋇懸浮液於pHo = 6.6、10.5和12.0條件下,測得之降伏應力和黏度值與氯化鉀添加濃度的關係…………… 180
圖 3-11 20 vol%碳酸鋇懸浮液於[K2CO3] = 0.001-0.5 M條件下,測得之列塔電位與懸浮液平衡pH值的關係………………………… 181
圖 3-12 含有各種碳酸鉀濃度之20 vol%碳酸鋇懸浮液,固定平衡pH值於10.5時,所測得之列塔電位值與碳酸鉀添加濃度的關係………………………………………………………………………………………….. 182
圖 3-13 含有各種碳酸鉀濃度之20 vol%碳酸鋇懸浮液,固定平衡pH值於10.5時,所測得之降伏應力和黏度值與碳酸鉀添加濃度的關係………………………………………………………………………………. 183
圖 3-14 10 vol%碳酸鋇懸浮液於球磨50小時後的鋇離子溶解量與平衡pH值的關係;線段為藉由熱力學計算的結果,圓點則為實驗測量得到的值………………………………………………………………. 184
圖 3-15 20 vol%碳酸鋇懸浮液於pH = 10.5之條件下,懸浮液的黏度曲線與氯化鋇添加濃度的關係…………………………………………… 185
圖 3-16 20 vol%碳酸鋇懸浮液於pH = 10.5之條件下,懸浮液的黏度曲線與氯化鉀添加濃度的關係…………………………………………… 186
圖 3-17 20 vol%碳酸鋇懸浮液於pH = 10.5之條件下,懸浮液的黏度曲線與碳酸鉀添加濃度的關係…………………………………………… 187
圖 4-1 不同pH值下,PVA (88%)對鈦酸鋇粉末的吸附量隨時間的變化關係………………………………………………………………………………….. 188
圖 4-2 不同pH值下,PVA (88%)對鈦酸鋇粉末的吸附量與其平衡濃度的關係………………………………………………………………………………. 189
圖 4-3 藉由Langmuir方程式將圖4-2重劃的結果…………………………. 190
圖 4-4 不同pH值、含有0.01 M氯化鋇的鈦酸鋇懸浮液,PVA (88%)對鈦酸鋇粉末的吸附量與其平衡濃度的關係……………. 191
圖 4-5 pH = 12.0時,比較不同鹼化度的PVA對鈦酸鋇的吸附量與其平衡濃度的關係………………………………………………………………….. 192
圖 4-6 含有0.01M鋇離子、pH = 12.0時,比較不同鹼化度的PVA對鈦酸鋇的吸附量與其平衡濃度的關係………………………………. 193
圖 4-7 對於不含氯化鋇的鈦酸鋇懸浮液,(a) PVA在鈦酸鋇表面上的吸附量與懸浮液中PAA-NH4平衡濃度的關係;(b) PAA-NH4在鈦酸鋇表面上的吸附量與其平衡濃度的關係…. 194
圖 4-8 對於含有[BaCl2] = 0.01 M的鈦酸鋇懸浮液,(a) PVA在鈦酸鋇表面上的吸附量與懸浮液中PAA-NH4平衡濃度的關係;(b) PAA-NH4在鈦酸鋇表面上的吸附量與其平衡濃度的關係……………………………………………………………………………………… 196
圖 4-9 穩定鈦酸鋇漿料所需的PAA-NH4最小添加量,與PAA-NH4和PVA之間相對添加次序的關係………………………… 198
圖 5-1 含有10 wt% PVA、不同B2O3濃度的10 vol%鈦酸鋇懸浮液,其黏度值對剪速度的關係………………………………………………... 199
圖 5-2 含有10 wt% PVA、0.1 wt% B2O3、不同PAA-NH4濃度的10 vol%鈦酸鋇懸浮液,其黏度值對剪速度的關係……………………. 200
圖 5-3 含有10 wt% PVA、0.5 wt% B2O3和0.2 wt% PAA-NH4的10 vol%鈦酸鋇懸浮液,在不同溫度下的黏度值對剪速度的關係………………………………………………………………………………………….. 201
圖 5-4 含有10 wt% PVA和0.5 wt% B2O3的10 vol%鈦酸鋇懸浮液,在不同(a) PEG、(b) 1,3-丙二醇(PPDL)和(c)乙二醇(EG)添加量下的黏度值對剪速度的關係………………………………………. 202
圖 5-5 含有10 wt% PVA,[B2O3] = 0.1-1.0 wt%、[PAA-NH4] = 0-0.2 wt%的10 vol%鈦酸鋇懸浮液,其在剪速度100 s-1時的黏度值與乙二醇添加量的關係…………………………………………… 205
圖 5-6 凝膠穩定圖,表示在不同PAA-NH4和B2O3用量下,能有效改善鈦酸鋇懸浮液的黏度值和流變行為所需要的乙二醇最少添加量………………………………………………………………………………….. 206
圖 5-7 11B NMR光譜,分別為0.28 M (a) B2O3水溶液(pH = 5.0)、(b) B2O3水溶液(pH = 7.5)和(c) 含有PAA-NH4的B2O3水溶液(pH = 7.5)………………………………………………………………………… 207
圖 5-8 在0.08 M B2O3水溶液中添加不同PAA-NH4濃度後,所測得的水溶液平衡pH值,以及藉由式(5-7)計算得到的 比值……………………………………………………………………….. 208
圖 5-9 利用式(5-14)和式(5-16),取PEG、1,3-丙二醇、乙二醇和PVA的binding site濃度([P])對 作圖…………….. 209
圖 6-1 57.5 wt%鈦酸鋇水系漿料,在50 oC下等溫乾燥後的生胚厚度以及乾燥速率與乾燥時間的關係…………………………………… 210
圖 6-2 具有不同B2O3([B2O3])含量、57.5 wt%鈦酸鋇水系漿料,於50 oC下等溫乾燥所測得的乾燥速率與乾燥時間的關係;乾燥後的生胚厚度為1000 mm……………………………………….. 211
圖 6-3 含有0.03 wt% B2O3、57.5 wt%鈦酸鋇水系漿料,在50 oC下等溫乾燥後的生胚厚度以及乾燥速率與乾燥時間的關係.. 212
圖 6-4 含有0.03 wt% B2O3、不同EG含量、57.5 wt%鈦酸鋇水系漿料,在50 oC下等溫乾燥所測得的乾燥速率與乾燥時間的關係;乾燥後的生胚厚度為1000 mm………………………………… 213
圖 6-5 具有不同EG含量、57.5 wt%鈦酸鋇水系漿料,在50 oC下等溫乾燥所測得的乾燥速率與乾燥時間的關係;乾燥後的生胚厚度為1000 mm………………………………………………………………. 214
圖 6-6 57.5 wt%鈦酸鋇水系漿料,在50 oC下等溫乾燥後的生胚厚度與PVA在生胚乾燥方向上濃度分佈的關係;虛線代表PVA在生胚中均勻分佈時的濃度…………………………………………… 215
圖 6-7 由57.5 wt%鈦酸鋇水系漿料得到之厚度1000 mm生胚,其上下表面厚度5 %處的PVA濃度與B2O3添加量的關係;虛線代表PVA在生胚中均勻分佈時的濃度………………………….. 216
圖 6-8 含有(a) 0,(b) 0.018,(c) 0.03和(d) 0.06 wt% B2O3濃度、57.5 wt%鈦酸鋇水系漿料,所得到之厚度1000 mm生胚,在接近生胚上表面處放大1000倍的SEM照片;(e)-(h)為相對於(a)-(d)之試片在接近下表面處放大1000倍的結果…. 217
圖 6-9 含有0.03 wt% B2O3、57.5 wt%鈦酸鋇水系漿料,在50 oC下等溫乾燥後的生胚厚度與PVA在生胚乾燥方向上濃度分佈的關係;虛線代表PVA在生胚中均勻分佈時的濃度………… 218
圖 6-10 57.5 wt%鈦酸鋇水系漿料,在50 oC下乾燥後所得到PVA在生胚乾燥方向上的濃度分佈與EG含量的關係;乾燥後的生胚厚度為1000 mm,虛線為PVA在生胚中均勻分佈時的濃度………………………………………………………………………………………….. 219
圖 6-11 含有0.03 wt% B2O3、57.5 wt%鈦酸鋇水系漿料,在50 oC下乾燥後所得到PVA在生胚乾燥方向上的濃度分佈與EG含量的關係;乾燥後的生胚厚度為1000 mm,虛線為PVA在生胚中均勻分佈時的濃度…………………………………………………… 220
圖 6-12 由57.5 wt%鈦酸鋇水系漿料得到之不同厚度的生胚,PVA在當中的濃度分佈之實驗值和計算值;虛線為PVA在生胚中均勻分佈時的濃度………………………………………………………………. 221
圖 6-13 由含有0.03 wt% B2O3、57.5 wt%鈦酸鋇水系漿料,所得到之不同厚度的生胚,PVA在當中的濃度分佈之實驗值和計算值;虛線為PVA在生胚中均勻分佈時的濃度………………… 222
圖 6-14 分別由含有0和0.03 wt% B2O3、57.5 wt%鈦酸鋇水系漿料得到之厚度1000 mm生胚,其上表層厚度5 %處的PVA濃度與EG含量的關係;虛線代表PVA在生胚中均勻分佈時的濃度………………………………………………………………………………….. 223
圖 6-15 PVA水溶液的本質黏度以及PVA對鈦酸鋇的吸附量,與水溶液中EG含量的關係……………………………………………………………. 224
圖 7-1 PVA/B2O3之熱重損失曲線與B2O3添加量的關係………………. 225
圖 7-2 PVA/B2O3/PAA-NH4之熱重損失曲線與PAA-NH4添加量的關係……………………………………………………………………………………… 226
圖 7-3 PVA/B2O3於900 oC下熱裂解後之殘餘物的電子顯微照片;其中標示1和2的位置,代表直徑100 nm之電子束鑑定的區域………………………………………………………………………………….. 227
圖 7-4 FT-IR光譜,為下列各種樣品在不同溫度下的熱裂解產物:(a) PVA、(b) PVA+B2O3(0.05 g/g PVA)、以及(c) PVA+B2O3(0.01 g/g PVA)+PAA-NH4(0.11 g/g PVA)…………. 228
圖 7-5 11B固態NMR光譜,為下列各種樣品在570 oC下的熱裂解產物:(a)原始B2O3粉末、(b) 處理過之B2O3粉末、(c) PVA+B2O3(0.05 g/g PVA)、以及(d) PVA+B2O3(0.01 g/g PVA)+PAA-NH4(0.11 g/g PVA)……………………………………………. 231
圖 7-6 PVA/B2O3/EG之熱重損失曲線與EG添加量的關係………….. 232
圖 7-7 PVA/B2O3/PAA-NH4/EG之熱重損失曲線與EG添加量的關係………………………………………………………………………………………….. 233
[1] J. M. Herbert, Ceramic Dielectrics and Capacitors, Gordon and Breach Science Publishers, NY, 1985.
[2] J. M. Wilson, “Producer of World Class Dielectrics for the Electronics Industry,” Am. Ceram. Soc. Bull., 74 [6] 107-10 (1995).
[3] D M. Zogbi, Fixed capacitors and Resistors World Markets, Paumanok Publications, 1995.
[4] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, Wiely, NY, 1976.
[5] B. S. Rawal, K. Kahn, and W. R. Buessem, “Grain Core-Grain Shell Structure in Barium Titanate-Based Dielectrics”; pp. 172-88 in Advances in Ceramics, Vol. 1, Grain Boundary Phenomena in Electronic Ceramics. Edited by L. M. Levinson. American Ceramic Society, Columbus, OH, 1981.
[6] R. Gerson, and T. C. Marshall, “Dielectric Breakdown of porous ceramics,” J. Appl. Phys., 30 [11] 1650-53 (1959).
[7] I. C. Ho, “Low Firing of Barium Titanate PTC Thermistor”; p. 64 in Abstracts of The Third International Ceramic Science and Technology Congress Meeting (San Francisco, CA, Nov. 1-4, 1992). American Ceramic Society, Westerville, OH, 1992.
[8] J. G. Fagan, and V. R. W. Amarakoon, “Reliability and reproducibility of Ceramic Sensors: Part II, PTC thermistors,” Am. Ceram. Soc. Bull., 72 [2] 69-76 (1993).
[9] B. S. Chiou, S. T. Lin, J. G. Duh, and P. H. Chang, “Equivalent circuit model in grain boundary barrier layer capacitors,” J. Am. Ceram. Soc. 72 [10] 1967-75 (1989).
[10] K. H. Hardtl, Ferroelectrics, 12, 9 (1976).
[11] B. Jaffe, W. R. Cook, Jr. and H. Jaffe, Piezoelectric Ceramics, Academic Press, New York, 1971.
[12] T. Chartier, “Tape Casting”; pp. 2763-67 in The Encyclopedia of Advanced Materials. Edited by D. Brook, M. C. Flemings and S. Makajan, Pergamon Press, Chambridge, 1994.
[13] R. E. Mistler, D. J. Shanefield, and R. B. Runk, “Tape Casting of Ceramics”; pp. 411-88 in Ceramic Processing Before Firing. Edited by G. Y. Onoda, and L. L. Hench, Wiely, New york, 1978.
[14] J. C. William, “Doctor-Blade Process”; pp. 173-98 in Treatise on Materials Science and Technology, Vol. 9, Ceramic Fabrication Process, Edited by F. Y. Y. Wang, Academic Press, New York, 1976.
[15] R. Moreno, “The role of Slip Additives in Tape-Casting Technology: Part I — Solvents and Dispersants,” Am. Ceram. Soc. Bull., 71 [10] 1521-31 (1992).
[16] R. Moreno, “The role of Slip Additives in Tape-Casting Technology: Part II — Binders and Platicizers,” Am. Ceram. Soc. Bull., 71 [11] 1647-57 (1992).
[17] P. Nahass, W. E. Rhine, R. L. Pober, H. K. Bowen, and W. L. Robbins, “Comparison of Aqueous and Non-Aqueous Slurries for Tape-Casting”; pp. 355-64 in Ceramic Transactions, Vol. 15, Materials and Process in Microelectronics Systems. Edited by K. M. Nair, R. Pohanca and R. C. Buchanan.,. American Ceramic Society, Werterville, OH, 1990.
[18] D. Hotza, and P. Greil, “Review: Aqueous Tape-Casting of Ceramic Powders,” Materials Science and Engineering, A202, 206-17 (1995).
[19] R. A. Gardner, and R. W. Nufer, “Properties of Multilayer Ceramic Green Sheets,” Solid State Tech., 5, 5-12 (1993).
[20] C. Fiori, and G. De Portu, “A Technique for Preparing and Studying New Materials,” Br. Ceram. Proc., 38, 213-25 (1986).
[21] R. E. Mistler, “Tape-Casting: The Basic Process for Meeting the needs of the Electronics Industry,” Am. Ceram. Soc. Bull., 69 [6] 1022-26 (1990).
[22] E. P. Hyatt, “Making Thin, Flat Ceramics: A Review,” Am. Ceram. Soc. Bull., 65 [4] 637-38 (1986).
[23] P. Boch, and T. Chartier, “Ceramic Processing Techniques: The Case of Tape-Casting,” Ceram. For. Int., 4, 55-67 (1989).
[24] A. Roosen, “Basic Requirements for Tape-Casting of Ceramic Powders”; pp. 675-92 in Ceramic Transactions, Vol. 1, Ceramic Powder Science II. Edited by G. L. Messing, E. R. Fuller and H. Hausner, American Ceramic Society, Westerville OH, 1988.
[25] G. N. Howatt, R. G. Breckenridge, and J. M. Brownlow, “Fabrication of Thin Ceramic Sheets for Capacitors,” J. Am. Ceram. Soc. 30 [8] 237-42 (1947).
[26] P. Nahass, R. L. Pober, W. E. Rhine, W. L. Robbins, and H. K. Bowen, “Prediction and Explanation of Aging Shrinkage in Tape-Cast Ceramic Green Sheets,” J. Am. Ceram. Soc., 75 [9] 2373-78 (1992).
[27] R. C. Chiu, T. J. Carino, and M. J. Cima, “Drying of Granular Ceramic Films: I, Effect of Processing Variables on the Cracking Behavior,” J. Am. Ceram. Soc., 76, 2257-64 (1993).
[28] R. C. Chiu, and M. J. Cima, “Drying of Granular Ceramic Films: II, Drying Stress and Saturation Uniformity,” J. Am. Ceram. Soc., 76, 2769-77 (1993).
[29] J. A. Lewis, K. A. Blackman, A. L. Ogden, J. A. Payne, and L. F. Francis, “Rheological Property and Stress Development During Drying of Tape-Cast Ceramic Layers,” J. Am. Ceram. Soc., 79, 3225-34 (1996).
[30] D. H Napper, polymeric stabilization of Colloidal Dispersions; pp. 4-13. Academic Press, London, 1983.
[31] P. C. Hiemenz, Principles of Colloid and Surface Chemistry, Marcel Dekker, New York, 1986.
[32] J. N. Israilachvili, Intermolecular and Surface Force, Academic Press, London, 1985.
[33] T. Sato and R. Ruch, Stabilization of Colloidal Dispersion by Polymer Adsorption, Marcel Dekker, New York, 1980.
[34] R. J. Hunter, Zeta Potential in Colloidal Science, Academic Press, London, 1981.
[35] R. J. Hunter, Foundation of Colloidal Science, Clarendon Press, Oxford, 1987.
[36] G. D. Parfitt (Ed.), Dispersion of Powders in Liquids, Applied Science Publishers, New York, 1981.
[37] D. J. Shaw, Introduction to Colloid and Surface Chemistry, Butterworths, Boston, MA, 1980.
[38] H. C. Hamaker, “The London-van der Waals Attraction between Spherical Particles,” Physica, 4, 1058-72 (1937).
[39] E. J. W. Verwey, and J. Th. G. Overbeek, Theory of Stability of Lyophobic Colloids, Elsevier. Amsterdam, Netherlands, 1948.
[40] R. Evans, and D. H. Napper, “Kolloid Steric Stabilization 2. A Generalization of Fischer’s Solvency Theory,“ Kolloid-Z. Z. Polymere, 251, 329 (1973).
[41] S. Asakura and F. Oosawa, “On Interactions between Two Bodies Immersed in a Solution of Macromolecules,” J. Chem. Phys., 22, 1255 (1955).
[42] S. Asakura and F. Oosawa, “Interactions between Particles Suspended in Solutions of Macromolecules,” J. Polym. Sci., 33, 183 (1958).
[43] D. H. Napper, “Steric Stabilization,” J. Colloid Interface Sci., 58 [2] 390-407 (1977).
[44] J. T. G. Overbeeck, “The Interaction Between Colloidal Particles”; pp. 245-71 in Colloid Science. Edited by H. R. Kruyt. Elsevier, Amsterdam, Netherlands, 1952.
[45] J. A. Lewis, “Colloidal Processing of Ceramics,” J. Am. Ceram. Soc., 83 [10] 2341-59 (2000).
[46] B. Vincent, J. Edwards, S. Emmett, and A. Jones, “Depletion Flocculation in Dispersions of Sterically Stabilized Particles (“Soft Spheres”),” Colloids Surf., 18, 261 (1986).
[47] M. R. Bohmer, O. A. Evers, and H. M. Scheutjens, “Weak Polyelectrolytes between Two Surfaces: Adsorption and Stabilization,” Macromolecules, 23, 2288-301 (1990).
[48] J. Israelachvili, “Solvation Forces and Liquid Structure, As Probed by Direct Forces Measurements,” Acc. Chem. Res., 20, 415-21 (1987).
[49] H. K. Christension, “Interactions between Hydrocarbon Surfaces in a Nonpolar Liquid: Effect of Surface Properties on Solvation Forces,” J. Phys. Chem., 90, 4-6 (1990).
[50] J. H. Jean and H. R. Wang, “Stabilization of Aqueous BaTiO3 Suspensions with Ammonium Salt of Poly(acrylic acid) at Various pH Values,” J. Mater. Res., 13, 2245-50 (1998).
[51] J. H. Jean and H. R. Wang, “Dispersion of Aqueous Barium-Titanate Suspensions with Ammonium Salt of Poly(methacrylic acid),” J. Am. Ceram. Soc., 81 [6] 1589-99 (1998).
[52] Allan F.M. Barton, CRC handbook of solubility parameters and other cohesion parameters, 2nd ed., CRC Press; Boca Raton, Fl, 1991.
[53] I. Langmuir, Science, 88, 450-55 (1938).
[54] R. J. Hunter, Introduction to Modern Colloid Science, Oxford: New York, 1993.
[55] Z. C. Chen, T. A. Ring and J. Lemaître, “Stabilization and Processing of Aqueous BaTiO3 Suspensions with Polyacrylic Acid,” J. Am. Ceram. Soc., 75 [12] 3201-208 (1992).
[56] A. W. M. de Laat, G. L. T. van den Heuvel, and M. R. Böhmer, “kinetic Aspects in the Adsorption of Polyacrylic Acid Salts onto BaTiO3,” Colloids Surf. A, 98, 61-71 (1995).
[57] Z. C. Chen, “Powder Processing of Barium Titanate Ceramics with Polyacrylic Acid”; Ph. D. Thesis. Swiss Federal Institute of Technology, Lausanne, Switzerland, 1992.
[58] Z. C. Chen and T. A. Ring, “FT-IR Analysis of Adsorption and Pyrolysis of Polyacrylic Acid on BaTiO3 Surface,” Analysis, 21 [5] 38-42 (1993).
[59] J. Cesarano III, I. A. Aksay, and A. Blier, “Stability of Aqueous—Alumina Suspensions with Poly(methacrylic acid) Polyelectrolyte,” J. Am. Ceram. Soc., 71 [4] 250-55 (1988).
[60] J. Cesarano III and I. A. Aksay, “Processing of Highly Concentrated Aqueous—Alumina Suspensions Stabilized with Polyelectrolytes,” J. Am. Ceram. Soc., 71 [12] 1062-67 (1988).
[61] S. Mizuta, M. Parish, and H. K. Bowen, Dispersion of BaTiO3 powders, Part 1. Ceramics International, 10, 43-48 (1984).
[62] N. Ushifusa and M. J. Cima, “Aqueous Processing of Mullite-Containing Green Sheets,” J. Am. Ceram. Soc., 74 [10] 2443-47 (1991).
[63] J. H. Jean and H. R. Wang, “Effects of Solids Loading, pH, and Polyelectrolyte Addition on the Stabilization of Concentrated Aqueous BaTiO3 Suspensions,” J. Am. Ceram. Soc., 83 [2] 277-80 (2000).
[64] H. W. Nesbitt, G. M. Bancroft, W. S. Fyfe, S. N. Karkhanis, and A. Nishijima, “Thermodynamic Stability and Kinetics of Perovskite Dissolution,” Nature, 289 [29] 358-62 (1981).
[65] M. M. Lencka, and R. E. Riman, “Thermodynamic Modeling of Hydrothermal Synthesis of Ceramic Powders,” Chem. Mater., 5, 61-70 (1993).
[66] K. Osseo-Asare, F. J. Arriagada, and J. H. Adair, “Solubility Relationships in the Coprecipitation Synthesis of Barium Titanate: Heteroqeneous Equilibria in the Ba-Ti-C2O4-H2O”; pp. 47-53 in Ceramic Transactions, Vol. 1, Ceramic Powder Science IIA. Edited by G. L. Messing, E. R. Fuller Jr., and H. Hausner, American Ceramic Society, Westerville, OH, 1988.
[67] P. Bendale, S. Venigalla, J. R. Ambrose, E. D. Verink, Jr., and J. H. Adair, “Preparation of Barium Titanate Films at 55oC by an Electrochemical Method,” J. Am. Ceram. Soc., 76 [10] 2619-27 (1993).
[68] D. A. Anderson, J. H. Adair, D. Miller, J. V. Biggers, and T. R. Shrout, “Surface Chemistry Effects on Ceramic Processing of BaTiO3 Powders”; pp. 485-92 in Ceramic Transactions, Vol. 1, Ceramic Powder Science II. Edited by G. L. Messing, E. R. Fuller Jr., and H. Hausner, American Ceramic Society, Columbus, OH, 1988.
[69] D. V. Miller, J. H. Adair, and R. E. Newnham, “Dissolution of Barium from Barium Titanate in Nonaqueous Solvents”; see Ref. 64, pp. 493-500.
[70] S.-I. Hirano, “Hydrothermal Processing of Ceramics,” Am. Ceram. Soc. Bull., 66 [9] 1342-44 (1987).
[71] Z. Zhang, P. J. Pigram, J. Nowotny, and R. N. Lamb, “Surface Cation Nonstoichiometry in Undoped BaTiO3,” J. Aust. Ceram. Soc., 34 [1] 254-62 (1998).
[72] C. W. Chiang and J. H. Jean, “Effect of Barium Dissolution on Dispersing Aqueous Barium Titanate Suspensions,” J. Mater. Res., in review, 2002.
[73] M. C. Blanco-Lopez, B. Rand, and F. L. Riley, “The Properties of Aqueous Phase Suspensions of Barium Titanate,” J. Eur. Ceram. Soc., 17 [3] 281-87 (1997).
[74] M.C. Blanco-Lopez, G. Fourlaris, and F. L. Riley, “Interaction of Barium Titanate Powders with an Aqueous Suspending Medium,” J. Eur. Ceram. Soc., 18, 2183-92 (1998).
[75] M. C. Blanco-Lopez, B. Rand, and F. L. Riley, “The Isoelectric Point of BaTiO3,” J. Eur. Ceram. Soc., 20, 107-18 (2000).
[76] A. Neubrand, R. Lindner, and P. Hoffmann, “Room-Temperature Solubility Behavior of Barium Titanate in Aqueous Media,” J. Am. Ceram. Soc., 83 [4] 860-64 (2000).
[77] U. Paik, “Influence of Solids Concentration on the Isoelectric Point of Aqueous Barium Titanate,” J. Am. Ceram. Soc., 83 [10] 2831-84 (2000).
[78] J. S. Reed, Principles of Ceramic Processing, 2nd ed., Ch. 3, Wiley, New York, 1976.
[79] M. D. Rigterink, J. Can. Ceram. Soc., 37, LVI-LX (1968).
[80] C. Hérard, A. Faivre, and J. Lemaître, “Surface Decontamination Treatments of Undoped BaTiO3─Part I: Powder and Green Body Properties,” J. Eur. Ceram. Soc., 15, 135-43 (1995).
[81] C. Hérard, A. Faivre, and J. Lemaître, “Surface Decontamination Treatments of Undoped BaTiO3─Part II: Influence on Sintering,” J. Eur. Ceram. Soc., 15, 143-53 (1995).
[82] M. C. Blanco-Lopez, G. Fourlaris, B. Rand, and F. L. Riley, “Characterization Barium Titanate Powders: Barium Carbonate Identification,” J. Am. Ceram. Soc., 82 [7] 1777-86 (1999).
[83] A. W. M. de Laat, and G. L. T. van den Heuvel, “Competitive and Displacement Adsorption of Polyvinyl Alcohol and the Ammonium Salt of a Polyacrylic Acid on BaTiO3,” Colloids Surf. A, 70, 179-87 (1993).
[84] J. K. Sears and J. R. Darby, The Technology of Plasticizers, John Wiely & Sons Ins, Chapter 1, 1982.
[85] I. C. Ho, “Semiconducting Barium-Titanate Ceramics Prepared by Boron-Containing Liquid-Phase Sintering,” J. Am. Ceram. Soc., 77, 829-32 (1994).
[86] J. F. Fernandez, A. C. Caballero, P. Duran, and C. Moure, “Improving Sintering Behavior of BaTiO3 by Small Doping Additions,” J. Mater. Sci., 31, 975-81 (1996).
[87] A. Hirata and T. Yamaguchi, “Interfacial Reaction of BaTiO3 Ceramics with PbO-B2O3 Glasses,” J. Am. Ceram. Soc., 80 [1] 79-84 (1997).
[88] J. M. Wu and H. L. Huang, “Effect of Crystallization on Microwave Dielectric Properties of Stoichiometric Cordierite Glasses Containing B2O3 and P2O5,” J. Mater. Res., 15 [1] 222-27 (2000).
[89] S. M. Rhim, S. Hong, H. Bak, and O. K. Kim, “Effects of B2O3 Addition on the Dielectric and Ferroelectric Properties of Ba0.7Sr0.3TiO3 Ceramics,” J. Am. Ceram. Soc., 83 [5] 1145-48 (2000).
[90] J. M. Wu and S. P. Hwang, “Effect of (B2O3, P2O5) Additives on Microstructural Development and Phase-Transformation Kinetics of Stoichiometric Cordierite Glasses,” J. Am. Ceram. Soc., 83 [5] 1259-65 (2000).
[91] J. H. Lee and J. J. Kim, “Observation of Intergranular Films in BaB2O4-added BaTiO3 Ceramics,” J. Mater. Res., 15 [7] 1600-04 (2000).
[92] I. Sakurada, Polyvinyl Alcohol Fibers, Marcel Dekker, New York, 1985.
[93] G. L. Roy, A. L. Laferriere and J. O. Edwards, “A Comparative Study of Polyol Complexes of Arsenite, Borate, and Tellurate Ions,” J. Inorg. Nucl. Chem., 4, 106-14 (1957).
[94] S. W. Sinton, “Complexation Chemistry of Sodium Borate with Poly(vinyl alcohol) and Small Diols. A 11B NMR Study,” Macromolecules, 20, 2430-41 (1987).
[95] M. Shibayama, M. Sato, Y. Kimura, H. Fujiwara and S. Nomura, “11B n.m.r. Study on the Reaction of Poly(vinyl alcohol) with Boric Acid,” Polymer, 29, 336-40 (1988).
[96] M. Shibayama, H. Yoshizawa, H. Kurokawa, H. Fujiwara and S. Nomura, “Sol-gel transition of Poly(vinyl alcohol)-Borate Complex,” Polymer, 29, 2066-71 (1988).
[97] E. Pezron, L. Leibler, A. Ricard, F. Lafuma and R. Audebert, “Complex Formation in Polymer-Ion Solutions. 1. Polymer Concentration Effects,” Macromolecules, 22, 1169-74 (1989).
[98] E. Pezron, L. Leibler and F. Lafuma, “Complex Formation in Polymer-Ion Solutions. 2. Polyelectrolyte Effects,” Macromolecules, 22, 2656-62 (1989).
[99] J. M. Maerker and S. W. Sinton, “Rheology Resulting from Shear-Induced Structure in Associating Polymer Solutions,” J. Rheol., 30 [1], 77-99 (1986).
[100] M. J. S. Dewar and R. Jones, “New Heteroaromatic Compounds. XXV. Studies of Salt Formation in Boron Oxyacids by 11B Nuclear Magnetic Resonance,” J. Am. Chem. Soc., 88, 2408-10 (1967).
[101] R. K. Momii and N. H. Nachtrieb, “Nuclear Magnetic Resonance Study of Borate-Polyborate Equilibria in Aqueous Solution,” Inorg. Chem., 6, 1189-92 (1967).
[102] J. M. Conner and V. C. Bulgrin, “Equilibria between Borate Ion and some Polyols in Aqueous Solution,” J. Inorg. Nucl. Chem., 29, 1953-61 (1967).
[103] H. Ochiai, Y. Fujino, Y. Tadokoro and I. Murakami, “Binding of Borax to Poly(vinyl alcohol) in Aqueous Solution,” Polymer, 21, 485-87 (1980).
[104] J. S. Reed, Introduction to the Principles of Ceramic Processing, Ch. 11-12. Wiley, New York, 1988.
[105] M. J. Cima, J. A. Lewis, and A. D. Devoe, “Binder Distribution in Ceramic Greenware During Thermolysis,” J. Am. Ceram. Soc., 72 [7] 1192-99 (1989).
[106] R. Moreno, “The Role of Slip Additives in Tape Casting Technology: Part 2-Binder and Plasticizer,” Am. Ceram. Soc. Bull., 71 [11] 157-64 (1992).
[107] M. Descamps, M. Mascart, B. Thierry, and D. Leger, “How to Control Cracking of Tape-Cast Sheets,” Am. Ceram. Soc. Bull., 74 [3] 89-92 (1995).
[108] J. H. Jean and H. R. Wang, “Organic Distributions in Dried Alumina Green Tape,” J. Am. Ceram. Soc., 84 [2] 267-72 (2001).
[109] Y. Zhang, N. Uchida, and K. Uematsu, “Direct Observation on Non-uniform Distribution of PVA Binder in Alumina Green Body,” J. Mater. Sci., 30, 1357-60 (1995).
[110] Y. Zhang, T. Suga, M. Kawasaki, X. Tang, N. Uchida, and K. Uematsu, “Effect of Poly(Vinyl Alcohol) Adsorption on Binder Segregation during Drying,” J. Am. Ceram. Soc., 79 [2] 435-40 (1996).
[111] Y. Zhang, X. Tang, N. Uchida, and K. Uematsu, “Binder Surface Segregation during Spray Drying of Ceramic Slurry,” J. Mater. Res., 13 [7] 1881-87 (1998).
[112] G. W. Scherer, “Theory of Drying,” J. Am. Ceram. Soc., 73 [1] 3-14 (1990).
[113] P. Bernada and D. Bruneau, “Modeling Binder Migration during Drying of a Paper Coating,” Tappi J., 79 [9] 130-43 (1996).
[114] A. C. Young, O. O. Omatete, M. A. Janney, and P. A. Menchhofer, “Gelcasting of Alumina,” J. Am. Ceram. Soc., 74 [3] 612-18 (1991).
[115] M. A. Janney, “Gelcasting-A New Way to Form Large Near-Net-Shape Ceramic Parts,” Mater. Tech., 9 [5-6] 97-99 (1994).
[116] G. Grader, “Tape Casting Slip Preparation by In-Situ Polymerization,” J. Am. Ceram. Soc., 76 [7] 1809-14 (1993).
[117] H. D. Lee, R. L. Pober, P. D. Calvert, and H. K. Bowen, “Photopolymerizable Binders for Ceramics,” J. Mat. Sci. Lett., 5, 81-83 (1986).
[118] T. Chartier, R. Penarroya, C. Pagnoux and J. F. Baumard, “Tape Casting Using UV Curable Binders,” J. Eur. Ceram. Soc., 17, 765-71 (1997).
[119] R. R. Landham, P. Nahass, D. K. Leung, M. Ungureit, W. E. Rhine, H. K. Bowen, and P. D. Calvert, “Potential Use of Polymerizable Solvents and Dispersants for Tape Casting of Ceramics,” Am. Ceram. Soc. Bull., 60 [10] 1513-16 (1987).
[120] S. L. Morissette and J. A. Lewis, “Chemorheology of Aqueous-Based Alumina-Poly(Vinyl Alcohol) Gelcasting Suspensions,” J. Am. Ceram. Soc., 82 [3] 521-28 (1999).
[121] M. A. Huha, and J. A. Lewis, “Polymer Effects on the Chemorheological and Drying Behavior of Alumina-Poly(Vinyl Alcohol) Gelcasting Suspensions,” J. Am. Ceram. Soc., 83 [8] 1957-63 (2000).
[122] S. L. Morissette, L. Sherry, J. A. Lewis, Joseph III Cesarano, D. B. Dimos, and T. Baer, “Solid Freeform Fabrication of Aqueous Alumina-Poly(Vinyl Alcohol) Gelcasting Suspensions,” J. Am. Ceram. Soc., 83 [10] 2409-16 (2000).
[123] Y. N. Sun, M. D. Sacks and J. W. Williams, pp. 538 in Ceramic Transactions, Vol. 1, Ceramic Powder Science II. Edited by G. L. Messing, E. R. Fuller and H. Hausner, American Ceramic Society, Westerville OH, 1988.
[124] Y. N. Sun, Pyrolysis Behavior of Polymeric Binders, University Microfilms International, USA, 1988.
[125] Y. Tsuchiya and K. Sumi, “Thermal Decomposition Products of Poly(vinyl Alcohol),” J. Polym. Sci. Part. A-1, 7, 3151-58 (1969).
[126] C. Vasile, L. Odochian, S. F. Patachia, and M. Popoutanu, “Thermal Degradation of Vinyl Alcohol/Vinyl Acetate Copolymers V. Study of the Reaction Products of Statistical Copolymers,” J. Polym. Sci. Polym. Chem. Ed., 23, 2579-87 (1985).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top