跳到主要內容

臺灣博碩士論文加值系統

(3.238.98.39) 您好!臺灣時間:2022/09/26 11:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林正得
研究生(外文):Cheng-Te Lin
論文名稱:二氧化鈦奈米微粒進行光催化金屬還原以形成核-殼結構之研究
論文名稱(外文):Preparation and Studies of Nanosized TiO2 Core-Shell Structure by Photocatalytic Metal Reduction
指導教授:金重勳金重勳引用關係鄭世裕鄭世裕引用關係
指導教授(外文):Tsung-Shune ChinSyh-Yuh Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:102
中文關鍵詞:光催化二氧化鈦銳鈦礦相奈米粉體核殼結構
外文關鍵詞:photocatalysisTiO2anatase phasenanoparticlescore-shell structure
相關次數:
  • 被引用被引用:5
  • 點閱點閱:408
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用奈米級二氧化鈦的半導體性質,進行光催化還原反應,使Ag披覆在TiO2表面以形成核殼層結構,探討奈米尺度下粉體的光催化性質。
實驗共分三個部分:初期比較Hombikat UV-100、Degussa P-25及自行以Sol-Gel法合成,以銳鈦礦結構為主的TiO2奈米粉體光觸媒性質,其粒徑大小約10∼20 nm。再改變實驗時的溶液pH值、反應時間、紫外光波長、觸媒比例及環境溫度,進行光催化反應,探討變數與披覆效果的關係。並以HRTEM、XPS觀察及分析核殼層表面結構及組成。
在最佳實驗條件下所得到的Ag-TiO2結構,披覆厚度約7.89 nm,Core:Shell直徑比為1:3.2,Ti:Ag重量百分比為86:14。
The photocatalyic property of nanosized titania powders has been investigated. The photocatalytic reaction is based on the semiconductor characteristics of TiO2 to reduce the silver ion onto the surface of titania, forming the Ag-TiO2 nanoparticles with core-shell structure.
The procedures were divided into three parts. Initially we compared the photocatalytic activity of the commercial TiO2 powders, Hombikat UV-100 and Degussa P-25, with that synthesized by ourselves using sol-gel method. The major phase of titania is anatase and the average size is 10∼20 nm. The influences of the pH value, reaction time, UV wavelength, catalyst amount and temperature on the coating were also explored afterward. The surface structure and composition were characterized by TEM and XPS(ESCA).
Under optimum conditions, the thickness of shell obtained is 7.89 nm and the ratio of diameters is 3.2:1. The maximum weight ratio of Ag to Ti is 14﹪.
摘要………………………………………………………………………Ⅰ
Abstract…………………………………………………………………Ⅱ
誌謝………………………………………………………………………Ⅲ
目次………………………………………………………………………Ⅳ
表目錄……………………………………………………………………Ⅶ
圖目錄……………………………………………………………………Ⅷ
第一章
前言……………………………………………………………………1
第二章
文獻回顧………………………………………………………………5
2.1 光催化反應原理…………………………………………………5
2.1.1 異相催化反應步驟……………………………………………5
2.1.2 材料的半導體性質……………………………………………6
2.1.3 電子能量轉換機制……………………………………………8
2.1.4 吸收入射光的激發過程………………………………………10
2.1.5 表面電子轉移途徑……………………………………………12
2.1.6 光催化的金屬還原反應………………………………………14
2.2 表面能態與量子效應……………………………………………16
2.2.1 量子產率………………………………………………………16
2.2.2 能帶層相對位置………………………………………………17
2.2.3 電荷載子捕捉效應……………………………………………18
2.2.4 量子尺度效應…………………………………………………20
2.2.5 介面能帶彎曲現象及費米能階………………………………22
2.2.6 能帶平衡時的電化學性質……………………………………26
2.2.7 半導體-金屬介面能障………………………………………28
2.3 二氧化鈦(TiO2)基本性質……………………………………29
2.3.1 二氧化鈦光催化性質…………………………………………29
2.3.2 二氧化鈦晶格結構……………………………………………30
2.3.3 結晶面對電子能態的影響……………………………………32
第三章
實驗內容及方法………………………………………………………34
3.1 實驗藥品…………………………………………………………34
3.2 實驗光源…………………………………………………………35
3.3 量測設備…………………………………………………………35
3.4 實驗步驟…………………………………………………………38
3.4.1 光催化還原反應步驟…………………………………………38
3.4.2 量測試片準備步驟……………………………………………39
第四章
結果與討論……………………………………………………………41
4.0 概述………………………………………………………………41
4.1 TiO2光觸媒來源的選擇…………………………………………42
4.1.1 Hombikat UV-100……………………………………………42
4.1.2 Sol-Gel法合成TiO2微粉……………………………………51
4.1.3 Degussa P-25…………………………………………………55
4.1.4 粉體效能比較與選擇…………………………………………64
4.2 實驗參數對披覆效率的影響……………………………………65
4.2.1 溶液pH值參數變化……………………………………………66
4.2.2 反應時間參數變化……………………………………………77
4.2.3 觸媒與溶液mole數比參數變化………………………………81
4.2.4 環境溫度參數變化……………………………………………81
4.3 表面結構觀察與量測……………………………………………85
4.3.1 最佳條件下Core-Shell結構觀察與分析……………………85
4.3.2 其他條件下Core-Shell結構觀察與分析……………………89
第五章
結論……………………………………………………………………96
第六章
參考文獻………………………………………………………………97
1. Fujishima, A.; Honda. K. Nature 1972. 37, 238.
2. Bard, A. J. J. Phys. Chem. 1982, 86. 172;
J. Photochem. 1979, 10, 59; Science 1980, 207, 139.
3. Gratzel, M., Ed. Energy Resources Through Photochemistry
and Catalysis; Academic Press: New York, 1983.
4. Kalyanasundaram, K.; Gratzel, M.; Pelizzetti, E. Coord.
Chem. Rev. 1986, 69, 57.
5. Parmon. V. N.; Zamareav, K. I. In Photocatalysis — Fundamentals
and Applications; Serpone. N., Pelizzetti, E., Eds.; Wiley-Interscience: New York, 1989; p 565.
6. Pelizzetti. E., Schiavello, M., Eds. Photochemical Conversion
and Storage of Solar Energy; Kluwer Academic Publishers:
Dordrecht, 1991.
7. Schiavello. M., Ed. Photocatalysis and Environment;
Kluwer Academic Publishers: Dordrecht, 1988.
8. Ollis, D. F., Al-Ekabi. H., Eds. Photocatalytic Purification
and Treatment of Water and Air; Elsevier: Amsterdam, 1993.
9. Atkins, P. W. Heterogeneous Catalysis, J. Phys. Chem.,
Oxford University, 1994, pp.997.
10. Amy, L. Linsebigler; Guanquan Lu and John T. Yates, Jr.;
Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chem. Rev., 1995, pp.735-758.
11. A. R. Kortan, R. Hull, R. L. Opila, J. Am. Chem. Soc. 1990, 112, 1327.
12. R. Neuendort, M. Quentin, U. Keiling, J. Chem. Phys. 1996, 104, 6348.
13. F. X. Liu, J. S. Zhu, Phys. Stat. Sol. 1994, (a)143, 241.
14. I. Honma, T. Sano, H. Komiyama, J. Phys. Chem. 1993, 97, 6692.
15. Serpone, N. L.; Disdier, D. J. and Hermann, J. D.
Spectroscope, Photoconductivity and Photocatalytic Studies of TiO2 Collides: Naked and with the Lattice Doped with Cr, Fe and V Captions, Langmuir., 1994, pp.643-652.
16. Y. Zhou, C. Y. Wang, H. J. Liu, Y. R. Zhu, Z.Y. Chen
Materials Science and Engineering, 1999, B67, pp.95-98.
17. Mauzerall, D.; Ballard, S. G. Annu. Rev. Phys. Chem. 1982, 33, 377.
18. Forster. T. Faraday Discuss. Chem. Soc. 1959, 27, 7.
19. Okabe, H. Photochemistry of Small Molecules: Wiley-Interscience:
New York, 1978.
20. Gilbert, A.; Baggott, J. Essentials of Molecular Photochemistry;
CRC Press: Boca Raton, 1991.
21. Fox, M. A., Chanon, M., Eds. Photoinduced Electron Transfer, Part A: Conceptual Basis: Elsevier: Amsterdam, 1988.
22. Gratzel, M. Heterogeneous Photochemical Electron Transfer;
CRC Press: Boca Raton, 1989.
23. Julliard. M.; Chanon. M. Chem. Rev. 1983, 83, 425.
24. Kavarnos. G. J.; Turro, N. J. Chem. Rev. 1986, 86, 401.
25. Fox, M. A.; Dulay, M. T. Chem. Rev. 1993, 93, 341.
26. Kamat, P. V. Chem. Rev. 1993, 93, 267.
27. Ramamurthy, V. Photochemistry in Organized and Constrained Media; VCH: New York, 1991.
28. Gust, D.; Moore, T. A. Science 1989, 244, 35.
29. Zhou, X.-L.; Zhu, X.-Y.; White, J. M. Surf. Sci. Rep. 1991, 13, 73.
30. Rosenwaks, Y.; Thacker, B. R.; Nozik, A. J.; Ellingson, R. J.; Burr, K. C.; Tang, C. L. J. Phys. Chem. 1994, 98, 2739.
31. Ford, W. E.; Rodgers, A. J. J. Phys. Chem. 1994, 98, 3822.
32. Zhang, J. Z.; O’Neil, R. H.; Roberti, T. W. J. Phys. Chem. 1994, 98, 3859.
33. Bedja, I.; Hotchandani, S.; Kamat, P. V. J. Phys. Chem. 1994, 98, 4133.
34. Kamat, P. V.; Dimitrijevic. N. M.; Fessenden, R. W.
J. Phys. Chem. 1988, 92, 2324.
35. Rossetti, R.; Beck, S. M.; Brus, L. E. J. Am. Chem. Soc. 1984, 106, 980. Rossetti, R.; Brus, L. E. J. Phys. Chem. 1986, 90, 558.
36. Lewis, N. S. Annu. Rev. Phys. Chem. 1991, 42, 543.
37. Matthews, R. W. J. Catal. 1988, 113, 549.
38. Xianzhi, F. L.; Clark, A.; Anderson, M. A. Enhanced Photocatalytic Performance of Titania-Based Binary Metal Oxides: TiO2/SiO2 and TiO2/ZrO2, Envoi. Soc. Tech. 1996, pp. 647-653.
39. J.-M. Hermann; J. J. Disdier; P. Pichat J. Catal. 1988, 113, 72.
40. J.-M. Hermann; J. J. Disdier; P. Pichat J. Phys. Chem. 1986, 90, 6028.
41. Gerischer, H. In Photocatalytic Treatmment of Water and Air: Ollis, D. F., AI-Ekabi, H., Eds., Elsevier: Amsterdam, 1993.
42. Gerischer, H.; Willing, F. Top. Curr. Chem. 1976, 61, 31.
43. Gratzel, M., Howe, R. F. J. Phys. Chem. 1990, 94, 2566.
44. Butler, E. C.; Davis, A. P. J. Photochem. Photobiol., A: Chem.
1993, 70, 273.
45. Fujihira, M.; Satoh, Y.; Osa, T. Bull. Chem. Soc. Jpn. 1982, 55, 666.
46. J.-M. Hermann; J. J. Disdier; P. Pichat Chem. Phys. Lett. 1984, 108, 618.
47. Spanhel, L.; Haase, M.; Weller, H.; Henglein, A. J. Am. Chem. Soc.
1987, 109, 5649.
48. Rothenberger, G.; Moser, J.; Gratzel, M.; Serpone, N.; Sharma, D. K.
J. Am. Chem. Soc. 1985, 107, 8054.
49. Howe, R. F.; Gratzel, M. J. Phys. Chem. 1987, 91, 3906.
50. Henglein, A. Chem. Rev. 1989, 89, 1861.
51. Henglein, A. Top. Curr. Chem. 1988, 143, 113.
52. Kubo, R.; Kawabata, A.; Kobayashi, S. Annu. Rev. Mater. Sci.
1984, 14, 49.
53. Wang, Y. In Photochemical Conversion and Storage of Solar Energy; Pelizzetti, E., Schiavello, M., Eds., Kluwar Acad. Pub.: Dordrecht,
1991, p.295.
54. Nozik, A. In Photocatalytic Purification and Treatment of Water and Air; Ollis, D. F., AI-Ekabi, H., Eds., Elsevier Science Pub.:
New York, 1993, p.39.
55. Wang, Y.; Herron, N.; Mahler, W.; Suna, A. J. Opt. Soc. Am. B
1989, 6, 808.
56. Steigerwald, M. L.; Brus, L. E. Annu. Rev. Mater. Sci. 1989, 19, 471.
57. Brus, L. E. J. Chem. Phys. 1983, 79, 5566.
58. Brus, L. E. J. Chem. Phys. 1984, 80, 4403.
59. Koch, U.; Foitik, A.; Weller, H.; Henglein, A. Chem. Phys. Lett.
1985, 122, 507.
60. Wang, Y.; Suna, A.; Mahler, W.; Kasawski. R. J. Chem. Phys.
1987, 87, 7315.
61. Foitik, A.; Weller, H.; Koch, U.; Henglein. A.
Ber. Bunsen-Ges. Phys. Chem. 1984, 88, 969.
62. Weller, H.; Schmidt, H. M.; Koch, U.; Foitik, A.: Baral, S.; Henglein, A.; Kunath, W.; Weiss, K.; Diekmann, E. Chem. Phys. Lett. 1986, 124, 557.
63. Schmidt, J. M.; Weller. H. Chem. Phys. Lett. 1986, 129, 615.
64. Kayanuma, Y. Phys. Rev. B 1988, 38, 9797.
65. Bard, A. J. Intergrated Chemical Systems, Chap. 6, John Wiley & Sons, Inc., New York, 1994.
66. Sato, N. Electrochemistry at Metal and Semiconductor Electrodes, Elsevier, 1998, p.334-335.
67. Rhoderick, E. H.; Williams, R. H. Metal-Semiconductor Contacts, 2nd ed.; Oxford University Press: New York, 1988, p.11.
68. Kurtz, R. L.; Stockbauer, R.; Maday, T. E.; Roman, E.; de Segovia, J. L. Surf. Sci. 1989, 218, 178.
69. Pan, J. M.; Maschhoff, B. L.; Diebold, U.; Maday, T. E.
J. Vac. Sci. Technol. A 1992, 10, 2470.
70. Hugenschmidt, N. B.; Gamble, L.; Campbell, C. T.
Surf. Sci. 1994, 302, 329.
71. Lu, G.; Linsebigler, A.; Yates, J. T., Jr. J. Phys. Chem. 1994, 98, 11733.
72. Bustillo, F. J.; Roman, E.; de Segovia, J. L. Vacuum 1989, 39, 659;
1990, 41, 19.
73. Lo, W. J.; Chung, Y. W.; Somorjai, G. A. Surf. Sci. 1978, 71, 199.
74. Sato, S.; White, J. M. J. Am. Chem. Soc. 1980, 102, 7206;
J. Phys. Chem. 1981, 85, 592.
75. Gopel, W.; Rocker, G.; Feierabend, R. Phys. Rev. B 1983, 28, 3427.
76. 陳力俊,材料電子顯微鏡學,行政院國家科學委員會,
精密儀器發展中心,1984。
77. 汪建民 主編,材料分析,中國材料科學學會,2001。
78. 林彥志,台灣大學化學工程學研究所碩士論文,2000。
79. 王修璇,台北科技大學有機高分子所碩士論文,2001。
80. 馬遠榮,奈米科技,商周出版,2002。
81. 黃德歡,改變世界的納米技術,瀛舟出版,2002。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊