跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/04 07:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:紀冠守
研究生(外文):Kuan-Shou Chi
論文名稱:鐿金屬薄膜與矽晶之界面反應研究
論文名稱(外文):Interfacial Reactions of Ytterbium Metal Thin Films on Silicon
指導教授:陳力俊陳力俊引用關係
指導教授(外文):Lih-Juann Chen
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:225
中文關鍵詞:矽化鐿薄膜界面反應
外文關鍵詞:YtterbiumYtterbium SilicideInterfacial Reactions of Thin Films
相關次數:
  • 被引用被引用:0
  • 點閱點閱:386
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:1
摘要
利用歐傑電子能譜儀、低掠角X光繞射儀、掃瞄式電子顯微鏡、穿透式電子顯微鏡、X光能量散佈分析、高分辨穿透式電子顯微鏡、自身交互運算函數分析、以及倒晶格空間計算機模擬,研究鐿金屬薄膜與矽晶之界面反應情形。本研究可分為六部分:(1) 鐿金屬薄膜與矽單晶基材之低溫固相反應,(2) 鐿金屬薄膜與矽單晶基材之間非晶質中間層形成時的主要擴散物種,(3) 鐿矽多層薄膜界面反應,(4) (111)矽單晶基材上磊晶矽化鐿薄膜內空位有序化的演化及缺陷結構的觀察,(5) (001)矽單晶基材上多晶矽化鐿薄膜的相鑑定及主要擴散物種的偵測,(6) (001)矽單晶基材上磊晶矽化鐿薄膜的形成及空位有序化的演化。
鐿金屬薄膜與(111)及(001)矽單晶基材之間非晶質中間層的成長有著相似的情形,在150-215 oC時的初期成長是呈現線性成長行為,在(111)及(001)矽單晶基材上非晶質中間層成長的活化能及最大厚度分別為0.49 eV、8 nm及0.47 eV、7 nm。藉著自身交互運算函數分析,在非晶質中間層內發現鑲嵌著結晶相,因此觀察到了非晶質中間層和結晶相的同時成長,然而非晶質中間層的成長速率比結晶相還快,此競爭性的成長可以藉能量觀點的考量而得以瞭解。
藉著鉬團塊標記實驗可以偵測鐿金屬薄膜和矽單晶基材之間非晶質中間層形成過程的主要擴散物種。在超高真空電子槍蒸鍍系統內將多層結構的金屬薄膜沈積在(111)及(001)矽單晶基材上,在退火之前和退火之後,鉬團塊標記相對於矽單晶基材的位置藉高分辨穿透式電子顯微鏡、X光能量散佈分析、以及自身交互運算函數分析加以偵測,鉬團塊標記在非晶質中間層內的位移指出矽原子是非晶質中間層成長時的主要擴散物種。
在剛鍍膜的鐿矽多層薄膜試片內,鐿矽界面上形成了非晶質混和物。在退火300 oC半小時之後,鐿矽多層薄膜變成完全均質化,藉著自身交互運算函數分析,在非晶質混和物內可發現鑲嵌著微小結晶。當退火溫度達到400 oC以上,在含矽成分較多的非晶質化結構混和層結晶出YbSi2-x相,而含鐿成分較多的非晶質化結構混和層結晶出YbSi2-x及Yb2O3兩相。因此在結晶化過程中,YbSi2-x相較於其餘鐿矽化物有最低的成核活化能。
利用超高真空電子槍蒸鍍系統在(111)矽單晶基材上沈積鐿金屬薄膜再經退火熱處理可以成長磊晶矽化鐿薄膜。經過退火300 oC半小時之後,多餘繞射點的出現是歸因於磊晶矽化鐿薄膜內空位有序化的形成,以快速熱退火400-1000 oC之後,多餘繞射點的分裂是對應於兩組滑移式階梯結構的形成,隨著退火溫度的改變,這兩組滑移式階梯分佈的變化對應著空位濃度的改變。電腦模擬被使用來檢測空位有序化的結構,另外配合著平面及橫截面兩個方向,可以作電子繞射分析空位有序化的三維立體結構。在磊晶矽化鐿薄膜內的平面缺陷經分析是疊差,這些疊差可以藉高溫退火而加以消減。針孔也在磊晶矽化鐿薄膜內形成,而針孔可以藉適當的製程方法避免生成。在超高真空電子槍蒸鍍系統內以適當方法可以製造出磊晶矽/磊晶矽化鐿/(111)矽晶基材的雙異質磊晶結構,而上層覆蓋磊晶矽層內的主要缺陷是微雙晶。
利用超高真空電子槍蒸鍍系統在(001)矽單晶基材上沈積鐿金屬薄膜再經退火熱處理會成長多晶矽化鐿薄膜。藉由選區電子繞射鑑定此矽化物的晶粒是YbSi2-x相。藉由島嶼狀氮化矽標記實驗伴隨著電子顯微鏡觀察可以偵測矽化鐿薄膜形成過程的主要擴散物種,多晶矽化鐿薄膜在退火500 oC半小時之後形成,氮化矽標記位移的方向指出矽原子是矽化鐿薄膜形成過程當中的主要擴散物種。
利用超高真空電子槍蒸鍍系統在加熱的高溫(001)矽單晶基材上沈積鐿金屬薄膜可以成長磊晶矽化鐿薄膜。此磊晶矽化鐿薄膜內包含有兩種區域,這兩種區域是以矽化鐿[1 00]方向為軸而互相旋轉90o,這是由於界面上晶格不匹配的非對稱性造成的。在500oC之下鍍膜的試片內,多餘繞射點的出現是歸因於磊晶矽化鐿薄膜內空位有序化的形成,將試片退火熱處理700-1000 oC之後,空位有序化沿c軸的週期改變了。另外,在橫截面試片的電子繞射圖形內觀察到了滑移式階梯的結構,而且配合著平面及橫截面兩個方向,可以分析出空位有序化的三維立體結構。藉著掃瞄式電子顯微鏡及橫截面穿透式電子顯微鏡,觀察到了試片表面形成了高密度的針孔。

Abstract
Interfacial reactions of Yb thin films on silicon have been studied by Auger electron spectroscopy (AES), glancing incidence X-ray diffractometry (GIXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-ray (EDAX), high-resolution transmission electron microscopy (HRTEM) in conjunction with auto-correlation function (ACF) analysis as well as computer simulation.
The growth of the amorphous interlayer in both Yb/(111)Si and Yb/(001)Si systems was observed to exhibit similar behaviors. The growth was found to follow a linear growth law initially in samples anneled at 150-215 oC. The activation energies of the linear growth and maximum thicknesses of a-interlayers were measured to be 0.49 eV, 8 nm and 0.47 eV, 7 nm in Yb/(111)Si and Yb/(001)Si systems, respectively. Crystalline phases were found to embed in the amorphous interlayer by ACF analysis. Simultaneous growth of the a-interlayer and crystalline phase was observed and the growth rate of a-interlayer was faster than that of crystalline phases. The competitive growth can be understood from energetic consideration.
The dominant diffusing species in the formation of amorphous interlayer between Yb thin films and crystalline Si substrates have been determined by a Mo cluster marker experiment. Metal thin films with multilayered structures were deposited on both (111) and (001)Si substrates in an ultrahigh vacuum (UHV) electron beam evaporation system. The positions of the Mo cluster markers relative to the Si substrates, before and after heat treatment, were determined by HRTEM and EDAX as well as ACF analysis. The displacement of the Mo cluster markers in the amorphous interlayer during the Yb-Si interdiffusion indicates that Si atoms constitute the dominant diffusing species during the growth of the amorphous interlayer.
The interfacial reactions of Yb-Si multilayers were studied by HRTEM and ACF analysis. Amorphous mixtures were found to form at Yb/Si interfaces in as-deposited samples. After annealing the samples at 300 oC for 30 min, Yb-Si intermixing layers were found to completely homogenized. Small crystallites were found to embed in the amorphous mixture by ACF analysis. After annealing at higher than 400 oC, the crystalline YbSi2-x was found to form in Si-rich amorphous alloys. On the other hand, both YbSi2-x and Yb2O3 were found to form in Yb-rich amorphous alloys. The YbSi2-x phase, which has the lowest activation energy to nucleate, is the preferred phase in the Yb-Si interfacial reactions.
Epitaxial ytterbium silicide thin films were grown on (111)Si by UHV deposition and subsequent thermal annealing. In samples annealed at 300 ℃ for 30 min, the appearance of additional diffraction spots is attributed to the formation of an ordered vacancy superstructure in the epitaxial YbSi2-x thin films. In samples annealed at 400-1000 ℃ by RTA, the split of extra diffraction spots is correlated to the formation of two sets of out-of-step structures. The distribution of these two sets of out-of-step structures varied with annealing temperature which correlates to a change in vacancy concentration so that the compressive stress was relaxed. Computer simulation was carried out to determine the lattice structure of vacancy ordering structures. From studying the planview and cross-sectional TEM samples, the 3-dimentional structures of vacancy ordering were determined. Planar defects in YbSi2-x films were analyzed to be stacking faults on {10 0} planes with 1/6< 2 3> displacement vectors. The stacking faults were annihilated by high temperature annealing. Pinholes were also formed in the epitaxial YbSi2-x thin films and could be avoided by appropriate processing step. Epi-Si/epi-YbSi2-x /(111)Si double heteroepitaxial structures were fabricated in UHV chambers. The dominant defects in overgrown epi-Si layers were determined to be microtwins.
Polycrystalline ytterbium silicide thin films were grown on (001)Si by UHV deposition and subsequent thermal annealing. The silicide grains were identified to be YbSi2-x by selected area electron diffraction (SAED). The dominant diffusing species in the formation of ytterbium silicide have been determined by SiNx-island marker experiments in conjunction with TEM observation. Polycrystalline YbSi2-x thin films were formed in a-Si/Mo/Yb/SiNx/(001)Si samples after annealing at 500 oC for 30 min. The direction of SiNx marker displacement indicates that Si atoms constitute the dominant diffusing species during the formation of YbSi2-x thin films on (001)Si.
Epitaxial ytterbium silicide thin films were grown on (001)Si by in-situ high temperature UHV deposition. The epitaxial silicide layer consists of double domains which have two different azimuthal orientations making an angle of 90o to each other, since there is an anisotropy in lattice mismatch at the interface. In samples deposited at 500 oC, the appearance of additional diffraction spots is attributed to the formation of an ordered vacancy superstructure in the epitaxial YbSi2-x thin films. After annealing the samples at 700-1000 oC, the period of vacancy ordering along c-axis changes. Out-of-step structures were observed in cross-sectional electron diffraction patterns. From studying the planview and cross-sectional TEM samples, the 3-dimentional structures of vacancy ordering were determined. A high density of pinholes was found to form by SEM and XTEM observation.

Contents
PART I. INTRODUCTION
Chapter 1 Introduction
1.1 An Overview of Integrated-circuits……………………….. 6
1.2 Applications of Silicides ……………………………………10
1.3 Rare Earth Silicides ……………………………………….. 21
Chapter 2 Solid-State Amorphization and Silicide Formation
2.1 Introduction ………………………………………………. 28
2.2 Factors Influencing Amorphization………………………… 30
2.3 Heat of Formation of Solid and Liquid Alloys …………….. 35
2.4 Kinetic Aspects of Solid-State Amorphization 41
2.5 Solid-state Crystallization 43
2.6 Theories of Silicide Formation 44
2.7 Structure of Silicide/Si Interfaces 52
Chapter 3 Epitaxial Silicides
3.1 Introduction ………………………………………………… 55
3.2 Epitaxial Silicides ………………………………………….. 56
3.3 Structure of RE-Silicide/Si Interfaces ……………………... 57
PART II. EXPERIMENTAL PROCEDURES
Chapter 4 Experimental Procedures
4.1 Initial Wafer Cleaning ……………………………………… 60
4.2 Thin Metal Film Deposition ………………………………... 60
4.3 Silicon Nitride Film Deposition…………………………… 61
4.4 Thermal Annealing…………………………………………. 62
4.5 Selective Etching…………………………………………... 63
4.6 Sample Preparation for Transmission Electron Microscope
Observation ………………………………………………... 63
4.7 Transmission Electron Microscope Observation ………….. 65
4.8 Energy Dispersive Analysis of X-ray……………………… 66
4.9 Glancing Incidence X-Ray Diffraction……………………. 67
4.10 Scanning Electron Microscope Observation ………...…… 67
4.11 Auger Electron Spectroscopy…………………….….……..67
4.12 Computer Simulation of Reciprocal Lattices and Determination
of the Short-range Ordered Structures………………..….....68
PART III. RESULTS AND DISCUSSION
Chapter 5 Growth Kinetics of Amorphous Interlayers and Silicides Formation in Ultrahigh Vacuum Deposited Yb Metal Thin Films on (111) and (001)Si
5.1 Motivation …………………………………………………. 69
5.2 Experimental Procedures …………………………………... 71
5.3 Results and Discussion …………. ………………………… 73
Chapter 6 The Determination of Dominant Diffusing Species in the Growth of Amorphous Interlayer between Yb Metal Thin Films and Crystalline (111) and (001)Si
6.1 Motivation …………………………………………………. 80
6.2 Experimental Procedures …………………………………... 82
6.3 Results and Discussion………………………………………84
Chapter 7 Interfacial Reactions in Ultrahigh Vacuum Deposited Yb-Si Multilayer Thin Films
7.1 Motivation ………………………………………………… 89
7.2 Experimental Procedures …………………………………. 89
7.3 Results and Discussion ……………………………………. 91
Chapter 8 Evolution of Vacancy Ordering and Defect Structures in Epitaxial YbSi2-x Thin Films on (111)Si
8.1 Motivation………………………………..………………….96
8.2 Experimental Procedures …………………………………... 97
8.3 Results and Discussion……………………………………... 99
Chapter 9 The Growth of Polycrystalline YbSi2-x Thin Films on (001)Si and the Determination of Dominant Diffusing Species during the Silicide Formation
9.1 Motivation …………………………………………………. 111
9.2 Experimental Procedures ………………………………...... 111
9.3 Results and Discussion …………………………………….. 113
Chapter 10 Evolution of Vacancy Ordering and Defect Structures in Epitaxial YbSi2-x Thin Films on (001)Si
10.1 Motivation ………………………………………………… 117
10.2 Experimental Procedures ………………………………...... 117
10.3 Results and Discussion …………………………………… 118
PART IV. SUMMARY, CONCLUSIONS AND FUTURE PROSPECTS
Chapter 11 Summary and Conclusions …………………………… 123
Chapter 12 Future Prospects ……………………………………… 128
Appendix 1 The History of Rare Earth Elements………………….. 131
References …………………………………………………………. 136
Tables ………………………………………………………………. 172
Figures ………...……………………………………………………. 182

References
Chapter 1
1.1 B. Hoeneisen and C. A. Mead, "Fundamental Limitations in Microelectronics-I. MOS Technology", Solid State Electronics. 15, 819-829 (1972).
1.2 E. C. Douglas, "Advanced Process Technology for VLSI Circuits", Solid State Technology. 24, May, 65-72 (1981).
1.3 J. K. Hassan and H. G. Sarkary, "Lithography for VLSI : An Overview", Solid State Technology. 25, May, 49-59 (1982).
1.4 J. F. Marshall, "New Applications of Tape Bonding for High Lead Count Devices", Solid State Technology. 27, August, 175-179 (1984).
1.5 P. B. Ghate, "Aluminum Alloy Metallization for Integrated Circuits", Thin Solid Films, 83, 195-205 (1981).
1.6 A. J. Learn, "Effects of MOS Metallization Geometry and Processing on Mobile Impurities", J. Electrochem. Soc. 122, 1127-1132 (1975).
1.7 P. B. Ghate, J. C. Blair, and C. R. Fuller, "Metallization in Microelectronics", Thin Solid Films 45, 69-84 (1977).
1.8 D. Pramanik and A. V. Saxena, "VLSI Metallization Using Aluminum and Its Alloys", Solid State Technol. 26, January, 127-133 (1983).
1.9 J. O. McCaldin and H. Sankur, "Precipitation of Si from the Al Metallization of Intergrated Circuits", Appl. Phys. Lett., 20, 171-172 (1972).
1.10 J. H. Lin, “Interfacial Reactions of Vanadium and Chromium Metal Thin Films on Silicon”, Ph. D. Thesis, National Tsing Hua University, Hsinchu, Taiwan, R.O.C. (1995).
1.11 F. Faggin and T. Klein, "Silicon Gate Technology", Solid-State Electronics 13, 1125-1144 (1970).
1.12 P. L. Shah, "Refractory Metal Gate Processes for VLSI Applications", IEEE Trans. Electronics Devices ED-26, 632-640 (1979).
1.13 F. M. d’Heurle, N. G. Ainslie, A. Gangulee and M. C. Shine, "Activation Energy for Electromigration Failure in Aluminum Films Containing Copper", J. Vac. Sci. Technol. 9, 289-293 (1972).
1.14 H. Moissan, "The Electric Furnace", (English transl. by A. de Mouilpied) Edward Arnold, London, 1904.
1.15 R. Wehrmann, in "High-temperature Materials and Technology", (I. E. Campbell and E. M. Sherwood, eds.) Wiley, New York, 1967, p.399.
1.16 B. N. Padnos "Integrated silicon Device Technology", Vol. X. Chemical/Metallurgical Properties of Silicon, Research Triangle Inst., North Carolina, 1965.
1.17 M. P. Lepselter and J. M. Andrews, in "Ohmic Contacts to Semiconductors", (B. Schwartz, ed.) Electrochem. Soc., Princeton, New Jersey, 1969, p.159.
1.18 K. N. Tu and J. W. Mayer in "Thin Films-Interdiffusion and Reactions", (J. M. Poate, K. N. Tu and J. W. Mayer, eds.) Wiley, New York, 1978, p. 359.
1.19 D. M. Brown, W. E. Engeler, M. Garfinkel, and P. V. Gray, "Refractory Metal Silicon Device Technology", Solid State Electron. 11, 1105-1112 (1968).
1.20 S. P. Murarka, "Interaction in Metallization Systems for Integrated Circuits", J. Vac. Sci. Techno. B2, 693-706 (1984).
1.21 M. A. Nicolet, "Diffusion Barriers in Thin Films", Thin Solid Films, 52, 415-443 (l978).
1.22 P. S. Ho, "General Aspects of Barrier Layers for Very Large Scale Integration Applications", Thin Solid Films, 96, 301-316 (1982).
1.23 H. H. Hosak, "Electrical and Mechanical Features of the Platinum Silicide-Aluminum Reaction", J. Appl. Phys. 44, 3476-3485 (1973).
1.24 H. Grinolds and G. Y. Robinson, "Study of Al/Pd2Si Contacts on Si", J. Vac. Sci. Technol. 14, 75-78 (1977).
1.25 E. Hokelek and G. Y. Robinson, "Aluminum/nickel Silicide Contacts on Silicon", Thin Solid Films, 53, 135-140 (1978).
1.26 G. J. VanGurp, J. L. C. Daams. A. van Oostrom, L. S. M. Augustus, and Y. Tammings, "Aluminum-Silicide Reactions. I. Diffusion, Compound Formation, and Microstructure", J. Appl. Phys. 50, 6915-6922 (1979).
1.27 C. Y. Tine and M. Wittmer, "Investigation of the Al/TiSi2/Si Contact System", J. Appl. Phys. 54, 937-943 (1983).
1.28 J. A. Cunningham, P. R. Fuller. and C. T. Haywood, "Corrosion Resistance of Several Integrated-Circuit Metallization Systems", IEEE Trans. Reliab. 19. 182-187 (1970).
1.29 C. Y. Ting and M. Wittmer. "The Use of Titanium-Based Contact Barrier Layers in Silicon Technology", Thin Solid Films, 96, 327-345 (1982).
1.30 K. N. Tu, "Shallow and Parallel Silicide Contacts", J. Vac. Sci. Technol. 19, 766-777 (1981).
1.31 P. S. Ho, "Basic Problems in Interconnect Metallization for VLSI Applications", Proc. ROC IEDMS, Edited by L. J. Chen, (Hsinchu, ROC,1984), p.471.
1.32 A. Y. C. Yu, "Electron Tunneling and Contact Resistance of Metal Silicon Contact Barriers", Solid-State Electron, 13, 239-247 (1970).
1.33 S. P. Murarka, "Refractory Silicides for Integrated Circuits", J. Vac. Sci. Technol. 17, 775-792 (1980).
1.34 H. J. Geipel, Jr. N. Hsieh, M. H. Ishaq, C. W. Koburger, and F. R. White, "Composite Silicide Gate Electrodes-Interconnections for VLSI Device Technologies", IEEE Trans. Electron Devices, ED-27, 1417-1424 (1980).
1.35 T. P. Chow, A. J. Steckl, and R. T. Jerdonek, "Refractory MoSi2/Polysilicon Bulk CMOS circuits", IEEE Electron Devices Lett. EDL-3, 37-40 (1982).
1.36 M. Fukumoto, A. Shinohara, S. Okada, and K, Kugimiya, New MoSi2/Thin Poly-Si Gate Process: "Technology without Dielectric Degradation of Gate Oxide", IEEE Trans. Electron Devices, ED-31, 1432-1439 (1984).
1.37 V. Q. Ho and H. M. Naguib, "Characterization of Rapidly Annealed Mo-polycide", J. Vac. Sci. Technoi. A3, 896-899 (1985).
1.38 R. Portius, D. Dietrich, A. Hassner, T. Raschke, E. Wieser, and W. Wolke, "Formation of Stable MoSi2/Poly-Si Films by Rapid Thermal Annealing", Phys. Stat. Sol. (a)100, 199-206 (1987).
1.39 M. Y. Tsai, H. H. Chao, L. M. Ephrath, B. L. Crowder, A. Craser, R. S. Bennett, C. J. Lucchese, and M. R. Wordman, "One-Micron Polycide (WSi2 on Poly-Si) MOSFET Technology", J. Electrochem. Soc. 128, 2207-2214 (1981).
1.40 C. W. Koburger, H. J. Geipel, M. Ishaq, and L. A. A. Nesbit, "Controlling Void Formation in WSi2 Polycides", IEEE Electron Devices Lett. EDL-5, 166-168 (1984).
1.41 A. K. Sinha, W. S. Lindenberger, D. B. Fraser, S. P. Murarka, and E. N. Fuls, "MOS Compatibility of High-Conductivity TaSi2/N+ Poly-Si Gates", IEEE Trans. Electron Devices, ED-27, 1425-1430 (1980).
1.42 D. L. Kwong, R. Kwor, and B. Y. Tsaur, "Composite TaSi2/N+ Poly-Si Formation by Rapid Thermal Annealing", IEEE Electron Device Lett. EDL-5, 133-135 (1984).
1.43 S. P. Murarka and D. B. Fraser, "Thin Film Interaction Between Titanium and Polycrystalline Silicon", J. Appl. Phys. 51, 342-349 (1980).
1.44 W. R. Hunter and A. F. Tasch. "Composite TiSi2/N+ Poly-Si Low Resistivity Gate Electrode and Interconnect for VLSI Device Technology", IEEE Trans. Electron Devices, ED-29, 547-553 (1982).
1.45 T. Yachi, "Formation of a TiSi2/N+ Poly-Si Layer by Rapid Lamp Heating and its Application to MOS devices", IEEE Electron Devices Lett. EDL-5, 217-220 (1984).
1.46 Y. Narita, S. Ohya, Y. Murao, S. K.anauchi, and M. Kikuchi, "A High speed 1-Mbit EPROM with a Ti-Silicide Gate", IEEE Trans. Electron Devices, ED-32, 498-501 (1985).
1.47 A. N. Saxena and D. Pramanik, "VLSI Multilevel Metallization", Solid State Technol. 27, Dec. 93-100 (1984).
1.48 A. K. Sinha, "Refractory Metal Silicides for VLSI Applications", J. Vac. Sci. Technol. 19, 778-785 (1981).
1.49 M. Eizenberg, H. Foll, and K. N. Tu, "Formation of Shallow Schottky Contacts to Si Using Pt-Si and Pd-Si Alloy Films", J. Appl. Phys. 52, 861-868 (1981).
1.50 J. O. Olowolafe, K. N. Tu, and J. Angilello. "Contact Reaction Between Si and Pd-W Alloy Films", J. Appl. Phys. 50, 6316-6320 (1979).
1.51 M. Eizenburg, G. Ottaviani, and K. N. Tu, "Effect of Substrate Temperature on the Formation of Shallow Silicide Contacts on Si Using Pd-W and Pt-W Alloys", Appl. Phys. Lett. 37, 87-89 (1980).
1.52 J. O. Olowolafe, M. A. Nicolet, and J. W. Mayer, "Formation Kinetics of CrSi2 Films on Si Substrates with and without Interposed Pd2Si layer", J. Appl. Phys. 47, 5182-5186 (l976).
1.53 J. W. Mayer, S. S. Lau, and K. N. Tu, "Silicide Formation with Pd-V Alloys and Bilayers", J. Appl. Phys. 50. 5855-5859 (1979).
1.54 K. N. Tu, W. N. Hammer, and J. O. Olowolafe, "Shallow Silicide Contact", J. Appl. Phys, 51. 1663-1668 (1980).
1.55 S. P. Murarka, "Silicides for VLSI Applications", Academic Press, Orlando, Florida, 1 (1983).
1.56 S. P. Murarka and D. B. Fraser, "Silicide Formation in Thin Cosputtered (Titanium+Silicon) Polycrystalline Silicon and SiO2", J. Appl. Phys. 51, 350-356 (1980).
1.57 H. Jshiwaru, T. Asano, and S. Furukawa, "Epitaxial Growth of Element Semiconductor Films onto Silicide/Si and Fluoride/Si Structures", J. Vac. Sci. Technol. B1, 266-271 (1983).
1.58 K. L. Wang and G. P. Li, "A Proposed High-Frequency High-Power Silicon-Silicide Multilayered Device", IEEE Trans. Electron Device Lerr. EDL-4, 444-446 (1983).
1.59 R. T. Tung, A. F. J. Levi, and J. M. Jibson, "Control of a Natural Permeable CoSi2 Base Transistor", Appl. Phys. Lett. 48. 635-637 (1986).
1.60 F. A. d’Avitaya, "Si/CoSi2/Si Permeable Base Transistor Obtained by Silicon Molecular Beam Epitaxy over a CoSi2 Grating", Electronics Lett. 22, 699-700 (1986).
1.61 K. Ishibashi and S. Furukawa, "SPE-CoSi2 Submicron Lines by lift-off Using Selective Reaction and its Application to a Permeable-Base Transistor", IEEE Trans. Electron Devices, ED-33, 322-327 (1986).
1.62 K. Hikosaka, H. Ishiwara. and S. Furukawa, "Channeled Ion Implantation Through Metallic Films", J. Vac. Sci. Technol. 16, 1913-1916 (1979).
1.63 T. R. Harrison, A. M. Johnson. P. K. Tien, and A. H. Dayem, "NiSi2-Si Infrared Schottky Photodetectors Grown by Molecular Beam Epitaxy", Appl. Phys. Lett. 41. 734-736 (1982).
1.64 S. Saitoh, H. Ishiwara, T. Asano, and S. Furukawa, "Single Crystalline Silicide Formation", Jpn. J. Appl. Phys. 20, 1649-1656 (1981).
1.65 U. Koster. P. S. Ho. and J. E. Lewis, "Material Reactions in Al/Pd2Si/Si Junctions. I. Phase Stability", J. Appl. Phys. 53, 7436-7444 (1982).
1.66 R. T. Tung, J. M. Poate, J. C. Bean, S. M. Gibson. and D. C. Jacobson, "Epitaxial Silicides", Thin Solid Films, 93, 77-90 (1982).
1.67 R. T. Tung, "Schottky-Barrier Formation at Single-Crystal Metal-Semiconductor Interfaces", Phys. Rev. Lett. 52, 461-464 (1984).
1.68 T. Kawamura, D. Shinoda and H. Muta, "Oriented Growth of the Interfacial PtSi Layer or Between Pt and Si", Appl. Phys. Lett. 11, 101-103 (1967).
1.69 W. D. Buckley and S. C. Moss, "Structure and Electrical Characteristics of Epitaxial Palladium Silicide Contacts on Single Crystal Silicon and Diffused p-n Diodes", Solid State Electron, 15, 1331-1337 (1972).
1.70 G. J. van Gurp and C. Langereis, "Cobalt Silicide Layers on Si. I. Structure and Growth", J. Appl. Phys. 46. 4301-4307 (1975).
1.71 H. C. Cheng, I. C. Wu, and L. J. Chen, "Growth of Single-Crystalline CoSi2 on (111)Si in Solid Phase Epitaxy Regime by a Non-ultrahigh Vacuum Method", Appl. Phys. Lett. 50, 174-176, (1987).
1.72 C. S. Chang, C. W. Nieh. and L. J. Chen, "Partial Epitaxial Growth of HfSi2 Films Grown on Silicon", J. Appl. Phys. 61, 2393-2395 (1987).
1.73 J. J. Chu, L. J. Chen, and K. N. Tu, "Localized Epitaxial Growth of ReSi2 on (111) and (001) Silicon", J. Appl. Phys. 62, 461-465 (1987).
1.74 I. C. Wu, J. J. Chu, and L. J. Chen, "Localized Epitaxial Growth of TaSi2 on (111) and (001)Si by Rapid Thermal Annealing", J. Appl. Phys. 62, 879-884 (1987).
1.75 J. E. E. Baglin, F. M. d’Heurle and C. S. Petersson, "The Formation of Silicides from Thin Films of Some Rare-Earth Metals", Appl. Phy. Lett. 36, 594-596 (1980).
1.76 K. N. Tu, R. D. Thompson and B. Y. Tsaur, "Low Schottky-Barrier of Rare-Earth Silicide on n-Si", Appl. Phys. Lett. 38, 626-628 (1981).
1.77 H. Norde, Pires J. deSousa, F. M. d’Heurle, F. Pesavento, S. Petersson and P. A. Tove, "The Schottky-Barrier Height of The Contacts Between Some Rare-Earth-Metals (and Silicides) and p-type Silicide", Appl. phys. Lett. 33, 865-867 (1981).
1.78 A. Travlos, P. Aloupogiannis, E. Rokofyllou, C, Papastaikoudis, A. Traverse, and G. Weber, “Epitaxial Lutetium Silicide — Growth, Characterization and Electrical Properties”, J. Appl. Phys. 72, 948-952 (1992).
1.79 A. Travlos, N. Salamouras, and N. Boukos, “Growth, Structure and Electrical Properties of Epitaxial Thulium Silicide Thin Films on Silicon”, J. Appl. Phys. 81, 1217-1221 (1997).
1.80 F. H. Kaatz, W. R. Graham, J. van der Spiegel, and W. Joss, J. A. Chroboczak, “Anomalous Magnetotransport in Epitaxial TbSi2-x”, J. Vac. Sci. Technol. A9, 426-429 (1991).
1.81 M. P. Siegal, F. H. Kaatz, W. R. Graham, J. J. Santiago, and J. van der Spiegel, “Formation of Epitaxial Yttrium Silicide on (111) Silicon”, J. Appl. Phys. 66, 2999-3006 (1989).
1.82 J. Y. Duboz, P. A. Badoz, F. Arnaud d’Avitaya, and J. A. Chroboczek, “Electronic Transport Properties of Epitaxial Erbium Silicide Silicon Heterostructures”, Appl. Phys. Lett. 55, 84-86 (1989).
1.83 J. Pierre, E. Siaud, and D. Frachon, “Magnetic Properties of Rare Earth Disilicides RSi2”, J. Less Comm. Metals, 139, 321-329 (1988).
1.84 J. Pierre, S. Auffret, E. Siaud, R. Madar, E. Houssay, A. Rouault, and J. P. Senateur, “Magnetic Properties of Rare Earth Silicide Single Crystals PrSi2-x, NdSi2-x, GdSi2-x”, J. Magn. Magn. Mater. 89, 86-96 (1990).
1.85 P. L. Janega, J. McCaffrey, and D. Landheer, “Extrmely Low Resistivity Erbium Ohmic Contacts to N-Type Silicon”, Appl. Phys. Lett. 55, 1415-1417 (1989).
1.86 S. Vandre, T. Kalka, C. Preinesberger, I. Manke, H. Eisele, M. Dahne-Prietsch, R. Meier, E. Weschke, and G. Kaindl, “Growth and Electronic Structure of Dy Silicide on Si(111)”, Appl. Surf. Sci. 123/124, 100-103 (1998).
1.87 C. H. Luo and L. J. Chen, “Growth Kinetics of Amorphous Interlayers and Formation of Crystalline Silicide Phases in Ultrahigh Vacuum Deposited Polycrystalline Er and Tb Thin Films on (001)Si”, J. Appl. Phys. 82, 3808-3814 (1997).
1.88 R. D. Thompson, B. Y. Tsaur and K. N. Tu, "Contact Reaction Between Si and Rare Earth Metals", Appl. Phys. Lett. 38, 535-537 (1981).
1.89 J. A. Knapp and S. T. Picraux, "Epitaxial Growth of Rare-Earth Silicides on (111)Si", Appl. Phys. Lett. 48, 466-468 (1986).
1.90 E. Houssay, A. Rouault, O. Thomas, R. Madar and J. P. Senateur, "Metallurgical Reinvestigation of Rare-Earth Silicides", Appl. Surf. Sci. 38, 156-161 (1989).
1.91 R. Baptist, S. Ferrer, G. Grenet and H. C. Poon, "Surface Crystallography of YSi2-x Films Epitaxially Grown on Si(111) - An X-ray Photoelectron Diffraction Study", Phys. Rev. Lett. 64, 311-314 (1990).
1.92 R. T. Tung, J. C. Bean, M. M. Gibson, J. M. Poate, and D. C. Jacobson, "Growth of Single-Crystal CoSi2 on Si(111)", Appl. Phys. Lett. 40, 684-686 (1982).
1.93 R. T. Tung, J. M. Gibson, and J. M. Poate, "Growth of Single Crystal Epitaxial Silicides on Silicon by The use of Template Layers", Appl. Phys. Lett. 42, 888-890 (1983).
1.94 A. Zur, T. C. McGill and M. A. Nicolet, "Transition-Metal Silicides Lattice-Matched to Silicon", J. Appl. Phys. 57, 600-603 (l985).
1.95 J. E. E. Baglin, F. M. d’Heurle and C. S. Petersson, "Diffusion Marker Experiments with Rare-Earth Silicides and Germanides-Relative Mobilities of the 2 Atoms Species", J. Appl. Phys. 52, 2841-2846 (l98l).
1.96 L. Pahun, Y. Campidelli, Arnaud F. d’Avitaya and P. A. Badoz, "Infrared Response of Pt/Si/ErSi1.7 Heterostructure-Tunable Internal Photoemission Sensor", Appl. Phys. Lett. 60, 1166-1168 (1992).
1.97 C. S. Wu, S. S. Lau, T. F. Kuech and B. X. Liu, "Surface Morphology and Electronic Properties of ErSi2", Thin Solid Films, 104, 175-182 (1983).
1.98 J. A. Knapp, S. T. Picraux, C. S. Wu, and S. S. Lau, “Erbium Silicide Formation Using a Line Source Electron Beam”, Appl. Phys. Lett. 44, 747-749 (1984).
1.99 J. A. Knapp, S. T. Picraux, C. S. Wu, and S. S. Lau, “Kinetics and Morphology of Erbium Silicide Formation”, J. Appl. Phys. 58, 3747-3757 (1985).
1.100 C. Youn, K. Jungling, and W. W. Grannemann, “Microstructural and Electrical Properties of Gadolinium Silicide”, J. Vac. Sci. Techno. A6, 2474-2481 (1988).
1.101 C. C. Hsu, Y. X. Wang, J. Hu, J. Ho, and J. J. Gian, “The Effect of Thermal Treatment on the Thin Film Reaction of La, Ce and Nd on Silicon Surfaces”, J. Vac. Sci. Techno. A7, 3016-3022 (1989).
1.102 G. Molnár, G. Petö and E. Zsoldos, "Solid-Phase Reaction and Epitaxy of Gd-Silicide Films on Si Substrates", Appl. Surf. Sci. 70/71 466-469 (1993).
1.103 I .Geröcs, G. Molnár, E. Jároii, G. Zsoldos, G. Petö, J. Gyulai and E. Bugiel, "Epitaxial of Orthorhombic Gadolinium Disilicide on (100) Silicon", Appl. Phys. Lett. 51, 2144-2145 (1987).
1.104 Y. K. Lee, N. Fujimura, T. Ito and N. Itoh, "Epitaxial Growth of Erbium Silicide ErSi2-x on (100)Si", J. Cryst. Growth, 134, 247-254 (l993).
Chapter 2
2.1 H. Schroder and K. Samwer, "Micromechanism for Metallic-Glass Formation by Solid-State Reactions", Phys. Rev. Lett. 54, 197-200 (1985).
2.2 B. M. Clemens, W. L. Johnson, and R. B. Schwarz, "Amorphous Zirconium-Nickel Films Formed by Solid State Reactions", J. Non-Cryst. Solids 61, 817-822 (1984).
2.3 Ivo J. M. M. Raaijmakers, Alec H. Reader, and Piet H. Oosting, "The Formation of An Amorphous Silicide by Thermal Reaction of Sputter- Deposited Ti and Si layers", J. Appl. Phys. 63, 2790-2795 (1988).
2.4 W. Lur and L. J. Chen, "Growth Kinetics of Amorphous Interlayer Formed by Interdiffusion of Polycrystalline Ti Thin-Film and Single-Crystal Silicon", Appl. Phys. Lett. 54, 1217-1219 (1989).
2.5 B. M. Clemens, "Solid-State Reaction And Structure in Compositionally Modulated Zirconium-Nickle and Titanium-Nickle Films", Phys, Rev. B 33, 7615-7624 (1986).
2.6 R. W. Bené, "A Kinetic Model for Solid-State Silicide Nucleation", J. Appl. Phys. 61,1826-1833 (1987).
2.7 F. Y. Shiau, Ph. D. thesis, University of Wisconsin-Madison, 1990.
2.8 M. Nathan, "Solid Phase Reactions in Free-Standing Layered M-Si (M = Ti, V, Cr, Co) Films", J. Appl. Phys. 63, 5534-5540 (1988).
2.9 W. J. Meng, C. W. Nieh, and W. L. Johnson, "Maximum Thickness of Amorphous NiZr Interlayers Formed by A Solid-State Reaction Technique", Appl. Phys. Lett. 51, 1693-1695 (1987).
2.10 S. F. Gong and H. T. G. Hentzell, "Thermodynamic Investigations of Solid-State Si-Metal Interactions. II. General Analysis of Si-Metal Binary Systems", J. Appl. Phys. 68,4542-4549 (1990).
2.11 B. F. Dyson, T. R. Anthony, and D. Turnbull, "Interstitial Diffusion of Copper and Silver in Lead", J. Appl. Phys. 37, 2370-2374 (1966).
2.12 M. P. Dariel and L. Kornblit, "Anisotropic Fast Solute Diffusion of 198Au in Erbium Single Crystals", Phys. Rev. B 20, 3949-3956 (1979).
2.13 J. S. Kwak, E. J. Chi, J. D. Choi, S. W. Park, and H. K. Baik, "Prediction of Solid-State Amorphizing Reaction Using Effective Driving Force", J. Appl. Phys. 78, 983-987 (1995).
2.14 K. N. Tu, G. V. Chandrashekhar, and T. C. Thou, "Amorphous Alloy Formation by Solid State Reaction", Thin Solid Films, 163, 43-48 (1988).
2.15 R. B. Schwarz and W. L. Johnson, "Formation of An Amorphous Alloy by Solid-State Reaction of Pure Polycrystalline Metals", Phys. Rev. Lett. 51, 415-418 (1983).
2.16 A. R. Miedema, P. F. de Chatel, and F. R. de Boer, "Cohesion in Alloys-Fundamentals of a Semi-Empirical Model", Physica, 100 B, 1-28 (1980).
2.17 A. R. Miedema, R. Boom, and F. R. de Boer, "On the Heat of Formation of Solid Alloy", J. Less-Common Metals, 41, 283-298 (1975).
2.18 A. R. Miedema, "On the Heat of Formation of Solid Alloy II", J. Less- Common Metal, 46, 67-83 (1976).
2.19 R. Boom, F. R, de Boer, and A.R. Miedema, "On the Heat of Formation of Liquid Alloy II", J. Less-Common Metals, 46, 271-284 (1976).
2.20 U. Herold and U Koster, in B. Canter (ed.), Rapid Quenched Metals III, Vol. 1, The Metals Society, London, 1978, pp.281-290.
2.21 R. M. Wlaser and R. W. Bené, "First Phase Nucleation in Silicon-Transition-Metal Planar Interfaces", Appl. Phys. Lett. 28, 624-625 (1976).
2.22 K. N. Tu and J. W. Mayer, "Thin Films-Interdiffusion and Reactions", edited by J. M. Poate, K. N. Tu, and J. W. Mayer (wiley, New York, 1978).
2.23 M. H. Wang and L. J. Chen, "Phase Formation in The Interfacial Reactions of Ultrahigh Vacuum deposited Titanium Thin-films on (111)Si", J. Appl. Phys. 71, 5918-5925 (1992).
2.24 W. J. Chen and L. J. Chen, "Interfacial Reactions of Nickel Thin Films on BF2+-Implanted (001)Si", J. Appl. Phys. 70, 2628-2633 (1991).
2.25 B. Y. Tsaur, S. S. Lau, J. W. Mayer, and M. A. Nicolet, "Sequence of Phase Formation in Planar Metal-Si Reaction Couples", Appl. Phys. Lett. 38, 922-924 (1981).
2.26 L. J. Chen, C. M. Doland, I. W. Wu, J. J. Chu, and S. W. Lu, "The Effects of Implantation Impurities and Substrate Crystallinity on The Formation of NiSi2 on Silicon at 200-280 °C", J. Appl. Phys. 62, 2789-2792 (1987).
2.27 S. W. Lu, C. W. Nieh, and L. J. Chen, "Epitaxial Growth of NiSi2 on Ion-Implanted silicon at 250-280 °C", Appl. Phys. Lett. 49, 1770-1772 (1986).
2.28 M. H. Wang and L. J. Chen, "Simultaneous Occurrence of Multiphases in The Interfacial Reactions of Ultrahigh Vacuum Deposited Ti Thin films on (111)Si", Appl. Phys. Lett. 59, 2460-2462 (1991).
2.29 W. Y. Hsieh, J. H. Lin, and L. J. Chen, "Simultaneous Occurrence of Multiphases in the Interfacial Reactions of Ultrahigh Vacuum Deposited Hf and Cr Thin Films on (111)Si", Appl. Phys. Lett. 62, 1088-1090 (1991).
2.30 T. L. lee and L. J. Chen, "Interfacial Reactions of Ultrahigh Vacuum Deposited Yttrium Thin Films on (111)Si at Low Temperatures", J. Appl. Phys. 73, 8258-8266 (1993).
2.31 K. N. Tu, "Selective Growth of Meal-Rich Silicide of Near-Noble Metals", Appl. Phys. Lett. 27, 221-224 (1975).
2.32 N. W. Cheung, R. J. Culberstson, L. C. Feldman, P. J. Silverman, K. W. West, and J. W. Mayer, "Ni on Si(111) : Reactivity and Interface Structure", Phys. Rev. Lett. 45, 120-124 (1980).
2.33 C. D. Lien and M. A. Nicolet, "Impurity Effects in Transition Metal Silicides", J. Vac. Sci. Technol. B2, 738-747 (1984).
2.34 M. Wittmer, "Growth Kinetics of Platinum silicides", J. Appl. Phys. 54, 5081-5086 (1983).
2.35 P. S. Ho, "Chemical Bonding and Schottky Barrier Formation at Transition Metal-Silicon Interfaces", J. Vac. Sci. Technol. A1, 745-757 (1983).
2.36 P. S. Ho, G. W. Rubloff, J. E. Lewis, V. Moruzzi and A. R. Williams, "Chemical Bonding and Electronic Structure of Pd2Si", Phys. Rev. B22, 4784-4790 (1980).
2.37 P. J. Grunthaner, F. J. Grunthaner, and J. W. Mayer, "XPS Study of The Chemical Structure of The Nickel/Silicon Interface", J. Vac. Sci. Technol. 17, 924-929 (1980).
2.38 A. Franciosi, D. J. Peterman, and J. H. Weaver, "Silicon-Refractory Metal Interfaces : Evidence of Room Temperature Intermixing for Si-Cr", J. Vac. Sci. Technol. 19, 657-660 (1981).
2.39 M. A. Taubenblatt and C. R. Helms, "Silicide and Schottky Barrier Formation in The Ti-ai and The Ti-SiOx-Si Systems", J. Appl. Phys. 53, 6308-6315 (1982).
2.40 A. Franciosi and J. H. weaver, "Si-Metal Interface Reaction and Bulk Electronic Structure of silicides", Physica 117B/118B, 846-847 (1983).
2.41 R. Butz, G. W. Rubloff, T. Y. Tan, and P. S. Ho, "Chemical and Structural Aspects of Reaction at The Ti/Si Interface", Phys. Rev. B30, 5421-5429 (1984).
Chapter 3
3.1 T. Kawamura, D. shinoda, and H. Muta, "Oriented Growth of the Interfacial PtSi Layer or Between Pt and Si", Appl. Phys. Lett. 11, 101-103 (1967).
3.2 W. D. Buckley and S. C. Moss, "Structure and Electrical Characteristics of Epitaxial Palladium Silicide Contacts on single Crystal Silicon and Diffused P-N Diodes", Solid State Electronics 15, 1331-1337 (1972).
3.3 G. J. van Gurp and C. Langereis, "Cobalt Silicide Layers on Si. 1. Structure and Growth", J. Appl. Phys. 46, 4301-4307 (1975).
3.4 I. C. Wu, J. J. Chu, and L. J. Chen, "Local Epitaxy of TiSi2 on (111)Si", J. Appl. Phys. 60, 3172-3175 (1986).
3.5 I. C. Wu, J. J. Chu, and L. J. Chen, "Local Epitaxy Growth of TaSi2 on (111) and (001)Si by rapid Thermal Annealing", J. Appl. Phys. 62, 879-884 (1987).
3.6 K. N. Tu, R. D. Thompson, and B-Y. Tsaur, "Low Schottky Barrier of Rare-Earth Silicide on n-Si", Appl. Phys. Lett. 38,626-628 (1981).
3.7 H. Norde, J. de Sousa Pires, F. M. d’Heurle, F. Pesavento, S. Petersson, and P. A. Tove, "The Schottky-Barrier Height of The Contacts Between Some Rare Earth Metals (and Silicides) and p-type Silicon", Appl. Phys. Lett. 38,865-867 (1981).
3.8 J. E. E. Baglin, F. M. d’Heurle, and C. S. Petersson, "The Formation of Silicides From Thin-Films of Some Rare-Earth-Metals", Appl. Phys. Lett. 36, 594-596 (1980).
3.9 R. D. Thompson, B-Y. Tsaur, and K. N. Tu, "Contact Reaction Between Si And Rare Earth Metals", Appl. Phys. Lett. 38, 535-537 (1981).
3.10 C. S. Wu, S. S. Lau, T. F. Kuech, and B. X. Liu, "Surface Mophology And Electronic Properties of ErSi2", Thin Solid Films 104,175-182 (1983).
3.11 S. S. Lau, C. S. Pai, and C. S. Wu, T. F. Kuech, and B. X. Liu, "Surface Morphology of Erbium Silicide", Appl. Phys. Lett. 41, 77-80 (1982).
3.12 P. Paki, U. Kafader, P. Wetzel, C. Pirri, J. C. Peruchetti, D. Bolmont, and G. Gewinner, "Growth of A Two-Dimensional Er Silicide on Si(111)", Phys. Rev. B 45, 8490-8493 (1992).
3.13 P. Wetzel, C. Pirri, P. Paki, D. Bolmont, and G. Gewinner, "Structure of Two-Dimension Epitaxial Er Silicide on Si(111) Investigated by Auger-Electron Diffraction", Phys. Rev. B 47, 3677-3683 (1993).
3.14 J. A. Knapp and S. T. Picraux, "Epitaxial Growth of Rare-Earth Silicides on (111)Si", Appl. Phys. Lett. 48, 466-468 (1986).
3.15 Y. K. Lee, N. Fujimura, and T. Ito, "Epitaxial Growth of Yttrium Silicdie YSi2-x on (100)Si", J. Alloys and Compounds, 193, 289-291 (1993).
3.16 C. Youn, K. Jungling, and W. W. Grannemann, "Microstructural and Electrical Properties of Gadolinium Silicide", J. Vac. Sci. Technol. A6, 2474-2481 (1988).
3.17 I. Geröcs, G. Molnar, E. Jaroli, E. Zsoldos, G. Petö, and J. Gyulai, "Epitaxy of Orthothombic Gadolinium Disilicide on <100> Silicon", Appl. Phys. Lett. 51, 2144-2145 (1987).
Chapter 4
4.1 T. T. Sheng and C. C. Chang, "Transmission Electron Microscopy of Cross-section of Large Scale Integrated Circuits", IEEE Trans. Electron. Devices ED-23, 531-536 (1976).
Chapter 5
5.1 J. S. Kwak, E. J. Chi, J. D. Choi, S. W. Park, H. K. Baik, M. G. So, and S. M. Lee, "Prediction of Solid-State Amorphizing Reaction Using Effective Driving Force", J. Appl. Phys. 78, 983-987 (1995).
5.2 J. R. Abelson, K. B. Kim, D. E. Mercer, C. R. Helms, R. Sinclair, and T. W. Sigmon, "Disordered Intermixing at The Platinum: Silicon Interface Demonstrated by High-Resolution Cross-Sectional Transmission Electron Microscopy, Auger Electron Spectroscopy, and MeV Ion Channeling", J. Appl. Phys. 63, 689-692 (1988).
5.3 L. J. Chen, I. W. Wu, J. J. Chu, and C. W. Nieh, "Effects of Backsputtering and Amorphous Capping Layer on the Formation of TiSi2 in Sputtered Ti Thin Films on (001)Si by Rapid Thermal Annealing," J. Appl. Phys. 63, 2778-2782 (1988).
5.4 A. E. Morgan, E. K. Broadbent, K. N. Ritz, D. K. Sandana, and B. J. Burrow, "Interactions of Thin Ti Films with Si, SiO2, Si3N4, and SiOxNy Under Rapid Thermal Annealing", J. Appl. Phys. 64, 344-353 (1988).
5.5 W. Lur and L. J. Chen, "Growth Kinetics of Amorphous Interlayer Formed by Interdiffusion of Polycrystalline Ti Thin Film and Single-Crystal Silicon," Appl. Phys. Lett. 54, 1217-1219 (1989).
5.6 J. Y. Cheng and L. J. Chen, "Growth Kinetics of Amorphous Interlayers by Solid-State Diffusion in Zr/Si and Hf/Si Systems," J. Appl. Phys. 68, 4002-4007 (1990).
5.7 J. Y. Cheng and L. J. Chen, "Growth Kinetics of Amorphous Interlayers by Solid-State Diffusion in Ultrahigh Vacuum Deposited Nb and Ta Thin Films on Silicon," J. Appl. Phys. 69, 2161-2168 (1991).
5.8 T. L. Lee and L. J Chen, "Interfacial Reactions of Ultrahigh Vacuum Deposited Y Thin Films on Atomically Clean (111)Si," J. Appl. Phys. 73, 8258-8266 (1993).
5.9 W. Y. Hsieh, J. H. Lin, and L. J. Chen, "Simultaneous Occurrence of Multiphases in the Interfacial Reactions of Ultrahigh Vacuum Deposited Hf and Zr Thin Films on (111)Si," Appl. Phys. Lett. 62, 1088-1090 (1993).
5.10 J. C. H. Spence, Experimental High Resolution Electron Microscopy, 2nd ed. (Oxford University Press, New York, 1988), p. 75.
5.11 G. Y. Fan and J. M. Cowley, "Auto-Correlation Analysis of High Resolution Electron Micrographs of Near-Amorphous Thin Films", Ultramicroscopy 17, 345-356 (1985).
5.12 J. Frank, Computer Processing of Electron Microscope Images (Springer, Berlin, 1980), p. 187.
5.13 C. H. Luo and L. J. Chen, "Growth Kinetics of Amorphous Interlayers and Formation of Crystalline Silicde Phases in Ultrahigh Vacuum Deposited Polycrystalline Er And Tb Thin Films on (001)Si", J. Appl. Phys. 82, 3808-3814 (1997).
5.14 H. V. Suu, G. Petõ, G. Mezey, F. Pászti, E. Kótai, M. Fried, A. Manuaba, E. Zsoldos, and J. Gyulai, "Formation of GdSi2 Under UHV Evaporation And in situ Annealing", Appl. Phys. Lett. 48, 437-438 (1986).
5.15 J. E. E. Baglin, F. M. d’Heurle, and C. S. Petersson, " The Formation of Silicides From Thin-Films of Some Rare-Earth-Metals ", Appl. Phys. Lett. 36, 594-596 (1980).
5.16 T. L. Alford, "Formation And Kinetics of Ion Induced Yttrium Silicide Layers", J. Appl. Phys. 77, 1010-1014 (1995).
5.17 T. L. Lee and L. J. Chen, "Formation of Amorphous Interlayers in Ultrahigh Vacuum Deposited Yttrium Thin Films on (111)Si", J. Appl. Phys. 73, 5280-5282 (1993).
5.18 K. S. Chi and L. J. Chen, “Formation of Ytterbium Silicide on (111) and (001)Si by Solid-State Reactions”, Mater. Sci. in Semicon. Proc. 4, 269-272 (2001).
5.19 K. S. Chi and L. J. Chen, “Interfacial Reactions of Ultrahigh Vacuum Deposited Ytterbium Thin Films on Silicon”, Micron 33, 549-553 (2002).
5.20 J. C. Chen, G. H. Shen, and L. J. Chen, "Growth Kinetics of Amorphous Interlayers By Solid-State Diffusionin Ultrahigh Vacuum Deposited Polycrystalline Gd Thin Films on (001)Si," J. Appl. Phys. 84, 6083-6087 (1998).
5.21 R. B. Schwarz and W. L. Johnson, "Formation of An Amorphous Alloy by Solid-State Reaction of Pure Polycrystalline Metals", Phys. Rev. Lett. 51, 415-418 (1983).
5.22 A. R. Miedema, P. F. de Chatel, and F. R. de Boer, "Cohesion in Alloys-Fundamentals of a Semi-Empirical Model", Physica, 100 B, 1-28 (1980).
5.23 L. J. Chen, J. M. Liang, C. S. Liu, J. H. Lin, W. Y. Hsieh, M. H. Wang, and W. J. Chen, "High-Resolution Transmission Electron Microscopy Investigation of Interfaces in Metal-Silicon Systems", Ultramicroscopy 54, 156-165 (1994).
Chapter 6
6.1 R. D. Thompson, B. Y. Tsaur and K. N. Tu, "Contact Reaction Between Si and Rare Earth Metals", Appl. Phys. Lett. 38, 535-537 (1981).
6.2 K. N. Tu, R. D. Thompson and B. Y. Tsaur, "Low Schottky-Barrier of Rare-Earth Silicide on n-Si", Appl. Phys. Lett. 38, 626-628 (1981).
6.3 H. Norde, Pires J. deSousa, F. M. d’Heurle, F. Pesavento, S. Petersson and P. A. Tove, "The Schottky-Barrier Height of The Contacts Between Some Rare-Earth-Metals (and Silicides) and p-type Silicide", Appl. phys. Lett. 33, 865-867 (1981).
6.4 J. A. Knapp and S. T. Picraux, "Epitaxial Growth of Rare-Earth Silicides on (111)Si", Appl. Phys. Lett. 48, 466-468 (1986).
6.5 T. L. Lee and L. J. Chen, "Formation of Amorphous Interlayers in Ultrahigh Vacuum Deposited Yttrium Thin Films on (111)Si", J. Appl. Phys. 73, 5280-5282 (1993).
6.6 T. L. Lee and L. J Chen, "Interfacial Reactions of Ultrahigh Vacuum Deposited Y Thin Films on Atomically Clean (111)Si," J. Appl. Phys. 73, 8258-8266 (1993).
6.7 C. H. Luo and L. J. Chen, "Growth Kinetics of Amorphous Interlayers and Formation of Crystalline Silicde Phases in Ultrahigh Vacuum Deposited Polycrystalline Er And Tb Thin Films on (001)Si", J. Appl. Phys. 82, 3808-3814 (1997).
6.8 J. C. Chen, G. H. Shen, and L. J. Chen, "Growth Kinetics of Amorphous Interlayers By Solid-State Diffusionin Ultrahigh Vacuum Deposited Polycrystalline Gd Thin Films on (001)Si," J. Appl. Phys. 84, 6083-6087 (1998).
6.9 L. J. Chen, J. H. Lin, T. L. Lee, C. H. Luo, W. Y. Hsieh, J. M. Liang, and M. H. Wang, “High Resolution Electron Microscopy of Amorphous Interlayers between Metal Thin Films and Silicon”, Microscopy Research and Technique, 40, 136-151 (1998).
6.10 L. J. Chen, “Solid State Amorphization in Metal/Si Systems”, Materials Science and Engineering, R29, 115-152 (2000).
6.11 M. Bartur and M.-A. Nicolet, "Marker Experiments for Diffusion in The Silicide During Oxidation of PdSi, Pd2Si, CoSi2, and NiSi2 Films on ", J. Appl. Phys. 54, 5404-5415 (1983).
6.12 W. K. Chu, H. Krautle, J. W. Mayer, H. Muller, M-A. Nicolet, and K. N. Tu, “Identification of the Dominant Diffusing Species in Silicide Formation”, Appl. Phys. Lett. 25, 454-457 (1974).
6.13 W. K. Chu, S. S. Lau, J. W. Mayer, H. Muller, and K. N. Tu, “Implanted Noble Gas Atoms as Diffusion Markers in Silicide Formation”, Thin Solid Films 25, 393-402 (1975).
6.14 F. M. d’Heurle and C. S. Petersson, “Formation of Thin Films of CoSi2: Nucleation and Diffusion Mechanisms”, Thin Solid Films 128, 283-297 (1985).
6.15 G. J. Van Gurp, D. Sigurd, and W. F. Van der Weg, “Tungsten as a Marker in Thin-Film Diffusion Studies”, Appl. Phys. Lett. 29, 159-161 (1976).
6.16 C. M. Comrie and R. T. Newman, “Dominant Diffusing Species during Cobalt Silicide Formation”, J. Appl. Phys. 79, 153-156 (1996).
6.17 B. S. Lim, E. Ma, M-A. Nicolet, and M. Natan, “Kinetics and Moving Species during Co2Si Formation by Rapid Thermal Annealing”, J. Appl. Phys. 61, 5027-5030 (1987).
6.18 R. Pretorious, J. O. Olowolafe, and J. W. Mayer, “Radioactive Silicon Tracer Studies of the Formation of CrSi2 on Pd2Si and PtSi”, Philo. Mag. A37, 327-336 (1978).
6.19 R. Pretorious, M. A. E. Wandt, J. E. McLeod, A. P. Botha, and C. M. Comrie, “Determination of the Diffusing Species and Diffusing Mechanism during CoSi, NiSi, and PtSi Formation by Using Radioactive Silicon as a Tracer”, J. Electrochem. Soc. 136, 839-842 (1989).
6.20 J. E. E. Baglin, F. M. d’Heurle, and C. S. Petersson, “Diffusion Marker Experiments with Rare-Earth Silicides and Germanides: Relative Mobilities of the Two Atom Species”, J. Appl. Phys. 52, 2841-2846 (1981).
6.21 A. Travlos, P. Aloupogiannis, G. Weber, and G. Robaye, “Duffusion Marker Experiments with Rare-Earth Silicides: The Case of Lutetium Silicide”, J. Appl. Phys. 70, 7620-7622 (1991).
6.22 J. C. Chen, G. H. Shen, and L. J. Chen, "The Determination of Dominant Diffusing Species in The Growthof Amorphous Interlayer between Gd and Si Thin Films by a Mo Cluster MarkerExperiment," J. Appl. Phys. 83, 7653-7657 (1998).
6.23 Binary Alloy Phase Diagrams, edited by H. Okamoto, P. R. Subramanian, and L. Kacprzak (ASM International, Materials Park, Ohio, 1990), Vol. 3, p 2666.
6.24 Binary Alloy Phase Diagrams, edited by H. Okamoto, P. R. Subramanian, and L. Kacprzak (ASM International, Materials Park, Ohio, 1990), Vol. 3, p 2688.
6.25 J. M. Liang and L. J. Chen, "Auto Correlation Function Analysis of Phase Formation in The Initial Stage of Interfacial Reactions of Molybdenum Thin Films on (111)Si ", Appl. Phys. Lett. 64, 1224-1226 (1994).
6.26 S. Q. Wang and J. W. Mayer, "Marker Barrier Effect in Diffusion Species Study of Ni/Al and W/Al Reactions", Thin Solid Films 207, 37-41 (1992).
6.27 G. Y. Fan and J. M. Cowley, "Auto-Correlation Analysis of High Resolution Electron Micrographs of Near-Amorphous Thin Films", Ultramicroscopy 17, 345-356 (1985).
6.28 Link ISIS Operator’s Manual (Oxford Instruments (UK) Limited, Buckinghamshire, England, 1995).
6.29 K. Nakamura, J. O. Olowolafe, S. S. Lau, M. A. Nicolet, J. W. Mayer, and R. Shima, "Interaction of Metal Layers with Polycrystalline Si", J. Appl. Phys. 47, 1278-1283 (1976).
6.30 J. O. Olowolafe, M. A. Nicolet, and J. W. Mayer, "Influence of the Nature of the Si Substrate on Nickle Silicide Formed From Thin Nickle Films", Thin Solid Films 38, 143-150 (1976).
Chapter 7
7.1 R. D. Thompson, B. Y. Tsaur and K. N. Tu, "Contact Reaction Between Si and Rare Earth Metals", Appl. Phys. Lett. 38, 535-537 (1981).
7.2 K. N. Tu, R. D. Thompson and B. Y. Tsaur, "Low Schottky-Barrier of Rare-Earth Silicide on n-Si", Appl. Phys. Lett. 38, 626-628 (1981).
7.3 H. Norde, Pires J. deSousa, F. M. d’Heurle, F. Pesavento, S. Petersson and P. A. Tove, "The Schottky-Barrier Height of The Contacts Between Some Rare-Earth-Metals (and Silicides) and p-type Silicide", Appl. phys. Lett. 33, 865-867 (1981).
7.4 K. S. Chi and L. J. Chen, “Interfacial Reactions of Ultrahigh Vacuum Deposited Ytterbium Thin Films on Silicon”, Micron 33, 549-553 (2002).
7.5 K. S. Chi and L. J. Chen, “Formation of Ytterbium Silicide on (111) and (001)Si by Solid-State Reactions”, Mater. Sci. in Semicon. Proc. 4, 269-272 (2001).
7.6 M. Atzmon, J. D. Verhoeven, E. D. Gibson, and W. L. Johnson, “Formation and Growth of Amorphous Phases by Solid-State Reaction in Elemental Composites Prepared by Cold Working”, Appl. Phys. Lett. 45, 1052-1053 (1984).
7.7 T. L. Lee and L. J. Chen, "Interfacial Reactions in Ultrahigh Vacuum Deposited Y-Si Multilayer Thin Films," J. Appl. Phys. 75, 2007-2014 (1994).
7.8 J. M. Liang and L. J. Chen,"Interfacial Reactions and Thermal Stability of UHV Deposited Multilayered Mo/Si Structures," J. Appl. Phys. 79, 4072-4077 (1996).
7.9 C. H. Luo and L. J. Chen, "Interfacial Reactions in Ultrahigh Vacuum Deposited Er-Si Multilayers," Appl. Surf. Sci. 113/114, 556-561 (1997).
7.10 R. B. Schwarz and W. L. Johnson, "Formation of An Amorphous Alloy by Solid-State Reaction of Pure Polycrystalline Metals", Phys. Rev. Lett. 51, 415-418 (1983).
7.11 A. R. Miedema, P. F. de Chatel, and F. R. de Boer, "Cohesion in Alloys-Fundamentals of a Semi-Empirical Model", Physica, 100 B, 1-28 (1980).
Chapter 8
8.1 T. L. Lee, “Interfacial Reactions of Yttrium Thin Films on Silicon”, Ph. D. Thesis, National Tsing Hua University, Hsinchu, Taiwan, R.O.C. (1993).
8.2 C. H. Luo, F. R. Chen, and L. J. Chen, "Atomic Structure of Si/TbSi2-x/(111)Si Double Heterostructure Interfaces," J. Appl. Phys. 76, 5744-5747 (1994).
8.3 K. N. Tu, R. D. Thompson and B. Y. Tsaur, "Low Schottky-Barrier of Rare-Earth Silicide on n-Si", Appl. Phys. Lett. 38, 626-628 (1981).
8.4 H. Norde, Pires J. deSousa, F. M. d’Heurle, F. Pesavento, S. Petersson and P. A. Tove, "The Schottky-Barrier Height of The Contacts Between Some Rare-Earth-Metals (and Silicides) and p-type Silicide", Appl. phys. Lett. 33, 865-867 (1981).
8.5 P. L. Janega, J. McCaffrey, and D. Landheer, “Extrmely Low Resistivity Erbium Ohmic Contacts to N-Type Silicon”, Appl. Phys. Lett. 55, 1415-1417 (1989).
8.6 J. A. Knapp and S. T. Picraux, "Epitaxial Growth of Rare-Earth Silicides on (111)Si", Appl. Phys. Lett. 48, 466-468 (1986).
8.7 F. A. d’Avitaya, A. Perio, J.-C. Oberlin, Y. Campidelli, and J. A. Chroboczak, “Fabrication and Structure of Epitaxial Er Silicide Films on (111)Si”, Appl. Phys. Lett. 54, 2198-2200 (1989).
8.8 J. E. E. Baglin, F. M. d’Heurle, and C. S. Petersson, “Diffusion Marker Experiments with Rare-Earth Silicides and Germanides: Relative Mobilities of the Two Atom Species”, J. Appl. Phys. 52, 2841-2846 (1981).
8.9 A. Iandelli, A. Palenzona, and G. L. Olcese, “Valence Fluctuations of Ytterbium in Silicon-Rich Compounds”, J. Less-Comm. Met. 64, 213-220 (1979).
8.10 K. S. Chi and L. J. Chen, “Interfacial Reactions of Ultrahigh Vacuum Deposited Ytterbium Thin Films on Silicon”, Micron 33, 549-553 (2002).
8.11 R. Baptist, S. Ferrer, G. Grenet, and H. C. Poon, “Surface Crystallography of YSi2-x Films Epitaxially Grown on Si(111): An X-ray Photoelectron Diffraction Study”, Phys. Rev. Lett. 64, 311-314 (1990).
8.12 T. L. Lee, L. J. Chen, and F. R. Chen. "Evolution of Vacancy Ordering and Defect Structures in YSi2-x Thin Films on (111)Si," J. Appl. Phys. 71, 3307-3312 (1992).
8.13 R. Sato, H. Doi, B. Ishi, and H. Uchikoshi, "Reduction of U3O8 to U3O8-x in Mode of Crystallographic Out-Of-Step", Acta. Crystallogr. 14, 763-771 (1961).
8.14 D. Watanabe, M. Hirabayashi, and S. Ogawa, “On the Superstructure Of the Alloy Cu3Pd”, Acta. Crystallogr. 8, 510-512 (1955).
8.15 S. Ogawa, D. Watanabe, H. Watanabe, and T. Komoda, “The Direct Observation of the Long Period of the Ordered Alloy CuAu(II) by Means of Electron Microscope”, Acta. Crystallogr. 11, 872-875 (1958).
8.16 K. Koto, N. Morimoto, A. Gyobu, “The Superstructure of the Intermediate Pyrrhotite. I. Partially Disordered Distribution of Metal Vacancy in the 6C Type, Fe11S12”, Acta. Crystallogr. B31, 2759-2764 (1975).
8.17 K. Koto and M. Kitamura, “The Superstructure of the Intermediate Pyrrhotite. II. One-Dimensional Out-of-Step Vector of Fe Vacancies in the Incommensurate Structure with Compositional Range from Fe9S10 to Fe11S12”, Acta. Crystallogr, A37, 301-308 (1981).
8.18 S. Auffret, J. Pierre, B. Lambert, J. L. Soubeyroux, and J. A. Chroboczak, “Crystallographic and Magnetic Structures of Er3Si5”, Physica B 162, 271-280 (1990).
8.19 W. D. Su, “Interfacial Reactions of Erbium Thin Films on Silicon”, Master thesis, National Tsing Hua University, Hsinchu, Taiwan, R.O.C. (1992).
8.20 C. H. Luo, G. H. Shen, and L. J. Chen, "Vacancy Ordering Structures in Epitaxial RESi2-x on (111)Si and (001)Si," Appl. Surf. Sci. 113/114, 457-461 (1997).
8.21 G. H. Shen, “Interfacial Reactions of Dysprosium Thin Films on Silicon”, Ph. D. Thesis, National Tsing Hua University, Hsinchu, Taiwan, R.O.C. (1998).
8.22 J. C. Chen, “Interfacial Reactions of Gadolinium Thin Films on Silicon”, Ph. D. Thesis, National Tsing Hua University, Hsinchu, Taiwan, R.O.C. (1998).
8.23 G. H. Shen, J. C. Chen, and L. J. Chen, "The Structures and Variation of Vacancy Ordering in Epitaxial DySi2-x Thin Films on Si(111)," Appl. Surf. Sci. 142, 300-304 (1999).
8.24 G. H. Shen, J. C. Chen, and L. J. Chen, "Planar Defects in Epitaxial DySi2-x Thin Films on Si(111)," Appl.Surf. Sci. 142, 332-335 (1999).
8.25 J. E. E. Baglin, F. M. d’Heurle and C. S. Petersson, "The Formation of Silicides from Thin Films of Some Rare-Earth Metals", Appl. Phy. Lett. 36, 594-596 (1980).
8.26 C. H. Luo and L. J. Chen, "Growth Kinetics of Amorphous Interlayers and Formation of Crystalline Silicde Phases in Ultrahigh Vacuum Deposited Polycrystalline Er And Tb Thin Films on (001)Si", J. Appl. Phys. 82, 3808-3814 (1997).
8.27 M. P. Siegal, F. H. Kaatz, W. R. Graham, J. J. Santiago, and J. Van der Spiegel, “Formation of Epitaxial Yttrium Silicide on (111) Silicon”, J. Appl. Phys. 66, 2999-3006 (1989).
8.28 M. P. Siegal, W. R. Graham, and J. J. Santiago-Aviles, “Growth of Pinhole-Free Epitaxial Yttrium Silicide on Si(111)”, J. Appl. Phys. 68, 574-580 (1990).
8.29 G. H. Shen, J. C. Chen, C. H. Lou, S. L. Cheng and L. J. Chen, "The Growth of Pinhole-Free Epitaxial DySi2-x Films on Atomically Clean (111)Si," J. Appl. Phys. 84, 3630-3635(1998).
8.30 F. A. d’Avitaya, "Si/CoSi2/Si Permeable Base Transistor Obtained by Silicon Molecular Beam Epitaxy over a CoSi2 Grating", Electronics Lett. 22, 699-700 (1986).
8.31 L. Pahun, Y. Campidelli, F. A. d’Avitaya, and P. A. Badoz, “Infrared Response of Pt/Si/ErSi1.7 Heterostructure-Tunable Internal Photoemission Sensor”, Appl. Phys. Lett. 60, 1166-1168 (1992).
Chapter 9
9.1 J. Y. Duboz, P. A. Badoz, F. Arnaud d’Avitaya, and J. A. Chroboczek, “Electronic Transport Properties of Epitaxial Erbium Silicide Silicon Heterostructures”, Appl. Phys. Lett. 55, 84-86 (1989).
9.2 H. Norde, Pires J. deSousa, F. M. d’Heurle, F. Pesavento, S. Petersson and P. A. Tove, "The Schottky-Barrier Height of The Contacts Between Some Rare-Earth-Metals (and Silicides) and p-type Silicide", Appl. phys. Lett. 33, 865-867 (1981).
9.3 L. Pahun, Y. Campidelli, F. A. d’Avitaya, and P. A. Badoz, “Infrared Response of Pt/Si/ErSi1.7 Heterostructure-Tunable Internal Photoemission Sensor”, Appl. Phys. Lett. 60, 1166-1168 (1992).
9.4 P. L. Janega, J. McCaffrey, and D. Landheer, “Extrmely Low Resistivity Erbium Ohmic Contacts to N-Type Silicon”, Appl. Phys. Lett. 55, 1415-1417 (1989).
9.5 C. H. Luo, G. H. Shen, and L. J. Chen, "Vacancy Ordering Structures in Epitaxial RESi2-x on (111)Si and (001)Si," Appl. Surf. Sci. 113/114, 457-461 (1997).
9.6 J. C. Chen, G. H. Shen, and L. J. Chen, "Interfacial Reactions of Gd Thin Films on (111) and (001)Si," Appl. Surf.Sci. 142, 291-294 (1999).
9.7 G. H. Shen, “Interfacial Reactions of Dysprosium Thin Films on Silicon”, Ph. D. Thesis, National Tsing Hua University, Hsinchu, Taiwan, R.O.C. (1998).
9.8 W. C. Tsai, “Interfacial Reactions of Yttrium and Erbium Metal Thin Films on Silicon”, Master thesis, National Tsing Hua University, Hsinchu, Taiwan, R.O.C. (2002).
9.9 J. E. E. Baglin, F. M. d’Heurle and C. S. Petersson, "The Formation of Silicides from Thin Films of Some Rare-Earth Metals", Appl. Phy. Lett. 36, 594-596 (1980).
9.10 W. K. Chu, H. Krautle, J. W. Mayer, H. Muller, M-A. Nicolet, and K. N. Tu, “Identification of the Dominant Diffusing Species in Silicide Formation”, Appl. Phys. Lett. 25, 454-457 (1974).
9.11 W. K. Chu, S. S. Lau, J. W. Mayer, H. Muller, and K. N. Tu, “Implanted Noble Gas Atoms as Diffusion Markers in Silicide Formation”, Thin Solid Films 25, 393-402 (1975).
9.12 C. M. Comrie and R. T. Newman, “Dominant Diffusing Species during Cobalt Silicide Formation”, J. Appl. Phys. 79, 153-156 (1996).
9.13 R. Pretorious, M. A. E. Wandt, J. E. McLeod, A. P. Botha, and C. M. Comrie, “Determination of the Diffusing Species and Diffusing Mechanism during CoSi, NiSi, and PtSi Formation by Using Radioactive Silicon as a Tracer”, J. Electrochem. Soc. 136, 839-842 (1989).
9.14 J. E. E. Baglin, F. M. d’Heurle, and C. S. Petersson, “Diffusion Marker Experiments with Rare-Earth Silicides and Germanides: Relative Mobilities of the Two Atom Species”, J. Appl. Phys. 52, 2841-2846 (1981).
9.15 A. Travlos, P. Aloupogiannis, G. Weber, and G. Robaye, “Duffusion Marker Experiments with Rare-Earth Silicides: The Case of Lutetium Silicide”, J. Appl. Phys. 70, 7620-7622 (1991).
9.16 J. C. Chen, G. H. Shen, and L. J. Chen, "The Determination of Dominant Diffusing Species in The Growthof Amorphous Interlayer between Gd and Si Thin Films by a Mo Cluster MarkerExperiment," J. Appl. Phys. 83, 7653-7657 (1998).
9.17 K. S. Chi and L. J. Chen, " The Determination of Dominant Diffusing Species in the Growth of Amorphous Interlayer between Yb Metal Thin Films and Crystalline (111) and (001)Si", J. Appl. Phys. (in press, 2002).
9.18 S. M. Chang, “Interfacial Reactions of Titanium and Cobalt Metal Thin Films on Silicon”, Ph. D. Thesis, National Tsing Hua University, Hsinchu, Taiwan, R.O.C. (2000).
Chapter 10
10.1 T. L. Lee, L. J. Chen, and F. R. Chen. "Evolution of Vacancy Ordering and Defect Structures in YSi2-x Thin Films on (111)Si," J. Appl. Phys. 71, 3307-3312 (1992).
10.2. W. D. Su, “Interfacial Reactions of Erbium Thin Films on Silicon”, Master thesis, National Tsing Hua University, Hsinchu, Taiwan, R.O.C. (1992).
10.3 C. H. Luo, G. H. Shen, and L. J. Chen, "Vacancy Ordering Structures in Epitaxial RESi2-x on (111)Si and (001)Si," Appl. Surf. Sci. 113/114, 457-461 (1997).
10.4 J. C. Chen, G. H. Shen, and L. J. Chen, "Interfacial Reactions of Gd Thin Films on (111) and (001)Si," Appl. Surf.Sci. 142, 291-294 (1999).
10.5 G. H. Shen, J. C. Chen, and L. J. Chen, "The Structures and Variation of Vacancy Ordering in Epitaxial DySi2-x Thin Films on Si(111)," Appl. Surf. Sci. 142, 300-304 (1999).
10.6 G. H. Shen, “Interfacial Reactions of Dysprosium Thin Films on Silicon”, Ph. D. Thesis, National Tsing Hua University, Hsinchu, Taiwan, R.O.C. (1998).
10.7 W. C. Tsai, “Interfacial Reactions of Yttrium and Erbium Metal Thin Films on Silicon”, Master thesis, National Tsing Hua University, Hsinchu, Taiwan, R.O.C. (2002).
10.8 K. S. Chi and L. J. Chen, “Interfacial Reactions of Ultrahigh Vacuum Deposited Ytterbium Thin Films on Silicon”, Micron 33, 549-553 (2002).
10.9 R. Baptist, S. Ferrer, G. Grenet, and H. C. Poon, “Surface Crystallography of YSi2-x Films Epitaxially Grown on Si(111): An X-ray Photoelectron Diffraction Study”, Phys. Rev. Lett. 64, 311-314 (1990).
10.10 S. Auffret, J. Pierre, B. Lambert, J. L. Soubeyroux, and J. A. Chroboczak, “Crystallographic and Magnetic Structures of Er3Si5”, Physica B 162, 271-280 (1990).
10.11 F. A. d’Avitaya, A. Perio, J.-C. Oberlin, Y. Campidelli, and J. A. Chroboczak, “Fabrication and Structure of Epitaxial Er Silicide Films on (111)Si”, Appl. Phys. Lett. 54, 2198-2200 (1989).
10.12 R. Sato, H. Doi, B. Ishi, and H. Uchikoshi, "Reduction of U3O8 to U3O8-x in Mode of Crystallographic Out-Of-Step", Acta. Crystallogr. 14, 763-771 (1961).
10.13 D. Watanabe, M. Hirabayashi, and S. Ogawa, “On the Superstructure Of the Alloy Cu3Pd”, Acta. Crystallogr. 8, 510-512 (1955).
10.14 S. Ogawa, D. Watanabe, H. Watanabe, and T. Komoda, “The Direct Observation of the Long Period of the Ordered Alloy CuAu(II) by Means of Electron Microscope”, Acta. Crystallogr. 11, 872-875 (1958).
10.15 K. Koto, N. Morimoto, A. Gyobu, “The Superstructure of the Intermediate Pyrrhotite. I. Partially Disordered Distribution of Metal Vacancy in the 6C Type, Fe11S12”, Acta. Crystallogr. B31, 2759-2764 (1975).
10.16 K. Koto and M. Kitamura, “The Superstructure of the Intermediate Pyrrhotite. II. One-Dimensional Out-of-Step Vector of Fe Vacancies in the Incommensurate Structure with Compositional Range from Fe9S10 to Fe11S12”, Acta. Crystallogr, A37, 301-308 (1981).
10.17 M. P. Siegal, F. H. Kaatz, W. R. Graham, J. J. Santiago, and J. Van der Spiegel, “Formation of Epitaxial Yttrium Silicide on (111) Silicon”, J. Appl. Phys. 66, 2999-3006 (1989).
10.18 M. P. Siegal, W. R. Graham, and J. J. Santiago-Aviles, “Growth of Pinhole-Free Epitaxial Yttrium Silicide on Si(111)”, J. Appl. Phys. 68, 574-580 (1990).
10.19 G. H. Shen, J. C. Chen, C. H. Lou, S. L. Cheng and L. J. Chen, "The Growth of Pinhole-Free Epitaxial DySi2-x Films on Atomically Clean (111)Si," J. Appl. Phys. 84, 3630-3635(1998).
Appendix 1
A1.1 A. J. Steckl and J. M. Zavada, "Photonic Applications of Rare- Earth-Doped Materials", MRS Bulletin 24, September, 16-17 (1999).
A1.2 F. Szabadvary, "The History of the Discovery and Separation of the Rare Earths", in Handbook on the Physics and Chemistry of Rare Earths, Vol. 11, Edited by K. A. Gschneider and L. Eyring, p.33-p.80 (1988).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top