跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/09/28 22:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林憲信
研究生(外文):Hsien-Hsin, Lin
論文名稱:高密度電流對增進非晶質矽再結晶、摻雜活化及電遷移現象之研究
論文名稱(外文):Investigation on High-Density Current Enhanced Amorphous Si Recrystallization, Dopant Activation and Electromigration in Doped Si
指導教授:陳力俊陳力俊引用關係
指導教授(外文):Juann-Lih, Chen
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:129
中文關鍵詞:高密度電流極化掃描電容顯微鏡電遷移焦耳熱結晶化金屬誘發結晶絕緣上矽晶
外文關鍵詞:high-density currentpolarityscmelectromigrationjoule heatingcrystallizationMICSOI
相關次數:
  • 被引用被引用:0
  • 點閱點閱:695
  • 評分評分:
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:1
為了增進半導體元件的運作速度,半導體元件尺寸發展趨向於微小化,因此金屬導線必須趨向於低電阻及p-n接面深度必須縮小。在微小化過程當中,高密度電流對於金屬導線、金屬與矽之間的可靠度問題必須格外的重視,例如:高密度電流將可能造成金屬的電遷移現象,以及由於不同材料間的介面電流壅塞所產生的焦耳熱,以上兩種因素將會促使不可逆的化學反應發生。
本研究主要是針對高密度電流對於鎳及銅金屬接觸窗的極化現象、急速的矽化物擴散生成、以及對離子佈植所造成的缺陷消除的探究;高摻雜濃度的絕緣上矽晶 (SOI) 活化的機制探討;鎳矽化物引發非晶質矽再結晶的極化現象、生成機制以及其應用性的探討。
極化現象明顯的發生在高濃度的離子佈植矽晶上,在高密度電流下隨著不同物種的佈植,在p-型通道上陰極較陽極的接觸窗提早破壞;而在n-型通道上陽極則較陰極的接觸窗提早破壞。以上兩種現象可分別由電子-電洞再結合 (electron-hole recombination)、接面漏電流 (junction leakage) 解釋p-型通道的極化現象;破損機制 (wear-out mechanism) 可說明n-型通道的極化現象。
急速的矽化物擴散生成,主要只發生在p-型通道,並且僅侷限於高擴散係數的金屬元素。例如,當電流密度分別高於5.8×105、7.2×105 A/cm2,鎳金屬矽化物及銅金屬矽化物急速擴散生成於p-型通道內。其他的金屬元素,例如,鈦及鈷在矽中的擴散係數較低,所以不利於擴散發生。
利用絕緣上矽晶較佳的絕緣性及較差的散熱率,所產生的焦耳熱將促使未活化的摻雜活化及摻雜聚集的缺陷消除。對於未退火的試片,在電流密度高於8×105 A/cm2佈植所造成的非晶質層開始再結晶;電流密度高於1.6×106 A/cm2 發現佈植所殘餘的射程末端缺陷在高電流密度區域已被消除;其電阻特性由4.8 k 降至 1 k Ω約減少 80﹪。對於900 ℃退火30分鐘的試片,在2×106 A/cm2電流密度下發現佈植所殘餘的射程末端缺陷密度由9.96×103 降至2.98×103 cm-1;其電阻值亦由480 降至 450 Ω。
由於高密度電流所產生的焦耳熱可促使絕緣上矽晶的非晶質層再結晶,另一方面,鎳金屬矽化物可降低非晶質矽的成長溫度,並且電場效應亦有助於降低非晶質矽的成長溫度。綜合以上現象,於非晶質矽上方,350 ℃低溫成長鎳矽化物當導電層,室溫下外加高密度電流,可促使多晶矽生成。當電流密度達到4.3×107 mA/cm2 時,非晶質矽將瞬間反應生成多晶矽,並且於反應過程中發現極化現象,此現象可能導因於離子化的鎳的電遷移現象,促使非晶質矽的金屬誘發再結晶 (Metal Induced Crystallization) 現象發生,使得反應溫度可以降低並且大幅縮短反應時間。

The minimization of critical dimensions in microelectronic devices gives rise to an increased density of structures per wafer. As a result, the circuit current densities and Joule heating increase with the decrease in size. In addition, at a high-density current (above 104 amp/cm2), the transport of current can displace the ions and influence the transport of mass. The mass transport by the electric field and charge carriers is called electromigration. However, the combined effects of Joule heating and electromigration were particularly serious. In this dissertation, the diffusion of metals in doped-Si, dopant activation in SOI strips, and electromigration of Ni in Ni silicides were discussed.
Scientifically, the enhanced interfacial reactions between metal contact and Si under high-density current are of interest. The interactions of electrical and chemical forces on the contact and heavily doped Si channel are also of much interest. Most of the failure mechanisms, such as polarity effect, contact reaction, silicide line formation in heavily doped Si channel and the elimination of EOR defects, on Ni (or Cu) contact pair structures of the p+-Si channel have been discussed.
Since the SOI has excellent isolation and poor heat dissipation, enhanced dopant activation and elimination of end-of-range (EOR) defects in BF2+-implanted silicon-on-insulator (SOI) have been achieved by high-density current stressing. With the high-density current stressing, the implantation amorphous silicon underwent recrystallization, enhanced dopant activation and elimination of the end-of-range (EOR) defects. The current stressing method allows the complete removal of EOR defects that has not been possible with conventional thermal annealing in the processing of high-performance SOI devices. For example, the SOI strips were implanted by 40k eV at a dosage of 5×1015 ions/cm2. The total resistance for the as-implanted SOI strips was decreased from 4.8k to 1kΩ, about 80﹪reduction, after the density of current exceeded 1.6×106 A/cm2. On the other hand, samples annealed at 900 ℃ for 30 min, the resistance of the Si strip decreased further from 480 to 450 Ω after stressing with a current of 2×106 A/cm2.
A previous investigation of Joule heating effect on thin SOI films showed that the amorphous Si induced by ion implantation had been crystallized with high density current. In addition, electric-field-enhanced recrystallization of amorphous Si has been confirmed that could reduce the crystallization temperature of amorphous Si. A method of forming low-temperature poly-Si, which uses current induced amorphous silicon recrystallization to solve problems caused by high-temperature and long-term annealing treatment has been developed. As the applied current ramping up to 4.3×107 mA/cm2 on the nickel silicide film, the a-Si layer was induced to crystallize into poly-Si suddenly. A strong polarity effect on nickel silicides enhanced poly-Si transformation was found under high-density current stressing. The enhanced diffusion of ionized Ni through NiSi2 precipitates in an electric field leads to an acceleration of the crystallization of a-Si. The crystallization, therefore, processes could be completed by electric current stressing at room temperature.

Contents
Acknowledgments ……………………………………………………VI
Abstract ……………………………………………………………..VIII
Chapter 1. Electrical and Chemical Effects on Metal Contacts
1.1 Reliability in Semiconductor Devices ……………………………….1
1.2 Contact Electromigration ………………..…………………………..3
1.3 Nickel and Copper Silicides …………………………………….…4
Chapter 2. Ion Implantation
2.1 Introduction ………………………………………………………….8
2.2 Dopant Activation ……………………………………………………9
2.2.1 Two-step Anneals ……………………………………………..11
2.2.2 Spike Annealing ………………………………………………11
2.3 Defects in Silicon ……………………………………………….12
2.3.1 Point Defects ……………………………………………….12
2.3.2 Spatial Correlation of Vacancy and Interstitialcy …………….12
2.3.3 End of Range Defects …………………………………………13
2.4 Scanning Capacitance Microscopy Measurement ………………….14
2.4.1 Theory of Operation…………………………………………..15
2.4.2 Capacitance-Voltage Relationship in Semiconductors………..16
Chapter 3. Metal-Induced-Crystallization of Amorphous Si
3.1 Application of Polycrystalline silicon………………………………18
3.2 Metal Induced Crystallization and Metal Induced Lateral
Crystallization………………………………………………………19
3.3 Excimer Laser Crystallization………………………………………21
3.4 Electric Field Effect on Crystallization……………………………..22
Chapter 4. Experimental Procedures
4.1 Sample Preparation………………………………………………….25
4.2 I-V Measurements…………………………………………………..26
4.3 Preparation of Samples for Transmission Electron Microscope
Examination…………………………………………………………26
4.3.1 Preparation of Planview Samples……………………………..26
4.3.2 Cross-sectional Specimen Preparation………………………..27
4.3.3 Precision Cross-sectional Specimen Preparation……………..28
4.4 Junction Delineation by Chemical Etching………………………...29
4.5 Scanning Electron Microscope Observation………………………..30
4.6 Transmission Electron Microscope Observation……………………30
4.7 Energy Dispersion Spectrometer (EDS) Analysis…………………..30
4.8 Composition-Depth Profiling Analysis by Auger Electron
Spectroscopy………………………………………………………...31
4.9 Secondary Ion Mass Spectroscopy (SIMS) Analysis……………….31
4.10 Scanning Capacitance Microscopy Measurement…………………32
Chapter 5. Nickel Contact Reactions and Silicide Formation in Implanted Channels under High-Density Current
5.1 Motivation…………………………………………………………..34
5.2 Experimental Procedures……………………………………………35
5.3 Results and Discussion……………………………………………...36
5.3.1 Polarity Effect…………………………………………………36
5.3.2 Joule Heating Effect on Ni/Si Contacts……………………….38
5.3.3 Reversibility Electrical Behavior……………………………..40
5.3.4 Contact Size Effect on Silicide Line Growth…………………41
Chapter 6. Silicide Formation in Implanted Channels and Interfacial Reactions of Metal Contacts under High-Density Current
6.1 Motivation…………………………………………………………..44
6.2 Experimental Procedures……………………………………………45
6.3 Results and Discussion……………………………………………...46
6.3.1 Non-uniform Thermal Distribution…………………………...46
6.3.2 Joule Heating Effect on Metal Thin Films Contacts………….47
6.3.3 Fast Silicide Line Formation in p+-Si Channel………………..49
6.3.4 Formation of The Defect-Free Zone in Doped Channel………50
6.3.5 Junction Profile Change………………………………………51
Chapter 7. Enhanced Dopant Activation and Elimination of End-of-Range Defects in BF2+-Implanted Silicon-on- Insulator by High-Density Current
7.1 Motivation…………………………………………………………..53
7.2 Experimental Procedures……………………………………………54
7.2.1 Fabrication of Procedure for Test Structure…………………...54
7.2.2 Resistance Measurement……………………………………...55
7.2.3 Scanning Capacitance Microscopy Measurement…………….55
7.3 Results and Discussion……………………………………………...56
7.3.1 Resistance Reduction of SOI Strips…………………………..56
7.3.2 Structural Change in the Doped Channel……………………..57
7.3.3 Scanning Capacitance Microscopy Measurement…………….60
7.3.4 Effect of Test Structure on Heat Dissipation………………….61
Chapter 8. Electric Current Induced Amorphous Si Crystallization under High-Density Current Stressing
8.1 Motivation…………………………………………………………..63
8.2 Experimental Procedures……………………………………………64
8.2.1 Fabrication Procedure for Test Structure……………………...64
8.2.2 High-Density Current Stressing………………………………65
8.3 Results and Discussion……………………………………………...65
8.3.1 Polarity Effect of Nickel Silicide Enhanced
Poly-Si transformation……………………………………….65
8.3.2 Phase Identification…………………………………………...67
8.3.3 Poly-Si Grain Size and Shape Distribution…………………...67
8.3.4 Mechanisms of Transformation of Amorphous Si
to Poly-Si……………………………………………………..68
Chapter 9. Summary and Conclusions
9.1 High-Density Current Effects on BF2+-Doped Si……………..…….72
9.2 Dopant Activated by High-Density Current Stressing…….………..73
9.3 Electric Current Assisted Amorphous Si Crystallization
under High-Density Current Stressing…………………….………..74
Chapter 10. Future Prospect
10.1 Local Temperature Measurement………………………………….76
10.2 Metal Induced Lateral Crystallization……………………………..76
10.3 Enhanced Amorphous Si Crystallization by Imprint Technology…77
10.4 Impact of Electrostatic Discharge on TFTs……………………….77
References………………………………………………………………79
Tables…………………………………………………………………...97
Figure Captions………………………………………………………..98
Figures………………………………………………………………...105
Publication List …...………………………………………………...127

Chapter 1
1.1 The National Technology Roadmap for Semiconductors, (Semiconductor Industry Association, 1997), pp. 109-110.
1.2 H. B. Huntington and A. B. Pippard, “Electromigration in Metals,” in Electronic Thin Film Science for Electrical Engineers and Materials Scientists, edited by K. N. Tu, J. W. Mayer, and L. C. Feldman (Macmillan Publishing Company, New York, 1992) pp. 355-368.
1.3 C. -K. Hu, “Electromigration Failure Mechanisms in Bamboo-Grained Al(Cu) Interconnections,” Thin Soild Film 260, (1995) pp. 124-134.
1.4 A. S. Oates, F. Nkansah, and S. Chittipeddi, “Electromigration-Induced Drift Failure of Via Contacts in Multilevel Metallization,” J. Appl. Phys. 72, (1992) pp. 2227-2231.
1.5 J. Tao, K.K. Young, N.W. Cheung, and Chenming Hu, “Electromigration Reliability of Tungsten and Aluminum Vias and Improvements under AC Current Stress,” IEEE Trans. Electron Devices 40, (1993) pp. 1398-1405.
1.6 A. Amerasekera, and C. Duvvury, “ESD in Silicon Integrated Circuits,” edited by A. Amersekera (John Wiley & Sons, New York, 1995) pp. 1-7.
1.7 J. G. J. Chern, W. G. Oldham, and N. Cheung, “,” IEEE Trans. Elec. Dev., ED-32, (1986) pp. 1341-1346.
1.8 K. N. Tu and J. W. Mayer, “Silicide Formation,” in Thin Films Interdiffusions and Reactions, edited by I. M. Poate, K. N. Tu, and J. W. Mayer (Wiley, New York, 1978) pp. 359-363.
1.9 J. W. Mayer and S. S. Lau, “Metallization and Phase Diagrams,” in Electronic Materials Science: For Integrated Circuits in Si and GaAs, edited by J. W. Mayer and J. W. Mayer (Macmillan Publishing Company, New York, 1990) pp. 284-289.
1.10 L. J. Chen and K.N. Tu, “Epitaxial Growth of Transition-Metal Silicides on Silicon,” Mater. Sci. Rep. 6, (1991) pp. 53-140.
1.11 T. G. Finstad, J. W. Mayer, and M. A. Nicolet, “The Formation of NiSi From Ni2Si Studies with a Platium Marker,” Thin Solid Films 51, (1978) pp. 391-394.
1.12 M. A. Nicolet and S. S. Lau, in VLSI Electronics, Microstructure, and Science, edited by N. G. Einspruch and G. B. Larrabee (Academic Press, New York, 1983), Vol. 6, p 330.
1.13 W. J. Chen and L. J. Chen, “Interfacial Reactions of Nickel Thin Films on BF2+-Implanted (001)Si,” J. Appl. Phys. 70, (1991) pp. 2628-2633.
1.14 W. J. Chen and L. J. Chen, “Removal of End-of-Range Defects in BF2+ Implanted (111)Si by the Grain Growth of Thin NiS2 Overlayer,” J. Appl. Phys. 69, (1991) pp. 7322-7324.
1.15 T. Ohmi, T. Saito, T. Shibata, and T. Nitta, “Room-Temperature Copper Metallization for Ultralarge-Scale Integrated Circuits by a Low Kinetic-Energy Particle Process,” Appl. Phys. Lett. 52, (1988) pp. 2236-2238.
1.16 C. A. Chang, “Formation of Copper Silicides from Cu(100)/Si(100) and Cu(111)/Si(111) Structures,” J. Appl. Phys. 67, (1990) pp. 566-569.
1.17 A. Cros, M. D. Aboelfotoh, and K. N. Tu, “Formation, Oxidation, Electronic, and Electrical Properties of Copper Silicides,” J. Appl. Phys. 67, (1990) pp. 3328-3336.
1.18 L. Stolt and F. M. d’Heurle, “The Formation of Cu3Si: Marker Experiments,” Thin Soild Films 189, (1990) pp. 269-274.
1.19 S. Q. Hong, C. M. Comrie, S. W. Russell, and J. W. Mayer, “Phase Formation in Cu-Si and Cu-Ge,” J. Appl. Phys. 70, (1991) pp. 3655-3660.
1.20 T. Green, “A Review of EOS/ESD Field Failures in Military Equipment,” in Proc. 10th EOS/ESD Symposium, (1988) pp. 7-14.
Chapter 2
2.1 E. C. Jones and N. W. Cheung, “Modeling of Leakage Mechanisms in Sub-50 nm p+-n Junctions,” J. Vac. Sci. Technol. B 14(1), (1996) pp. 236-241.
2.2 E. C. Jones and E. Ishida, “Shallow Junction Doping Technologies For ULSI,” Mater. Sci. Eng. R24, (1998) pp. 1-80.
2.3 C. Hu, “Ultra-Large-Scale Integration Device Scaling and Reliability,” J. Vac. Sci. Technol. B 12(6), (1994) pp. 3237-3241.
2.4 L. H. Zhang, K. S. Jones, P. H. Chi, and D. S. Simons, “Transient Enhanced Diffusion Without {311} Defects in Low Energy B+-Implanted Silicon,” Appl. Phys. Lett. 67, (1995) pp. 2025-2027.
2.5 H. S. Chao, S. W. Crowder, P. B. Griff, and J. D. Plummer, “ Species and Dose Dependence of Ion Implantation Damage Induced Transient Enhanced Diffusion,” J. Appl. Phys. 79 (1996) pp. 2352-2363.
2.6 P. A. Stolk, H. —J. Gossmann, D. J. Eaglesham, D. C. Jackson, C. S. Rafferty, G. H. Gilmer, M. Jaraiz, J. M. Poate, H. S. Luftman, and T. E. Haynes, “Physical Mechanisms of Transient Enhanced Dopant Diffusion in Ion-Implanted Silicon,” J. Appl. Phys. 81 (1997) pp. 6031-6050.
2.7 H. C. -H. Wang, C. C. Wang, C. S. Chang, T. Wang, P. B. Griffin, and C. H. Diaz, “Interface Induced Uphill Diffusion of Boron: An Effective Approach for Ultrashallow Junction,” IEEE Electron Devices Lett. 22, (2001) pp. 65-67.
2.8 R. Kim, Y. Furuta, S. Hayashi, T. Hirose, T. Shano, H. Tsuji, and K. Taniguchi, “Anomalous Phosphous Diffusion in Si During Postimplantation Annealing,” Appl. Phys. Lett. 78, (2001) pp. 3818-3820.
2.9 H. C. -H. Wang, C. H. Diaz, B. K. Liew, J. Y. -C. Sun, and T. Wang, “Hot Carrier Reliability Improvement by Utilizing Phosphorus Transient Enhanced Diffusion for Input/Output Devices of Deep Submicron CMOS Technology,” IEEE Electron Device Lett. 21, (2000) pp. 598-600.
2.10 M. Fahey, P. B. Griffin, J. D. Plummer, “Point Defects and Dopant Diffusion in Silicon,” Rev. Mod. Phys. 61, (1989) pp. 289-389.
2.11 N. Hong, “0.2-mm p+-n Junction Characteristics Dependent on Implantation and Annealing Processes,” IEEE Electron Device Lett. 20, (1999) pp. 83-85.
2.12 Wakabayashi, M. Ueki, M. Narihiro, T. Fukai, N. Ikezawa, T. Matsuda, K. Yoshida, K. Takeuchi, Y. Ochiai, T. Mogami, and T. Kunio, “Sub-50-nm Physical Gate Length CMOS Technology and Beyond Using Steep Halo,” IEEE Trans. Electron Devices 49, (2002) pp. 89-95.
2.13 Kubo, M. Hori, and M. Kase, “Formation of Ultra-Shallow Junction by BF+2 Implantation and Spike Annealing,” Ion Implantation Tech., (2000) pp. 195-198.
2.14 Wakabayashi, M. Ueki, M. Narihiro, T. Fukai, N. Ikezawa, T. Matsuda, K. Yoshida, K. Takeuchi, Y. Ochiai, T. Mogami, and T. Kunio, “45-nm Gate Length CMOS Technology and Beyond Using Steep Halo,” Electron Device Meeting, 2000, IEDM Tech. Dig. International, (2000) pp. 49-52.
2.15 Shao, X. Lu, X. Wang, I. Rusakova, J. Liu, and W. K. Chu, “Retardation of Boron Diffusion in Silicon by Defect Engineering,” Appl. Phys. Lett. 78, (2001) pp. 2321-2323.
2.16 W. Holland and C. W. White, “Ion-Induced Damage and Amorphization in Si,” Nucl. Instrum. Methods Phys. Res. B 59, (1991) pp. 353-362.
2.17 P. Biersack and L. G. Haggmark, “A Monte Carlo Computer Program for The Transport of Energetic Ions in Amorphous Targets,” Nucl. Instrum. Methods, 174 (1980) pp. 257-269.
2.18 J. Eaglesham, P. A. Stolk, H. —J. Gossmann, and J. M. Poate, “Implantation and Transient B Diffusion in Si: The Source of The Interstitials,” Appl. Phys. Lett. 65, (1994) pp. 2305-2307.
2.19 Z. Pan, K. N. Tu, and A. Prussin, “Size-Distribution and Annealing Behavior of End-of-Range Dislocation Loops in Silicon-Implanted Silicon,” J. Appl. Phys. 81, (1997) pp. 78-84.
2.20 Laanab, C. Bergaud, C. Bonafos, A. Martinez, and A. Claverie, “Variation of End of Range Density with Ion Beam Energy and The Predictions of The “Excess Interstitials” Model,” Nucl. Instrum. Methods Phys. Res. B 96, (1995) pp. 236-240.
2.21 S. Jones, J. Liu, L. Zhang, V. Krishnamoorthy, R. T. Dehoff, “Studies of The Interactions Between (311) Defects and Type I and II Dislocation Loops in Si+ Implanted Silicon,” Nucl. Instrum. Methods Phys. Res. B 106, (1995) pp. 227-232.
2.22 Hochwitz, A. K. Henning, C. Levey, and C. Dahlian, and R. Finch, “Imaging Integrated Circuit Dopant Profiles With The Force-Based Scanning Kelvin Probe Microscope,” J. Vac. Sci. Technol. B 14, (1996) pp. 440-446.
2.23 “Scanning Capacitance Microscopy Support Note,” (Digital Instruments), No. 224, Rev. C.
2.24 “Carrier And Doping Density,” in 2nd. Edition, Semiconductor Material and Device Characterization, edited by D. K. Schroder, (New York, John Wiley & Sons, 1998) pp. 62-65.
Chapter 3
3.1 T. Kamins, “Applications”, in 2nd edition, Polycrystalline Silicon For Intgrated Circuits And Displays, edited by T. Kamins, (Boston, Kluwer Academic Publisher, 1998) pp. 245-315.
3.2 Y. Z. Wang and O. O. Awadelkarim, “Polycrystalline Silicon Thin Films Formed by Metal-Induced Solid Phase Crystallization of Amorphous Silicon,” J. Vac. Sci. Technol. A 16, (1998) pp. 3352-3358.
3.3 Y. Kuo and P. M. Kozlowski, “Polycrystalline Silicon Formation by Pulsed Rapid Thermal Annealing of Amorphous Silicon,” Appl. Phys. Lett. 69, (1996) pp. 1092-1094.
3.4 C. V. Thompson, “Secondary Grain Growth in Thin Films of Semiconductors: Theoretical Aspects,” J. Appl. Phys. 58, (1985) pp. 763-772.
3.5 K. Nakazawa, “Recrystallization of Amorphous Silicon Films Deposited by Low-Pressure Chemical Vapor Deposition from Si2H6 Gas,” J. Appl. Phys. 69, (1991) pp. 1703-1706.
3.6 S. F. Gong, H. T. G. Hentzell, and A. E. Robertsson, “Initial Soild-State Reactions Between Crystalline Sb and Amorphous Si Thin Films,” J. Appl. Phys. 64, (1988) pp. 1457-1463.
3.7 S. F. Gong, H. T. G. Hentzell, A. E. Robertsson, L. Hultman, S. -E. Hornstrom, and G. Radnoczi, “Al-Doped and Sb-Doped Polycrystalline Silicon Obtained by Means of Metal-Induced Crystallization,” J. Appl. Phys. 62, (1987) pp. 3726-3732.
3.8 L. Hultman, A. Robertsson, and H. T. G. Hentzell, I. Engstrom, and P. A. Psaras, “Crystallization of Amorphous Silicon during Thin-Film Gold Reaction,” J. Appl. Phys. 62, (1987) pp. 3647-3655.
3.9 G. Radnoczi, A. Robertsson, H. T. G. Hentzell, S. F. Gong, and M. -A. Hasan, “Al Induced Crystallization of a-Si,” J. Appl. Phys. 69, (1991) pp. 6394-6399.
3.10 Y. Yoon, J. Y. Oh, C. O. Kim, and J. Jang, “Low Temperature Solid Phase Crystallization of Amorphous Silicon at 380 ℃,” J. Appl. Phys. 84, (1998) pp. 6463-6465.
3.11 C. Hayzelden and J. L. Batstone, “Silicide Formation and Silicide-Mediated Crystallization of Nickel-Implanted Amorphous Silicon Thin Films,” J. Appl. Phys. 73, (1993) pp. 8279-8289.
3.12 J. Jang, J. Y. Oh, S. K. Kim, Y. J. Choi, S. Y. Yoon, and C. O. Kim, “Electric-Field-Enhanced Crystallization of Amorphous Silicon,” nature 395, (1998) pp. 481-483.
3.13 L. K. Lam, S. Chen, D. G. Ast, “Kinetics of Nickel-Induced Lateral Crystallization of Amorphous Silicon Thin-Film Transistors by Rapid Thermal and Furnace Anneals,” Appl. Phys. Lett. 74 (1999) pp. 1866-1868.
3.14 S. K. Lee, S. —K. Joo, “Low Temperature Poly-Si Thin-Film Transistor Fabrication by Metal-Induced Lateral Crystallization,” IEEE Electron Device Lett. 17 (1996) pp. 160-162.
3.15 I. Asai, N. Kato, M. Fuso, and T. Hamano, “Poly-Silicon Thin-Film Transistors with Uniform Performance Fabricated by Excimer Laser Annealing,” Jpn. J. Appl. Phys. 32 (1993) pp. 474-481.
3.16 A. M. McCarthy, K. H. Weiner, T. W. Sigmon, “Nanosecond Thermal Processing of Polysilicon Thin Films,” Mat. Res. Soc. Proc. 182, (1990) pp. 121-125.
3.17 T. Sameshima, Y. Kaneko, and N. Andoh, “Rapid Crystallization of Silicon Films Using Joule Heating of Metal Films,” Appl. Phys. A, 73 (2001) pp. 419-423.
3.18 S. -K. Jun, Y. -H. Yang, J. -B. Lee, and D. -K. Choi, “Electrical Characteristics of Thin-Film Transistors Using Field-Aided Lateral Crystallization,” Appl. Phys. Lett. 75 (1999) pp. 2235-2237.
3.19 T. Sameshima and K. Ozaki, “Crystallization of Silicon Thin Films by Current-Induced Joule Heating,” Thin Solid Films 383, (2001) pp. 107-109.
3.20 H. Muralami, K. Ono, and H. Takai, “Effect of Electric Field on Silicide Formation,” Appl. Surf. Sci. 117/118, (1997) pp. 289-293.
3.21 J. S. Huang, K. N. Tu, S. W. Bedell, W. A. Landford, S. L. Cheng, J. B. Lai, and L. J. Chen, “Polarity Effect on Failure of Ni and Ni2Si Contacts on Si,” J. Appl. Phys. 82, (1997) pp. 2370-2377.
Chapter 4
4.1 J. Liu, M. L. A. Dass, and R. Gronsky, “Transmission Electron Microscopy Study of Two-Dimensional Semiconductor Device Junction Delineation by Chemical Etching,” J. Vac. Sci. Technol. B 12(1), (1994) pp. 353-356.
4.2 D. M. Maher and B. Zhang, “Characterization of Structure/Dopant Behavior by Electron Microscopy,” J. Vac. Sci. Technol. B 12(1), (1994) pp. 347-352.
4.3 T. T. Sheng and C. C. Chang, “Transmission Electron Microscopy of Cross Section of Large Scale Integrated Circuits,” IEEE Trans. Electron Devices Ed-23, (1976) pp. 531-536.
4.4 N. Kato, H. Maruyama, and H. Saka, “Preparation of TEM Plan View Sections on Semiconductor Device Using the Tripod-Polisher and Chemical Etching,” J. Electron Microscopy 50(1), (2001) pp. 9-13.
4.5 J. P. Benedict, R. M. Anderson, and S. J. Klepeise, “Preparation of TEM Plane View Section on Specified Devices Using The Tripod Polisher,” in Electron Microscopy of Semiconducting Materials and ULSI Devices, 523, edited by C. Hayzelden, C. Hetherington, and F. Ross, (Materials Research Society, Pittsburgh, Pennsylvania, 1998) pp. 19-30.
Chapter 5
5.1 J. S. Huang, H. K. Liou, and K. N. Tu, “Polarity Effect of Electromigration in Ni2Si Contacts on Si,” Phys. Rev. Lett. 76, (1996) pp. 2346-2349.
5.2 J. S. Huang, K. N. Tu, S. W. Bedell, W. A. Landford, S. L. Cheng, J. B. Lai, and L. J. Chen, “Polarity Effect on Failure of Ni and Ni2Si Contacts on Si,” J. Appl. Phys. 82, (1997) pp. 2370-2377.
5.3 J. S. Huang, C. N. Liao, K. N. Tu, S. L. Cheng, and L. J. Chen, “Abnormal Electrical Behavior and Phase Changes in Implanted p+- and n+-Si Channels under High Current Densities”, J. Appl. Phys. 84, (1998) pp. 4788-4796.
5.4 J. S. Huang, C. Chen, C. C. Yeh, K. N. Tu, T. L. Shofner, J. L. Drown, R. B. Irwin, and C. B. Vartuli, “Effect of Current Crowding on Contact Failure in Heavily Doped n+- and p+-Silicon-on-Insulator,” J. Mater. Res., 15(2000) pp. 2387-2392.
5.5 C. N. Liao, C. Chen, J. S. Huang, and K. N. Tu, “Asymmetrical Heating Behavior of Doped Si Channels in Bulk Silicon and in Silicon-on-Insulator under High Current Stress,” J. Appl. Phys. 86, (1999) pp. 6895-6901.
5.6 W. J. Chen, F. R. Chen, and L. J. Chen, “Atomic Structure of Twin Boundary in NiSi2 Thin Films on (001)Si,” Appl. Phys. Lett. 60 (1992) pp. 2201-2203.
5.7 T. Kuroi, S. Kusunoki, M. Shirahata, Y. Okbayashi, M. Inuishi and N. Tsubouchi, “The Effect of Nitrogen Implantation into p+-Poly-Silicon Gate on Gate Oxide Properties,” Symp. On VLSI Technology Digest of Technical Papers, (1994) pp. 107-108.
5.8 A. Yasuoka, T. Kuroi, S. Shimizu, M. Shirahata, Y. Okumura, Y. Inoue, M. Inuishi, T. Nishimura, and H. Miyoshi, “The Effects on Metal Oxide Semiconductor Field Effect Transistor Properties of Nitrigen Implantation into p+-Polysilicon Gate,” Jpn. J. Appl. Phys. 36 (1997) pp. 617-622.
5.9 L. J. Chen, L. S. Hung, and J. W. Mayer. J. E. E. Baglin, J. M. Neri, and D. A. Hammer, “Epitaxial NiSi2 Formation by Plused Ion Beam Annealing,” Appl. Phys. Lett. 40 (1981) pp. 595-597.
5.10 J. X. Li, W. S. Yang, and T. Y. Tan, “Liquid Silicide Formation on the Si Wafer Free Surface during Ni Diffusion at 1200 ℃,” J. Appl. Phys. 71, (1992) pp. 196-203.
Chapter 6
6.1 J. S. Huang, C. Chen, C. C. Yeh, K. N. Tu, T. L. Shofner, J. L. Drown, R. B. Irwin, and C. B. Vartuli, “Effect of Current Crowding on Contacts Failure in Heavily Doped n+- and p+-Silicon-on-Insulator”, J. Mater. Res. 15, (2000) pp. 2387-2392.
6.2 C. -K. Hu, M. B. Small, and P. S. Ho, “Electromigration in Al(Cu) Two-Level Structures: Effect of Cu and Kinetics of Damage Formation”, J. Appl. Phys. 74, (1993) pp. 969-978.
6.3 Peng-Heng Chang, R. Hawkins, T. D. Bonifield, and L. A. Melton, “Aluminum Spiking at Contact Windows in Al/Ti-W/Si,” Appl. Phys. Lett. 52, (1988) pp. 272-274.
6.4 Chih Chen, J. S. Huang, C. N. Liao, and K. N. Tu, “Dopant Activation of Heavily Doped Silicon-on-Insulator by High Density Current,” J. Appl. Phys. 86, (1999) pp. 1552-1577.
6.5 J. S. Huang, K. N. Tu, S. W. Bedell, W. A. Lanford, S. L. Cheng, J. B. Lai, and L. J. Chen, “Polarity Effect on Failure of Ni and Ni2Si Contacts on Si,” J. Appl. Phys. 82, (1997) pp. 2370-2377.
6.6 J. S. Huang, H. K. Liou, and K. N. Tu, “Polarity Effect of Electromigration in Ni2Si Contacts on Si,” Phys. Rev. Lett. 76, (1996) pp. 2346-2349.
6.7 C. N. Liao, C. Chen, J. S. Huang, and K. N. Tu, “Asymmetrical Heating Behavior of Doped Si Channels in Bulk Silicon and in Silicon-on-Insulator under High Current Stress,” J. Appl. Phys. 86, (1999) pp. 6895-6901.
6.8 J. S. Huang, C. N. Liao, K. N. Tu, S. L. Cheng, and L. J. Chen, “Abnormal Electrical Behavior and Phase Changes in Implanted p+- and n+-Si Channels under High Current Densities”, J. Appl. Phys. 84, (1998) pp. 4788-4796.
6.9 A. Amerasekera, “ESD in Silicon Integrated Circuits”, John Wiley & Sons, New York, (1995) pp. 31-33.
6.10 J. X. Li, W. S. Yang, and T. Y. Tan, “Liquid Silicide Formation on the Si Wafer Free Surface during Ni Diffusion at 1200 ℃,” J. Appl. Phys. 71, (1992) pp. 196-203.
6.11 C. S. Liu and L. J. Chen, “Catalytic Oxidation of (001)Si in the Presence of Cu3Si at Room Temperature,” J. Appl. Phys. 74, (1993) pp. 3611-3613.
6.12 Bakhadyrkhanov, Boltaks, and Kulikov, “Diffusion Data,” edited by F. H. Wohlbier, (Diffusion Information Center, Cleveland, Ohio, Vol. 4, No. 2, 1970) p. 269.
6.13 Yashida, Saito, and R. H. Wohlbier, “Diffusion Data,” edited by R. H. Wohlbier, (Diffusion Information Center, Cleveland, Ohio, Vol. 1, No. 3, 1967) p. 110.
6.14 R. H. Wohlbier, “Diffusion Data,” edited by R. H. Wohlbier, (Diffusion Information Center, Cleveland, Ohio, Vol. 4, No. 1, 1970) pp. 15, 65-66.
6.15 R. N. Hall, and J. H. Racette, “Diffusion and Solubility of Copper in Extrinsic and Intrinsic Germanium, Silicon, and Gallium Arsenide”, J. Appl. Phys. 35, (1964) pp. 379-397.
6.16 R. H. Wohlbier, “Diffusion Data,” edited by R. H. Wohlbier, (Diffusion Information Center, Cleveland, Ohio, Vol. 1, No. 3, 1967) p. 32.
6.17 R. H. Wohlbier, “Diffusion Data,” edited by R. H. Wohlbier, (Diffusion Information Center, Cleveland, Ohio, Vol. 2, No. 3/4, 1968) pp. 255, 292, 308.
6.18 R. H. Wohlbier, “Diffusion Data,” edited by R. H. Wohlbier, (Diffusion Information Center, Cleveland, Ohio, Vol. 17, No. 3, 1978) p. 186.
6.19 K. N. Chen, H. H. Lin, S. L. Cheng, Y. C. Peng, G. H. Shen, L. J. Chen, C. R. Chen, J. S. Huang, and K. N. Tu, “ Silicide Formation in Implanted Channels and Interfacial Reactions of Metal Contacts under High Current Density,” J. Mater. Res. 14, No. 12, (1999) pp. 4720-4726.
6.20 Reed-Hill, “Solidification of Metals,” in Physical Metallurgy Principles edited by R. E. Reed-Hill and R. Abbaschian, (Boston: PWS Publication Company, 1991) p. 460.
6.21 S. M. Sze, “Physics of Semiconductor Devices,” 2nd ed., New York, John Wiley and Sons, (1985) pp. 42-44.
6.22 M. Brrett, M. Dennis, D. Tiffin, Y. Li, and C. K. Shih, “Two-Demensional Dopant Profiling of Very Large Scale Integrated Devices Using Selective Etching and Atomic Force Microscopy,” J. Vac. Sci. Technol. B 14(1), (1996) pp. 447-451.
Chapter 7
7.1 K. S. Jones, L. H. Zhang, V. Krishnamoorthy, M. Law, D. S. Simons, P. Chi, L. Rubin, and R. G. Elliman, “Diffusion of Ion Implanted Boron in Preamorphized Silicon,” Appl. Phys. Lett. 68, (1996) pp. 2672-2674.
7.2 G. Z. Pan, K. N. Tu, and A. Prussin, “Size-Distribution and Annealing Behavior of End-of-Range Dislocation Loops in Silicon-Implanted Silicon,” J. Appl. Phys. 81, (1997) pp. 78-84.
7.3 D. K. Sadana, N. R. Wu, J. Washburn, M. Current, A. Morgan, D. Reed, and M. Maenpaa, “The Effect of Recoiled Oxygen on Damage Regrowth and Electrical Properties of Through-Oxide Implanted Si,” Nucl. Instr. and Meth. 209/210, (1983) pp. 743-750.
7.4 L. Laanab, C. Bergaud, C. Bonafos, A. Martinez and A. Claverie, “Variation of End of Range Density with Ion Beam Energy and the Predictions of the “Excess Interstitials” Model,” Nucl. Instr. and Meth. B 96, (1995) pp. 236-240.
7.5 H. Ryssel, K. Muller, K. Haberger, R. Herkelmann, and F. Jahnel, “High Concentration Effects of Ion Implanted Boron in Silicon,” Appl. Phys. 22, (1980) pp. 35-38.
7.6 A. T. Fiory and K. K. Bourdelle, “Electrical Activation Kinetics for Shallow Boron Implants in Silicon,” Appl. Phys. Lett. 74, (1999) pp. 2658-2660.
7.7 C. Chen, J. S. Huang, C. N. Liao, and K. N. Tu, “Dopant Activation of Heavily Doped Silicon-on-Insulator by High Density Currents,” J. Appl. Phys. 86, (1999) pp. 1552-1557.
7.8 H. H. Lin, S. L. Cheng, and L. J. Chen, “Electromigration of Cu and Ti atoms and Dopant Junction Profiles in the p+-Si Implanted Channel under High-Density Current,” Mater. Sci. Semiconductor Processing 4, (2001) pp. 245-247.
7.9 S. M. Sze, “Physics of Semiconductor Devices,” 2nd ed., (New York, John Wiley and Sons, 1985) p. 42.
7.10 C. Bonafos, A. Claverie, D. Alquier, C. Bergaud, A. Martinez, L. Laanab and D. Mathiot, “The Effect of the Boron Doping Level on the Thermal Behavior of End-of-Defects in Silicon,” Appl. Phys. Lett. 71, (1997) pp. 365-367.
7.11 P. B. Hirsch, “Electron Microscopy of Thin Crystals,” 2nd, (New York, Robert E. Krieger Publishing Co., 1967) pp. 415-418.
Chapter 8
8.1 K. Nakazawa, “Recrystallization of Amorphous Silicon Films Deposited by Low-Pressure Chemical Vapor Deposition from Si2H6 Gas,” J. Appl. Phys. 69, (1991) pp. 1703-1706.
8.2 T. Aoyama, K. Ogawa, Y. Mochizuki, and N. Konishi, “Inverse Staggered Polycrystalline and Amorphous Silicon Double Structure Thin Film Transistors,” Appl. Phys. Lett. 66, (1995) pp. 3007-3009.
8.3 S. F. Gong, H. T. G. Hentzell, and A. E. Robertsson, “Initial Soild-State Reactions Between Crystalline Sb and Amorphous Si Thin Films,” J. Appl. Phys. 64, (1988) pp. 1457-1463.
8.4 S. F. Gong, H. T. G. Hentzell, A. E. Robertsson, L. Hultman, S. —E. Hornstrom, and G. Radnoczi, “Al-Doped and Sb-Doped Polycrystalline Silicon Obtained by Means of Metal-Induced Crystallization,” J. Appl. Phys. 62, (1987) pp. 3726-3732.
8.5 L. Hultman, A. Robertsson, and H. T. G. Hentzell, I. Engstrom, and P. A. Psaras, “Crystallization of Amorphous Silicon during Thin-Film Gold Reaction,” J. Appl. Phys. 62, (1987) pp. 3647-3655.
8.6 G. Radnoczi, A. Robertsson, H. T. G. Hentzell, S. F. Gong, and M. -A. Hasan, “Al Induced Crystallization of a-Si,” J. Appl. Phys. 69, (1991) pp. 6394-6399.
8.7 S. Y. Yoon, J. Y. Oh, C. O. Kim, and J. Jang, “Low Temperature Solid Phase Crystallization of Amorphous Silicon at 380 ℃,” J. Appl. Phys. 84, (1998) pp. 6463-6465.
8.8 T. Sameshima and K. Ozaki, “Current-Induced Joule Heating Used to Crystallize Silicon Thin Films,” Jpn. J. Appl. Phys. 39, (2000) pp. L651-L654.
8.9 T. Sameshima, Y. Kaneko, and N. Andoh, “Rapid Crystallization of Silicon Films Using Joule Heating of Metal Films,” Appl. Phys. A, 73 (2001) pp. 419-423.
8.10 C. Hayzelden and J. L. Batstone, “Silicide Formation and Silicide-Mediated Crystallization of Nickel-Implanted Amorphous Silicon Thin Films,” J. Appl. Phys. 73, (1993) pp. 8279-8289.
8.11 J. Jang, J. Y. Oh, S. K. Kim, Y. J. Choi, S. Y. Yoon, and C. O. Kim, “Electric-Field-Enhanced Crystallization of Amorphous Silicon,” nature 395, (1998) pp. 481-483.
8.12 Z. Jin, G. A. Bhat, M. Yeung, H. S. Kwok, and M. Wong, “Nickel Induced Crystallization of Amorphous Silicon Thin Films,” J. Appl. Phys. 84, (1998) pp. 194-200.
8.13 H. B. Huntington and A. B. Pippard, “Electromigration in Metals,” in Electronic Thin Film Science For Electrical Engineers and Materials Scientists, edited by K. N. Tu, J. W. Mayer, and L. C. Feldman (Macmillan Publishing Company, New York, 1992) pp. 355-368.
8.14 D. G. Pierce and P. G. Brusius, “Electromigration: A Review,” Microelectron. Reliab. 37, (1997) pp. 1053-1072.
8.15 R. S. Sorbello, “Theory of The Direct Force in Electromigration,” Phys. Rev. B., (1985) pp. 798-804.
Chapter 10
10.1 C. Chen, J. S. Huang, C. N. Liao, and K. N. Tu, “Dopant Activation of Heavily Doped Silicon-on-Insulator by High Density Currents,” J. Appl. Phys. 86, (1999) pp. 1552-1557.
10.2 H. Fujimori, M. Kakihana, K. Ioku, S. Goto, and M. Yoshimura, “Advantage of Anti-Stokes Raman Scattering for High-Temperature Measurements,” Appl. Phys. Lett. 79, (2001) pp. 937-939.
10.3 S. Bae and S. J. Fonash, “Defined Crystallization of Amorphous-Silicon Films Using Contact Printing,” Appl. Phys. Lett. 76, (2000) pp. 595-597.
10.4 K. Makihira and T. Asano, “Enhanced Nucleation in Solid-Phase Crystallization of Amorphous Si by Imprint Techanology,” Appl. Phys. Lett. 76, (2000) pp. 3774-3776.
10.5 I. Pelant, P. Fojtil, K. Luterova, J. Kocka, and J. Stepanek, “Room Temperature Electric Field Induced Crystallization of Wide Band Gap Hydrogenated Amorphous Silicon,” Thin Solid Films 383 (2001) pp. 101-103.
10.6 N. T. Golo, S. V. D. Wal, F. G. Kuper, and T. Mouthaan, “Estimation of The Impact of Electrostatic Discharge on Density of States in Hydrogenated Amorphous Silicon Thin-Film Transistors,” Appl. Phys. Lett. 80, (2002) pp. 3337-3339.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top