跳到主要內容

臺灣博碩士論文加值系統

(44.200.175.255) 您好!臺灣時間:2022/08/11 13:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭再來
研究生(外文):Tsai-Lai Cheng
論文名稱:微機電壓阻式壓力感測器之研究與製作
指導教授:陳建瑞陳建瑞引用關係
指導教授(外文):Jiann-Ruey Chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:128
中文關鍵詞:壓阻體微加工惠斯登電橋
相關次數:
  • 被引用被引用:0
  • 點閱點閱:325
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文主要是探討當利用體型加工技術來製作壓阻式薄膜壓力感測器時其在製程上所遭遇本研究的問題、並提出解決方法。薄膜的特性利用n&k、原子力顯微鏡(AFM)、FTIR 光譜儀、及I-V 量測,分別對薄膜的厚、薄膜表面粗糙度、退火做分析。
壓阻已經被廣泛的應用在各式各樣的微感測器中,如加速度計和壓力計等。壓阻感測器是將壓阻製作在產生最大應變的地方,為了滿足製程和感測靈敏度,微結構下方的基材通常經由背向蝕刻的方式移除,因此這樣的製程方式是相當複雜而且耗時的。
利用體微加工技術,在n-type 矽晶圓上製作出隔膜(Diaphragm),並於隔膜上利用離子佈植法植入硼以製作壓電阻,壓電阻則佈局成惠司通電橋的形式。當隔膜受到應力後,壓電阻的阻值產生變化,再加上惠司通電橋將其訊號放大,藉由量測其輸出電壓的變化,間接可得知所受的壓力大小。
本研究主要是探討當利用面型加工技術來製作壓阻式薄膜壓力感測器時其在製程上所遭遇的薄膜形變問題、並提出解決方法。由於此壓力感測器的設計原理通常是將數個摻入雜質的複晶矽元件建立在感壓薄膜上方、當薄膜因應作用而發生變形時其上壓阻元件電阻值亦會隨之改變,因此吾人可得知其量測點的氣體壓力變化情形。
在製程方面以體型微細加工技術製作微壓力感測器,應用到的技術有LPCVD、常壓化學氣相沈積(APCVD)、乾式與濕式蝕刻、微影等製程,在實際製作過程中有遇到的許多問題,這些都將在本文內討論。
研究已成功製作出壓阻式壓力感測器,並進行壓力測試,證實此製程上的可行性。初步測試結果其靈敏度約為57.2μV/V-mmHg.。
由於傳統的壓力感測器受到自身規格尺寸的影響,因此,對於使用的環境上有著相當大的限制。然而,半導體製程技術快速發展,使得以MEMS製程所製作的矽質壓阻式壓力感測器不但有著比以往更加優良的感測靈敏度和線性特性,更由於本身體積小的特點,使其能夠應用於各種場合。

This thesis is discussing thin film diaphragm problems during the fabricating process that when using bulk micromachining method to fabricate micro-pressure sensors and proffers some solving methods. The film thickness, surface roughness, annealing of films were measured and analysed by n&k , Atomic force microscopy (AFM), Fourier transform IR spectroscopy (FTIR), and I-V measurment, respectively.
Piezoresistors have been used widely for various microsensors, such as accerlerometers and pressure sensors. Piezoresistive sensors are fabricated by placing the piezoresistors on the regions where largest strain would occur. In order to satisfy the measurement sensitivity as well as the fabrication processes, the substrate underneath the microstructures are usually removed through the back-sided etching. Hence, the fabrication processes are complex and time consuming.
A thin diaphragm was constructed by bulk micromachining on n-type silicon wafer.Boron was then doped into diaphragm to produce piezoresistors ,and these piezoresistors were connected in the form of Wheatstone bridge configuration.
Whenever the diaphragm was affected by stress ,the resistance of the piezoresistor changes .Through measuring the signals of the output voltage enlarged by the Wheatstone bridge configuration ,the stress intensity can be calculated indirectly.
This thesis is discussing thin film diaphragm deformation problems during the fabricating process that when using surface micromachining method to fabricate micro-pressure sensors and proffers some solving methods. Because the design principle of micro-pressure sensors is that builds polycrystalline silicon with doped on the top of pressure sensor thin film, so when its deformation happens , the Piezoresistance will change and we can detect sensor point gas pressure value change.
Bulk-micromachining techniques are used to fabricate the pressure sensors. Processes like LPCVD, APCVD, dry etching, wet etching, and lithography are applied in this study. Several important issues regarding fabrication process have been raised and discussed.
In the research the piezoresistive sensers have been fabricated successfully , and it is proved that the process design is feasible. The testing results showed the approximate sensitivity of these sensors was 57.2μV/V-mmHg.
Because the traditional pressure sensors are restricted by its size specification, they are subject to field space and environmental limitations. However, the rapid development of the semiconductor fabrication technology has greatly improved the sensitivity and linearity characteristics of the silicon- base piezzoresistor pressure sensors by the MEMS fabrication process.

中文摘要
英文摘要
謝誌
總目錄
圖目錄
表目錄
第一章緒論言……………………………………………………….1
1-1文獻回顧………………………………………………….3
1-2研究動機………………………………………………….5
1-3論文架構………………………………………………….6
第二章微機電技術系統……………………………….8
2-1矽微加工技術…………………………………………….8
2-2面型微加工技術………………………………………….8
2-3體型微加工技術………………………………………….9
2-4LIGA微加工技術…………………………………………10
第三章 原理……………………………………………………………11
3-1惠斯登電橋………………………………………………14
3-2壓阻特性……………………………………………………15
3-3壓電特性……………………………………………………19
第四章實驗步驟………………………………………………….21
4-1 實驗示意圖………………………………………………..23
4-2 實驗光罩圖…………………………………………………23
第五章製程技術………………………………………………….24
5-1擴散 ………………………………………………………24
5-2薄膜沈積……………………………………………………25
5-3二氧化矽……………………………………………………28
5-4氮化矽………………………………………….………….30
5-5多晶矽………………………………………………………33
5-6n&k………………………………………………………….33
5-7微影製程……………………………………………………34
5-8離子佈植 ………………………………………………….35
5-9退火…………………………………………………………36
5-9-1準分子雷射退火…………………………………………37
5-10蝕刻……………………………………………………….40
5-11wet bench………………………………………………….45
5-12contact hole………………………………………………47
5-13應力……………………………………………………….48第六章實驗分析與量測結論………………………………..52
6-1四點探針…………………………………………………….52
6-2FTIR………………………………………………………….54
6-3 AFM………………………………………………………….55
6-4SEM…………………………………………………………..56
6-5總結…………………………………………………………57
第七章結論與改進………………………………………………70
第八章未來希望與發展……………………………………….73
參考文獻……………………………………………………………….74

[1] Minhang Bao, Weiyuan Wang, “Future of microelectromechanicalsystems (MEMS)”, Sensors and Actuators, A56, pp.135-141, 1996.
[2] Ken-ichi YOSHIDA, Hiroshi TANIGAWA, “Development of a force sensor for minuteload measurement”, Electronic Manufacturing Technology Symposium, 1989, Proceedings. Japan IEMT Symposium, Sixth IEEE/CHMT International, pp. 201-204, 1989.
[3] N. Delic, A. Vujanic, H. Detter, Z. Djuric, N. Simicic, and R. Petrovic, “Piezoresistive Force Sensor Developed for Use in Handling of Micro-parts”, IEEE Microelectronics, 1997 Proceedings, 1997 21st International, pp. 527-530, Sept. 1997.
[4] R. Puers, D. De Bruyker, and A. Cozmz, “A novel combined redundant pressure sensor with self-test function”, Sensors and Actuators, A 60, pp. 68-71,1997.
[5] C. Lee; and I. T. Suga, “Micromachined piezoelectric force sensors based on PZT thin films”, Ultrasonics, Ferroelectrics and Frequency Control, IEEE,T. Res. Center for Adv. Sci. & Technol., Tokyo Univ., pp. 553 — 559,1996.
[6] C. Lee, T. Itoh, R. Maeda, and T. Suga, “Smart force sensors for scanning force microscope using the micromachined piezoelectric PZT cantilevers”, IEEE Electron Devices Meeting, International, pp. 545 — 548, Dec. 1996.
[7] G. J. Burger, T. S. J. Lammerink, J. H. J. Fluitman, S. Imai, M. Tokuyama, and S.Hirose, “Piezoelectric impact force sensor array for tribological research on rigid disk storage media”, Micro Electro Mechanical Systems, MEMS '95, Proceedings. IEEE, pp.294-299. 1995.S. R.
[8] Pandian, T. O. kuda, Y. Mitani, K. Kurahashi and S. Kawamura, “A Piezoelectric Force/Force-Derivative Sensor for Robotic Applications,” SICE '95, Proceedings of the 34th SICE Annual Conference. International Session Papers, pp.26-28, July 1995.X.
[9] Adriana Cozma, Robert Puers, “Electrostatic actuation as a self-testing method for silicon pressure sensor”, Sensors and Actuators, A 60 (1997), pp.32-36
[10] H. Kim, Y-G. Jeong, and K. Chun, “Improvement of the linearity of a capacitive pressure sensor using an interdigitated electrode structure”, Sensors and Actuators A 62(1997), pp.586-590.
[11] K. E. Peterson, “Silicon as A Mechanical Material,” Proceeding of the IEEE, 70.5, p. 420, 1982.
[12] H. Guckel, and D. Burns, Planar Processed Polysilicon Sealed Cavities for Pressure Transducers Array, pp. 223-225, IEDM, 1984.
[13] G. S. Chung, S. Kawahito, M. Ishida, and T. Nakamura, “Novel Pressure Sensors with Multilayer SOI Structure,”Electronics Leters, 26, pp. 775-777, 1990.
[14] S. Susumu, and K. Shimaoka, “Surface Micromachined Micro-Diaphragm Pressure Sensors,” Solid—State Sensors and Actuators, pp. 188-191, 1991.
[15] J. Fukang, Y. C. Tai, W. Walsh, T. Tom, G. B. Lee, and C. M. Ho, “A Flexible MEMS Technology And Its First Application To Shear Stress Sensor Skin,” IEEE, MEMS-97, pp. 465-470, 1997.
[16] E. Kalvesten, “The First Surface Micromachined Pressure Sensor for Cardiovascular Pressure Measurements,” IEEE, MEMS-98, pp.574-579, 1998.
[17] 工研院機械工業研究所, 微機電系統之技術現況與發展, 工業技術研究院, p. 89, 86 年8 月修訂.
[18] S. Timosheko, Theory of Plate and Shells, pp. 4-27, McGraw-Hill, New York, 1970.
[19] S. Timosheko, Theory of Plate and Shells, pp. 4-27, McGraw-Hill, New York, 1970.
[20] S. M. Sze, Semiconductor Sensors, pp. 171-176, A Wiley-interscience Publication, New York, 1994.
[21] K.-S. Chen, X. Zhang, R. Ghodssi, S.M. Spearin “Processing of thick dielectric films for power MEMS: Stress and Fracture,” Proceedings of the Materials Research Society Symposium on Materials Science of Microelectromechanical System (MEMS) Devices III, in press.
[22] 莊達仁, VLSI 製造技術, pp. 183-186, 高立, 台北, 民國87年.
[23] M. Marc, Fundamentals of Microfabrication, p. 256, Boca raton, New York, 1997.
[24] 工研院機械工業研究所, 微機電系統之技術現況與發展, 工業技術研究院, pp. 53-55, 86 年8 月修訂.
[25] Shigeyuki Somiya, Mamoru Mitomo, and Masahiro Yoshimura, SiliconNitride-1, 1990.
[26] V.I. Belyi, L.L. Vasilyeva, A.S. Ginovker, V.A. Gritsenko, S.M. Repinsky, S.P. Sinitsa, T.P. Smirnova, F.L. Edelman, Silicon Nitride in Electronics, chap 2,4,5,8, 1988.
[27] F.H.P.M. Habraken and A.E.T. Kuiper, Mater. Sci. Eng., R12, No.3, 1994.
[28] 莊達人編著,VLSI 製造技術,Chapter 5 and Chapter 6,高立圖書公司,1998.
[29] M.L. Hitchman and K.E. Jensen, Chemical Vapor Deposition Principles and Applications, chapter 7, 1993.
[30] S.M. SZE, Semiconductor Devices-physics and technology, John Wiley & Sons, pp.402~403(1985).
[31] 施敏,張俊彥,1990,半導體元件之物理與技術,二版,儒林圖書發行。
[32] 關毓禾、鍾敏霖,高功率激光加工及應用,天津科學技術出版社,pp37-50,(1992)
[33] W. W. Duley, “UV Lasers: effects and applications in materials science”, Chapter 3, Cambridge University, Cambridge, (1996)
[34] J. Hecht, The Laser Guidebook, 2nd Edition, Inc. McGraw-Hill, California, Chapter 13, (1992)
[35] J. Brannon, Excimer Laser Ablation and Etching, American vacuum society, New York, 1993.
[36] Elwenspoek & Jansen, Silicon Micromachining, Cambridge, P 26,55-57(1998).
[37] Madou, Fundamentals of Microfabrication, CRC, P 130(1980).
[38] S.M. SZE, Semiconductor Devices-physics and technology, John Wiley & Sons, pp.402~403(1985).
[39] Marc Madou, Fundamentals of Microfabrication, 1997, ISBN 0-8493-9451-1, CRC Press.
[40] Gennissen, P.T.J., Bartek, M.French, P.J., Sarro, P.M., and Wolffenbuttel, R.F., “Automatic etch stop on buried oxide using epitaxial lateral overgrowth”, Transducer ’95, June 25-29, 1995, PP.75-78.
[41] H. Seidel et al., "Anisotropic etching of crystalline silicon in alkaline solutions II", Journal of the Electrochemical. Society, 137,No.11, p.3626-3632, 1990.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top