|
Chapter 1 1.1 The National Technology Roadmap for Semiconductors, (Semiconductor Industry Association, 1997), pp. 109-110. 1.2 H. B. Huntington and A. B. Pippard, “Electromigration in Metals,” in Electronic Thin Film Science for Electrical Engineers and Materials Scientists, edited by K. N. Tu, J. W. Mayer, and L. C. Feldman (Macmillan Publishing Company, New York, 1992) pp. 355-368. 1.3 C. -K. Hu, “Electromigration Failure Mechanisms in Bamboo-Grained Al(Cu) Interconnections,” Thin Soild Film 260, (1995) pp. 124-134. 1.4 A. S. Oates, F. Nkansah, and S. Chittipeddi, “Electromigration-Induced Drift Failure of Via Contacts in Multilevel Metallization,” J. Appl. Phys. 72, (1992) pp. 2227-2231. 1.5 J. Tao, K.K. Young, N.W. Cheung, and Chenming Hu, “Electromigration Reliability of Tungsten and Aluminum Vias and Improvements under AC Current Stress,” IEEE Trans. Electron Devices 40, (1993) pp. 1398-1405. 1.6 A. Amerasekera, and C. Duvvury, “ESD in Silicon Integrated Circuits,” edited by A. Amersekera (John Wiley & Sons, New York, 1995) pp. 1-7. 1.7 J. G. J. Chern, W. G. Oldham, and N. Cheung, “,” IEEE Trans. Elec. Dev., ED-32, (1986) pp. 1341-1346. 1.8 K. N. Tu and J. W. Mayer, “Silicide Formation,” in Thin Films Interdiffusions and Reactions, edited by I. M. Poate, K. N. Tu, and J. W. Mayer (Wiley, New York, 1978) pp. 359-363. 1.9 J. W. Mayer and S. S. Lau, “Metallization and Phase Diagrams,” in Electronic Materials Science: For Integrated Circuits in Si and GaAs, edited by J. W. Mayer and J. W. Mayer (Macmillan Publishing Company, New York, 1990) pp. 284-289. 1.10 L. J. Chen and K.N. Tu, “Epitaxial Growth of Transition-Metal Silicides on Silicon,” Mater. Sci. Rep. 6, (1991) pp. 53-140. 1.11 T. G. Finstad, J. W. Mayer, and M. A. Nicolet, “The Formation of NiSi From Ni2Si Studies with a Platium Marker,” Thin Solid Films 51, (1978) pp. 391-394. 1.12 M. A. Nicolet and S. S. Lau, in VLSI Electronics, Microstructure, and Science, edited by N. G. Einspruch and G. B. Larrabee (Academic Press, New York, 1983), Vol. 6, p 330. 1.13 W. J. Chen and L. J. Chen, “Interfacial Reactions of Nickel Thin Films on BF2+-Implanted (001)Si,” J. Appl. Phys. 70, (1991) pp. 2628-2633. 1.14 W. J. Chen and L. J. Chen, “Removal of End-of-Range Defects in BF2+ Implanted (111)Si by the Grain Growth of Thin NiS2 Overlayer,” J. Appl. Phys. 69, (1991) pp. 7322-7324. 1.15 T. Ohmi, T. Saito, T. Shibata, and T. Nitta, “Room-Temperature Copper Metallization for Ultralarge-Scale Integrated Circuits by a Low Kinetic-Energy Particle Process,” Appl. Phys. Lett. 52, (1988) pp. 2236-2238. 1.16 C. A. Chang, “Formation of Copper Silicides from Cu(100)/Si(100) and Cu(111)/Si(111) Structures,” J. Appl. Phys. 67, (1990) pp. 566-569. 1.17 A. Cros, M. D. Aboelfotoh, and K. N. Tu, “Formation, Oxidation, Electronic, and Electrical Properties of Copper Silicides,” J. Appl. Phys. 67, (1990) pp. 3328-3336. 1.18 L. Stolt and F. M. d’Heurle, “The Formation of Cu3Si: Marker Experiments,” Thin Soild Films 189, (1990) pp. 269-274. 1.19 S. Q. Hong, C. M. Comrie, S. W. Russell, and J. W. Mayer, “Phase Formation in Cu-Si and Cu-Ge,” J. Appl. Phys. 70, (1991) pp. 3655-3660. 1.20 T. Green, “A Review of EOS/ESD Field Failures in Military Equipment,” in Proc. 10th EOS/ESD Symposium, (1988) pp. 7-14. Chapter 2 2.1 E. C. Jones and N. W. Cheung, “Modeling of Leakage Mechanisms in Sub-50 nm p+-n Junctions,” J. Vac. Sci. Technol. B 14(1), (1996) pp. 236-241. 2.2 E. C. Jones and E. Ishida, “Shallow Junction Doping Technologies For ULSI,” Mater. Sci. Eng. R24, (1998) pp. 1-80. 2.3 C. Hu, “Ultra-Large-Scale Integration Device Scaling and Reliability,” J. Vac. Sci. Technol. B 12(6), (1994) pp. 3237-3241. 2.4 L. H. Zhang, K. S. Jones, P. H. Chi, and D. S. Simons, “Transient Enhanced Diffusion Without {311} Defects in Low Energy B+-Implanted Silicon,” Appl. Phys. Lett. 67, (1995) pp. 2025-2027. 2.5 H. S. Chao, S. W. Crowder, P. B. Griff, and J. D. Plummer, “ Species and Dose Dependence of Ion Implantation Damage Induced Transient Enhanced Diffusion,” J. Appl. Phys. 79 (1996) pp. 2352-2363. 2.6 P. A. Stolk, H. —J. Gossmann, D. J. Eaglesham, D. C. Jackson, C. S. Rafferty, G. H. Gilmer, M. Jaraiz, J. M. Poate, H. S. Luftman, and T. E. Haynes, “Physical Mechanisms of Transient Enhanced Dopant Diffusion in Ion-Implanted Silicon,” J. Appl. Phys. 81 (1997) pp. 6031-6050. 2.7 H. C. -H. Wang, C. C. Wang, C. S. Chang, T. Wang, P. B. Griffin, and C. H. Diaz, “Interface Induced Uphill Diffusion of Boron: An Effective Approach for Ultrashallow Junction,” IEEE Electron Devices Lett. 22, (2001) pp. 65-67. 2.8 R. Kim, Y. Furuta, S. Hayashi, T. Hirose, T. Shano, H. Tsuji, and K. Taniguchi, “Anomalous Phosphous Diffusion in Si During Postimplantation Annealing,” Appl. Phys. Lett. 78, (2001) pp. 3818-3820. 2.9 H. C. -H. Wang, C. H. Diaz, B. K. Liew, J. Y. -C. Sun, and T. Wang, “Hot Carrier Reliability Improvement by Utilizing Phosphorus Transient Enhanced Diffusion for Input/Output Devices of Deep Submicron CMOS Technology,” IEEE Electron Device Lett. 21, (2000) pp. 598-600. 2.10 M. Fahey, P. B. Griffin, J. D. Plummer, “Point Defects and Dopant Diffusion in Silicon,” Rev. Mod. Phys. 61, (1989) pp. 289-389. 2.11 N. Hong, “0.2-mm p+-n Junction Characteristics Dependent on Implantation and Annealing Processes,” IEEE Electron Device Lett. 20, (1999) pp. 83-85. 2.12 Wakabayashi, M. Ueki, M. Narihiro, T. Fukai, N. Ikezawa, T. Matsuda, K. Yoshida, K. Takeuchi, Y. Ochiai, T. Mogami, and T. Kunio, “Sub-50-nm Physical Gate Length CMOS Technology and Beyond Using Steep Halo,” IEEE Trans. Electron Devices 49, (2002) pp. 89-95. 2.13 Kubo, M. Hori, and M. Kase, “Formation of Ultra-Shallow Junction by BF+2 Implantation and Spike Annealing,” Ion Implantation Tech., (2000) pp. 195-198. 2.14 Wakabayashi, M. Ueki, M. Narihiro, T. Fukai, N. Ikezawa, T. Matsuda, K. Yoshida, K. Takeuchi, Y. Ochiai, T. Mogami, and T. Kunio, “45-nm Gate Length CMOS Technology and Beyond Using Steep Halo,” Electron Device Meeting, 2000, IEDM Tech. Dig. International, (2000) pp. 49-52. 2.15 Shao, X. Lu, X. Wang, I. Rusakova, J. Liu, and W. K. Chu, “Retardation of Boron Diffusion in Silicon by Defect Engineering,” Appl. Phys. Lett. 78, (2001) pp. 2321-2323. 2.16 W. Holland and C. W. White, “Ion-Induced Damage and Amorphization in Si,” Nucl. Instrum. Methods Phys. Res. B 59, (1991) pp. 353-362. 2.17 P. Biersack and L. G. Haggmark, “A Monte Carlo Computer Program for The Transport of Energetic Ions in Amorphous Targets,” Nucl. Instrum. Methods, 174 (1980) pp. 257-269. 2.18 J. Eaglesham, P. A. Stolk, H. —J. Gossmann, and J. M. Poate, “Implantation and Transient B Diffusion in Si: The Source of The Interstitials,” Appl. Phys. Lett. 65, (1994) pp. 2305-2307. 2.19 Z. Pan, K. N. Tu, and A. Prussin, “Size-Distribution and Annealing Behavior of End-of-Range Dislocation Loops in Silicon-Implanted Silicon,” J. Appl. Phys. 81, (1997) pp. 78-84. 2.20 Laanab, C. Bergaud, C. Bonafos, A. Martinez, and A. Claverie, “Variation of End of Range Density with Ion Beam Energy and The Predictions of The “Excess Interstitials” Model,” Nucl. Instrum. Methods Phys. Res. B 96, (1995) pp. 236-240. 2.21 S. Jones, J. Liu, L. Zhang, V. Krishnamoorthy, R. T. Dehoff, “Studies of The Interactions Between (311) Defects and Type I and II Dislocation Loops in Si+ Implanted Silicon,” Nucl. Instrum. Methods Phys. Res. B 106, (1995) pp. 227-232. 2.22 Hochwitz, A. K. Henning, C. Levey, and C. Dahlian, and R. Finch, “Imaging Integrated Circuit Dopant Profiles With The Force-Based Scanning Kelvin Probe Microscope,” J. Vac. Sci. Technol. B 14, (1996) pp. 440-446. 2.23 “Scanning Capacitance Microscopy Support Note,” (Digital Instruments), No. 224, Rev. C. 2.24 “Carrier And Doping Density,” in 2nd. Edition, Semiconductor Material and Device Characterization, edited by D. K. Schroder, (New York, John Wiley & Sons, 1998) pp. 62-65. Chapter 3 3.1 T. Kamins, “Applications”, in 2nd edition, Polycrystalline Silicon For Intgrated Circuits And Displays, edited by T. Kamins, (Boston, Kluwer Academic Publisher, 1998) pp. 245-315. 3.2 Y. Z. Wang and O. O. Awadelkarim, “Polycrystalline Silicon Thin Films Formed by Metal-Induced Solid Phase Crystallization of Amorphous Silicon,” J. Vac. Sci. Technol. A 16, (1998) pp. 3352-3358. 3.3 Y. Kuo and P. M. Kozlowski, “Polycrystalline Silicon Formation by Pulsed Rapid Thermal Annealing of Amorphous Silicon,” Appl. Phys. Lett. 69, (1996) pp. 1092-1094. 3.4 C. V. Thompson, “Secondary Grain Growth in Thin Films of Semiconductors: Theoretical Aspects,” J. Appl. Phys. 58, (1985) pp. 763-772. 3.5 K. Nakazawa, “Recrystallization of Amorphous Silicon Films Deposited by Low-Pressure Chemical Vapor Deposition from Si2H6 Gas,” J. Appl. Phys. 69, (1991) pp. 1703-1706. 3.6 S. F. Gong, H. T. G. Hentzell, and A. E. Robertsson, “Initial Soild-State Reactions Between Crystalline Sb and Amorphous Si Thin Films,” J. Appl. Phys. 64, (1988) pp. 1457-1463. 3.7 S. F. Gong, H. T. G. Hentzell, A. E. Robertsson, L. Hultman, S. -E. Hornstrom, and G. Radnoczi, “Al-Doped and Sb-Doped Polycrystalline Silicon Obtained by Means of Metal-Induced Crystallization,” J. Appl. Phys. 62, (1987) pp. 3726-3732. 3.8 L. Hultman, A. Robertsson, and H. T. G. Hentzell, I. Engstrom, and P. A. Psaras, “Crystallization of Amorphous Silicon during Thin-Film Gold Reaction,” J. Appl. Phys. 62, (1987) pp. 3647-3655. 3.9 G. Radnoczi, A. Robertsson, H. T. G. Hentzell, S. F. Gong, and M. -A. Hasan, “Al Induced Crystallization of a-Si,” J. Appl. Phys. 69, (1991) pp. 6394-6399. 3.10 Y. Yoon, J. Y. Oh, C. O. Kim, and J. Jang, “Low Temperature Solid Phase Crystallization of Amorphous Silicon at 380 ℃,” J. Appl. Phys. 84, (1998) pp. 6463-6465. 3.11 C. Hayzelden and J. L. Batstone, “Silicide Formation and Silicide-Mediated Crystallization of Nickel-Implanted Amorphous Silicon Thin Films,” J. Appl. Phys. 73, (1993) pp. 8279-8289. 3.12 J. Jang, J. Y. Oh, S. K. Kim, Y. J. Choi, S. Y. Yoon, and C. O. Kim, “Electric-Field-Enhanced Crystallization of Amorphous Silicon,” nature 395, (1998) pp. 481-483. 3.13 L. K. Lam, S. Chen, D. G. Ast, “Kinetics of Nickel-Induced Lateral Crystallization of Amorphous Silicon Thin-Film Transistors by Rapid Thermal and Furnace Anneals,” Appl. Phys. Lett. 74 (1999) pp. 1866-1868. 3.14 S. K. Lee, S. —K. Joo, “Low Temperature Poly-Si Thin-Film Transistor Fabrication by Metal-Induced Lateral Crystallization,” IEEE Electron Device Lett. 17 (1996) pp. 160-162. 3.15 I. Asai, N. Kato, M. Fuso, and T. Hamano, “Poly-Silicon Thin-Film Transistors with Uniform Performance Fabricated by Excimer Laser Annealing,” Jpn. J. Appl. Phys. 32 (1993) pp. 474-481. 3.16 A. M. McCarthy, K. H. Weiner, T. W. Sigmon, “Nanosecond Thermal Processing of Polysilicon Thin Films,” Mat. Res. Soc. Proc. 182, (1990) pp. 121-125. 3.17 T. Sameshima, Y. Kaneko, and N. Andoh, “Rapid Crystallization of Silicon Films Using Joule Heating of Metal Films,” Appl. Phys. A, 73 (2001) pp. 419-423. 3.18 S. -K. Jun, Y. -H. Yang, J. -B. Lee, and D. -K. Choi, “Electrical Characteristics of Thin-Film Transistors Using Field-Aided Lateral Crystallization,” Appl. Phys. Lett. 75 (1999) pp. 2235-2237. 3.19 T. Sameshima and K. Ozaki, “Crystallization of Silicon Thin Films by Current-Induced Joule Heating,” Thin Solid Films 383, (2001) pp. 107-109. 3.20 H. Muralami, K. Ono, and H. Takai, “Effect of Electric Field on Silicide Formation,” Appl. Surf. Sci. 117/118, (1997) pp. 289-293. 3.21 J. S. Huang, K. N. Tu, S. W. Bedell, W. A. Landford, S. L. Cheng, J. B. Lai, and L. J. Chen, “Polarity Effect on Failure of Ni and Ni2Si Contacts on Si,” J. Appl. Phys. 82, (1997) pp. 2370-2377. Chapter 4 4.1 J. Liu, M. L. A. Dass, and R. Gronsky, “Transmission Electron Microscopy Study of Two-Dimensional Semiconductor Device Junction Delineation by Chemical Etching,” J. Vac. Sci. Technol. B 12(1), (1994) pp. 353-356. 4.2 D. M. Maher and B. Zhang, “Characterization of Structure/Dopant Behavior by Electron Microscopy,” J. Vac. Sci. Technol. B 12(1), (1994) pp. 347-352. 4.3 T. T. Sheng and C. C. Chang, “Transmission Electron Microscopy of Cross Section of Large Scale Integrated Circuits,” IEEE Trans. Electron Devices Ed-23, (1976) pp. 531-536. 4.4 N. Kato, H. Maruyama, and H. Saka, “Preparation of TEM Plan View Sections on Semiconductor Device Using the Tripod-Polisher and Chemical Etching,” J. Electron Microscopy 50(1), (2001) pp. 9-13. 4.5 J. P. Benedict, R. M. Anderson, and S. J. Klepeise, “Preparation of TEM Plane View Section on Specified Devices Using The Tripod Polisher,” in Electron Microscopy of Semiconducting Materials and ULSI Devices, 523, edited by C. Hayzelden, C. Hetherington, and F. Ross, (Materials Research Society, Pittsburgh, Pennsylvania, 1998) pp. 19-30. Chapter 5 5.1 J. S. Huang, H. K. Liou, and K. N. Tu, “Polarity Effect of Electromigration in Ni2Si Contacts on Si,” Phys. Rev. Lett. 76, (1996) pp. 2346-2349. 5.2 J. S. Huang, K. N. Tu, S. W. Bedell, W. A. Landford, S. L. Cheng, J. B. Lai, and L. J. Chen, “Polarity Effect on Failure of Ni and Ni2Si Contacts on Si,” J. Appl. Phys. 82, (1997) pp. 2370-2377. 5.3 J. S. Huang, C. N. Liao, K. N. Tu, S. L. Cheng, and L. J. Chen, “Abnormal Electrical Behavior and Phase Changes in Implanted p+- and n+-Si Channels under High Current Densities”, J. Appl. Phys. 84, (1998) pp. 4788-4796. 5.4 J. S. Huang, C. Chen, C. C. Yeh, K. N. Tu, T. L. Shofner, J. L. Drown, R. B. Irwin, and C. B. Vartuli, “Effect of Current Crowding on Contact Failure in Heavily Doped n+- and p+-Silicon-on-Insulator,” J. Mater. Res., 15(2000) pp. 2387-2392. 5.5 C. N. Liao, C. Chen, J. S. Huang, and K. N. Tu, “Asymmetrical Heating Behavior of Doped Si Channels in Bulk Silicon and in Silicon-on-Insulator under High Current Stress,” J. Appl. Phys. 86, (1999) pp. 6895-6901. 5.6 W. J. Chen, F. R. Chen, and L. J. Chen, “Atomic Structure of Twin Boundary in NiSi2 Thin Films on (001)Si,” Appl. Phys. Lett. 60 (1992) pp. 2201-2203. 5.7 T. Kuroi, S. Kusunoki, M. Shirahata, Y. Okbayashi, M. Inuishi and N. Tsubouchi, “The Effect of Nitrogen Implantation into p+-Poly-Silicon Gate on Gate Oxide Properties,” Symp. On VLSI Technology Digest of Technical Papers, (1994) pp. 107-108. 5.8 A. Yasuoka, T. Kuroi, S. Shimizu, M. Shirahata, Y. Okumura, Y. Inoue, M. Inuishi, T. Nishimura, and H. Miyoshi, “The Effects on Metal Oxide Semiconductor Field Effect Transistor Properties of Nitrigen Implantation into p+-Polysilicon Gate,” Jpn. J. Appl. Phys. 36 (1997) pp. 617-622. 5.9 L. J. Chen, L. S. Hung, and J. W. Mayer. J. E. E. Baglin, J. M. Neri, and D. A. Hammer, “Epitaxial NiSi2 Formation by Plused Ion Beam Annealing,” Appl. Phys. Lett. 40 (1981) pp. 595-597. 5.10 J. X. Li, W. S. Yang, and T. Y. Tan, “Liquid Silicide Formation on the Si Wafer Free Surface during Ni Diffusion at 1200 ℃,” J. Appl. Phys. 71, (1992) pp. 196-203. Chapter 6 6.1 J. S. Huang, C. Chen, C. C. Yeh, K. N. Tu, T. L. Shofner, J. L. Drown, R. B. Irwin, and C. B. Vartuli, “Effect of Current Crowding on Contacts Failure in Heavily Doped n+- and p+-Silicon-on-Insulator”, J. Mater. Res. 15, (2000) pp. 2387-2392. 6.2 C. -K. Hu, M. B. Small, and P. S. Ho, “Electromigration in Al(Cu) Two-Level Structures: Effect of Cu and Kinetics of Damage Formation”, J. Appl. Phys. 74, (1993) pp. 969-978. 6.3 Peng-Heng Chang, R. Hawkins, T. D. Bonifield, and L. A. Melton, “Aluminum Spiking at Contact Windows in Al/Ti-W/Si,” Appl. Phys. Lett. 52, (1988) pp. 272-274. 6.4 Chih Chen, J. S. Huang, C. N. Liao, and K. N. Tu, “Dopant Activation of Heavily Doped Silicon-on-Insulator by High Density Current,” J. Appl. Phys. 86, (1999) pp. 1552-1577. 6.5 J. S. Huang, K. N. Tu, S. W. Bedell, W. A. Lanford, S. L. Cheng, J. B. Lai, and L. J. Chen, “Polarity Effect on Failure of Ni and Ni2Si Contacts on Si,” J. Appl. Phys. 82, (1997) pp. 2370-2377. 6.6 J. S. Huang, H. K. Liou, and K. N. Tu, “Polarity Effect of Electromigration in Ni2Si Contacts on Si,” Phys. Rev. Lett. 76, (1996) pp. 2346-2349. 6.7 C. N. Liao, C. Chen, J. S. Huang, and K. N. Tu, “Asymmetrical Heating Behavior of Doped Si Channels in Bulk Silicon and in Silicon-on-Insulator under High Current Stress,” J. Appl. Phys. 86, (1999) pp. 6895-6901. 6.8 J. S. Huang, C. N. Liao, K. N. Tu, S. L. Cheng, and L. J. Chen, “Abnormal Electrical Behavior and Phase Changes in Implanted p+- and n+-Si Channels under High Current Densities”, J. Appl. Phys. 84, (1998) pp. 4788-4796. 6.9 A. Amerasekera, “ESD in Silicon Integrated Circuits”, John Wiley & Sons, New York, (1995) pp. 31-33. 6.10 J. X. Li, W. S. Yang, and T. Y. Tan, “Liquid Silicide Formation on the Si Wafer Free Surface during Ni Diffusion at 1200 ℃,” J. Appl. Phys. 71, (1992) pp. 196-203. 6.11 C. S. Liu and L. J. Chen, “Catalytic Oxidation of (001)Si in the Presence of Cu3Si at Room Temperature,” J. Appl. Phys. 74, (1993) pp. 3611-3613. 6.12 Bakhadyrkhanov, Boltaks, and Kulikov, “Diffusion Data,” edited by F. H. Wohlbier, (Diffusion Information Center, Cleveland, Ohio, Vol. 4, No. 2, 1970) p. 269. 6.13 Yashida, Saito, and R. H. Wohlbier, “Diffusion Data,” edited by R. H. Wohlbier, (Diffusion Information Center, Cleveland, Ohio, Vol. 1, No. 3, 1967) p. 110. 6.14 R. H. Wohlbier, “Diffusion Data,” edited by R. H. Wohlbier, (Diffusion Information Center, Cleveland, Ohio, Vol. 4, No. 1, 1970) pp. 15, 65-66. 6.15 R. N. Hall, and J. H. Racette, “Diffusion and Solubility of Copper in Extrinsic and Intrinsic Germanium, Silicon, and Gallium Arsenide”, J. Appl. Phys. 35, (1964) pp. 379-397. 6.16 R. H. Wohlbier, “Diffusion Data,” edited by R. H. Wohlbier, (Diffusion Information Center, Cleveland, Ohio, Vol. 1, No. 3, 1967) p. 32. 6.17 R. H. Wohlbier, “Diffusion Data,” edited by R. H. Wohlbier, (Diffusion Information Center, Cleveland, Ohio, Vol. 2, No. 3/4, 1968) pp. 255, 292, 308. 6.18 R. H. Wohlbier, “Diffusion Data,” edited by R. H. Wohlbier, (Diffusion Information Center, Cleveland, Ohio, Vol. 17, No. 3, 1978) p. 186. 6.19 K. N. Chen, H. H. Lin, S. L. Cheng, Y. C. Peng, G. H. Shen, L. J. Chen, C. R. Chen, J. S. Huang, and K. N. Tu, “ Silicide Formation in Implanted Channels and Interfacial Reactions of Metal Contacts under High Current Density,” J. Mater. Res. 14, No. 12, (1999) pp. 4720-4726. 6.20 Reed-Hill, “Solidification of Metals,” in Physical Metallurgy Principles edited by R. E. Reed-Hill and R. Abbaschian, (Boston: PWS Publication Company, 1991) p. 460. 6.21 S. M. Sze, “Physics of Semiconductor Devices,” 2nd ed., New York, John Wiley and Sons, (1985) pp. 42-44. 6.22 M. Brrett, M. Dennis, D. Tiffin, Y. Li, and C. K. Shih, “Two-Demensional Dopant Profiling of Very Large Scale Integrated Devices Using Selective Etching and Atomic Force Microscopy,” J. Vac. Sci. Technol. B 14(1), (1996) pp. 447-451. Chapter 7 7.1 K. S. Jones, L. H. Zhang, V. Krishnamoorthy, M. Law, D. S. Simons, P. Chi, L. Rubin, and R. G. Elliman, “Diffusion of Ion Implanted Boron in Preamorphized Silicon,” Appl. Phys. Lett. 68, (1996) pp. 2672-2674. 7.2 G. Z. Pan, K. N. Tu, and A. Prussin, “Size-Distribution and Annealing Behavior of End-of-Range Dislocation Loops in Silicon-Implanted Silicon,” J. Appl. Phys. 81, (1997) pp. 78-84. 7.3 D. K. Sadana, N. R. Wu, J. Washburn, M. Current, A. Morgan, D. Reed, and M. Maenpaa, “The Effect of Recoiled Oxygen on Damage Regrowth and Electrical Properties of Through-Oxide Implanted Si,” Nucl. Instr. and Meth. 209/210, (1983) pp. 743-750. 7.4 L. Laanab, C. Bergaud, C. Bonafos, A. Martinez and A. Claverie, “Variation of End of Range Density with Ion Beam Energy and the Predictions of the “Excess Interstitials” Model,” Nucl. Instr. and Meth. B 96, (1995) pp. 236-240. 7.5 H. Ryssel, K. Muller, K. Haberger, R. Herkelmann, and F. Jahnel, “High Concentration Effects of Ion Implanted Boron in Silicon,” Appl. Phys. 22, (1980) pp. 35-38. 7.6 A. T. Fiory and K. K. Bourdelle, “Electrical Activation Kinetics for Shallow Boron Implants in Silicon,” Appl. Phys. Lett. 74, (1999) pp. 2658-2660. 7.7 C. Chen, J. S. Huang, C. N. Liao, and K. N. Tu, “Dopant Activation of Heavily Doped Silicon-on-Insulator by High Density Currents,” J. Appl. Phys. 86, (1999) pp. 1552-1557. 7.8 H. H. Lin, S. L. Cheng, and L. J. Chen, “Electromigration of Cu and Ti atoms and Dopant Junction Profiles in the p+-Si Implanted Channel under High-Density Current,” Mater. Sci. Semiconductor Processing 4, (2001) pp. 245-247. 7.9 S. M. Sze, “Physics of Semiconductor Devices,” 2nd ed., (New York, John Wiley and Sons, 1985) p. 42. 7.10 C. Bonafos, A. Claverie, D. Alquier, C. Bergaud, A. Martinez, L. Laanab and D. Mathiot, “The Effect of the Boron Doping Level on the Thermal Behavior of End-of-Defects in Silicon,” Appl. Phys. Lett. 71, (1997) pp. 365-367. 7.11 P. B. Hirsch, “Electron Microscopy of Thin Crystals,” 2nd, (New York, Robert E. Krieger Publishing Co., 1967) pp. 415-418. Chapter 8 8.1 K. Nakazawa, “Recrystallization of Amorphous Silicon Films Deposited by Low-Pressure Chemical Vapor Deposition from Si2H6 Gas,” J. Appl. Phys. 69, (1991) pp. 1703-1706. 8.2 T. Aoyama, K. Ogawa, Y. Mochizuki, and N. Konishi, “Inverse Staggered Polycrystalline and Amorphous Silicon Double Structure Thin Film Transistors,” Appl. Phys. Lett. 66, (1995) pp. 3007-3009. 8.3 S. F. Gong, H. T. G. Hentzell, and A. E. Robertsson, “Initial Soild-State Reactions Between Crystalline Sb and Amorphous Si Thin Films,” J. Appl. Phys. 64, (1988) pp. 1457-1463. 8.4 S. F. Gong, H. T. G. Hentzell, A. E. Robertsson, L. Hultman, S. —E. Hornstrom, and G. Radnoczi, “Al-Doped and Sb-Doped Polycrystalline Silicon Obtained by Means of Metal-Induced Crystallization,” J. Appl. Phys. 62, (1987) pp. 3726-3732. 8.5 L. Hultman, A. Robertsson, and H. T. G. Hentzell, I. Engstrom, and P. A. Psaras, “Crystallization of Amorphous Silicon during Thin-Film Gold Reaction,” J. Appl. Phys. 62, (1987) pp. 3647-3655. 8.6 G. Radnoczi, A. Robertsson, H. T. G. Hentzell, S. F. Gong, and M. -A. Hasan, “Al Induced Crystallization of a-Si,” J. Appl. Phys. 69, (1991) pp. 6394-6399. 8.7 S. Y. Yoon, J. Y. Oh, C. O. Kim, and J. Jang, “Low Temperature Solid Phase Crystallization of Amorphous Silicon at 380 ℃,” J. Appl. Phys. 84, (1998) pp. 6463-6465. 8.8 T. Sameshima and K. Ozaki, “Current-Induced Joule Heating Used to Crystallize Silicon Thin Films,” Jpn. J. Appl. Phys. 39, (2000) pp. L651-L654. 8.9 T. Sameshima, Y. Kaneko, and N. Andoh, “Rapid Crystallization of Silicon Films Using Joule Heating of Metal Films,” Appl. Phys. A, 73 (2001) pp. 419-423. 8.10 C. Hayzelden and J. L. Batstone, “Silicide Formation and Silicide-Mediated Crystallization of Nickel-Implanted Amorphous Silicon Thin Films,” J. Appl. Phys. 73, (1993) pp. 8279-8289. 8.11 J. Jang, J. Y. Oh, S. K. Kim, Y. J. Choi, S. Y. Yoon, and C. O. Kim, “Electric-Field-Enhanced Crystallization of Amorphous Silicon,” nature 395, (1998) pp. 481-483. 8.12 Z. Jin, G. A. Bhat, M. Yeung, H. S. Kwok, and M. Wong, “Nickel Induced Crystallization of Amorphous Silicon Thin Films,” J. Appl. Phys. 84, (1998) pp. 194-200. 8.13 H. B. Huntington and A. B. Pippard, “Electromigration in Metals,” in Electronic Thin Film Science For Electrical Engineers and Materials Scientists, edited by K. N. Tu, J. W. Mayer, and L. C. Feldman (Macmillan Publishing Company, New York, 1992) pp. 355-368. 8.14 D. G. Pierce and P. G. Brusius, “Electromigration: A Review,” Microelectron. Reliab. 37, (1997) pp. 1053-1072. 8.15 R. S. Sorbello, “Theory of The Direct Force in Electromigration,” Phys. Rev. B., (1985) pp. 798-804. Chapter 10 10.1 C. Chen, J. S. Huang, C. N. Liao, and K. N. Tu, “Dopant Activation of Heavily Doped Silicon-on-Insulator by High Density Currents,” J. Appl. Phys. 86, (1999) pp. 1552-1557. 10.2 H. Fujimori, M. Kakihana, K. Ioku, S. Goto, and M. Yoshimura, “Advantage of Anti-Stokes Raman Scattering for High-Temperature Measurements,” Appl. Phys. Lett. 79, (2001) pp. 937-939. 10.3 S. Bae and S. J. Fonash, “Defined Crystallization of Amorphous-Silicon Films Using Contact Printing,” Appl. Phys. Lett. 76, (2000) pp. 595-597. 10.4 K. Makihira and T. Asano, “Enhanced Nucleation in Solid-Phase Crystallization of Amorphous Si by Imprint Techanology,” Appl. Phys. Lett. 76, (2000) pp. 3774-3776. 10.5 I. Pelant, P. Fojtil, K. Luterova, J. Kocka, and J. Stepanek, “Room Temperature Electric Field Induced Crystallization of Wide Band Gap Hydrogenated Amorphous Silicon,” Thin Solid Films 383 (2001) pp. 101-103. 10.6 N. T. Golo, S. V. D. Wal, F. G. Kuper, and T. Mouthaan, “Estimation of The Impact of Electrostatic Discharge on Density of States in Hydrogenated Amorphous Silicon Thin-Film Transistors,” Appl. Phys. Lett. 80, (2002) pp. 3337-3339.
|