跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/17 22:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉勁麟
研究生(外文):Liu Chin-Lin
論文名稱:氧化物電極上製備鐵電記憶體應用之PZT薄膜的研究
論文名稱(外文):The study of the preparation of PZT thin films on oxide electrode for applications of ferroelectric memories
指導教授:吳泰伯
指導教授(外文):Wu Tai-Bor
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:氧化物電極鎳酸鑭鐵電性鋯鈦酸鉛化學氣相沈積
外文關鍵詞:oxide electrodeLNOferroelectricityPZTMOCVD
相關次數:
  • 被引用被引用:3
  • 點閱點閱:273
  • 評分評分:
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:1
鐵電薄膜的應用中研究最多且最具開發潛力非記憶體莫屬,其中應用在非揮發性記憶體的鐵電材料,目前以PZT、SBT以及BLT最受重視。而鍍膜方法則以有射頻磁控濺鍍法及有機化學氣相沈積法(MOCVD)所得的薄膜品質較佳,適合未來高容量記憶體的需求。再者,氧化物電極對薄膜的結晶指向、製程溫度的降低、疲勞現象的改善都有不錯的表現。
本實驗分二部份,第一部分則是在具優選方向的LNO電極上以MOCVD鍍製之Pb(ZrxTi1-x)O3薄膜的特性,對不同Zr/Ti成份比、膜厚、製程溫度以及優選指向對PZT薄膜性質之影響研究。第二部份則是探討在白金氧電極上以射頻磁控濺鍍Pb(Zr0.5Ti0.5)O3薄膜的特性,對不同鍍膜氣氛所鍍製之白金氧電極及後續之真空熱處理,其電極結構以及含氧量對PZT薄膜的結晶性及電性的影響。
結果顯示可以在450℃鍍膜溫度下鍍出具有鈣鈦礦結構的PZT薄膜,且由於使用具(100)優選方向的LNO來當底電極,可以得到亦具有(100)優選方向的PZT薄膜。而隨著薄膜中鈦含量的增加,晶格常數變小,繞射峰會往高角度偏移,並使得PZT在a軸上的晶格常數和LNO愈接近,有助於c軸指向晶粒的出現,造成Zr/Ti比為30/70與40/60的PZT薄膜會有較多的c軸指向的晶粒。而由於c/a比值增加,最大極化量與殘存極化量會增加,Zr/Ti = 30/70其殘存極化量可達29 μC/cm2。
薄膜膜厚會對PZT薄膜晶粒的成長成核有著明顯的影響,膜厚在100 nm以下450℃所鍍製的PZT薄膜,由於在450℃低溫鍍膜時原子的移動率(mobility)較小,結晶程度不是那麼好的情況下,當薄膜愈鍍愈厚時,新鍍上去的薄膜受到之前PZT結晶程度的影響,加上PZT與LNO間晶格失配所產生累積之晶格契合應變能,其結晶程度反而比一開始鍍得時候來得差。然而當鍍膜溫度提高,原子的移動率相對的變大,較容易移動至最合適的位置來消除應變能,結晶程度會較一開始鍍的時候來得好,而且鍍膜溫度愈就現象就愈明顯。
薄膜的結晶度會隨著膜厚的增加而變佳,Zr/Ti成份比為30/70,介電常數會隨膜厚的增加而增加;Zr/Ti成份比為40/60的PZT薄膜則是膜厚100nm會較膜厚200 nm擁有較大的介電常數值,可能是由於較厚的薄膜具有較多[001]優選方向的晶粒有關。另外 Pr、Ec和膜厚有很大的相關性,隨鍍膜溫度增加,膜厚小於100 nm的薄膜,其 Pr增加的幅度不像膜厚200 nm來得明顯。
薄膜與基板間晶格的應變能與薄膜在降溫過程中的熱應變會影響到不同優選指向PZT薄膜的形成。在MgO基板上會由於熱膨脹係數的不同造成PZT薄膜受一壓應力,而在STO單晶基板上會因晶格契合,二者都使PZT薄膜具有c軸的優選方向,電域結構主要是180o電域;然而鍍在Si基板的的PZT薄膜則受到一張應力,使PZT薄膜具有a軸的優選方向,其電域結構主要是90o電域。當施加一電場極化時,90o電域必須反轉,以使其極化方向與外加電場平行,而電域的反轉伴隨一應變能,因為有一應變能的存在,而使電域反轉所需的外加電場較180電域壁所需要者來得大。因此鍍在MgO基板上減少90度電域生成的機會,使得在低電壓下電域較容易反轉造成可反轉極化量較大;而在高電壓下其所加的電場幾乎足以使所有的電域順著電場方向排列,故其可反轉極化量相差不大。另外隨著薄膜中鈦含量的增加,c/a比值也相對地增加,造成更大的應變能使電域不易反轉矯頑電場變大。
不同Ar/O2鍍膜氣氛下所鍍製的白金氧電極,隨著鍍膜氣氛氧含量的增加,白金氧薄膜逐漸形成非晶質相。所鍍製好的白金氧電極經300℃及400℃的真空熱處理,在高溫會還原成白金,且經300℃真空熱處理的白金氧電極僅部份還原成白金,而經400℃熱處理的白金氧電極,則可以完全還原成白金。將PZT薄膜鍍製在Pt及經過真空熱處理後的PtOx電極上,經過 650℃,1分鐘RTA熱處理後的白金氧電極也更進一歩被還原成白金。在高氧量的鍍膜氣氛Ar/O2=70/30下,由於白金氧電極含有較高的氧氣,在經過400℃真空熱處理後會有較多的空孔,在PZT高溫結晶過程中,空孔合併,使得白金氧形成開放的柱狀結構;而白金氧電極所形成鬆散的柱狀結構可以提供一緩和的空間,可以減少PZT薄膜受到基板束縛應力的影響,得到較佳的鐵電性。

第一章 緒論……………………………………………………1-1
1-1 簡介…………………………………………………………1-1
1-2 鐵電薄膜技術發展技趨勢…………………………………1-2
1-3 鐵電記憶體的應用…………………………………………1-4
1-4 研究動機……………………………………………………1-5
第二章 文獻回顧………………………………………………2-1
2-1 簡介…………………………………………………………2-1
2-2 鐵電薄膜……………………………………………………2-1
2-3 電極之選擇…………………………………………………2-2
2-3-1 貴重金屬…………………………………………………2-3
2-3-2 氧化物電極………………………………………………2-3
2-3-3 擴散阻絕層………………………………………………2-4
2-4 製程技術……………………………………………………2-5
2-5 化學氣相沉積法……………………………………………2-6
2-5-1 CVD 原理…………………………………………………2-7
2-5-2 長晶動力學………………………………………………2-8
2-6 MOCVD ……………………………………………………2-10
2-7 有機金屬先趨物……………………………………………2-12
2-8 MOCVD現階段發展所面臨的問題…………………………2-14
2-9 鐵電記憶體之可靠性質…………………………………2-15
2-9-1 疲勞特性…………………………………………………2-15
2-9-2 保持性( Retention )………………………………….2-16
2-9-3 刻印( Imprint )….……………………………………2-17
第三章 不同Zr/Ti成份比對 PZT薄膜性質之影響研究………3-1
3-1 簡介…………………………………………………………3-1
3-2 實驗步驟……………………………………………………3-2
3-2-1 底電極之製作……………………………………………3-2
3-2-2 鋯鈦酸鉛薄膜之製備……………………………………3-3
3-2-3 特性量測…………………………………………………3-4
3-3 結果與討論…………………………………………………3-4
3-4 結論…………………………………………………………3-14
第四章 膜厚、製程溫度對薄膜性質之影響研究……………4-1
4-1 簡介…………………………………………………………4-1
4-2 實驗步驟……………………………………………………4-2
4-3 結果與討論…………………………………………………4-2
4-4 結論…………………………………………………………4-9
第五章 優選指向對PZT薄膜性的影響…………………………5-1
5-1 簡介…………………………………………………………5-1
5-2 實驗方法……………………………………………………5-1
5-3 結果與討論…………………………………………………5-2
5-4 結論…………………………………………………………5-6
第六章 白金氧電極對PZT薄膜極化反轉的影響……………6-1
6-1 簡介…………………………………………………………6-1
6-2 實驗步驟……………………………………………………6-1
6-3 結果與討論…………………………………………………6-2
6-4 結論…………………………………………………………6-3
第七章 結論……………………………………………………7-1
7-1 總結…………………………………………………………7-1
參考文獻…………………………………………………………R-1

1. 石朗, “由MRAM/FeRAM與Flash卡應用潛力探究記憶體市場技術的新思維與新契機”, Compo Tech, Vol. 16, ( 2000 ) 100.
2. J.F. Scott, C. Paz de Araujo, Science 246 (1989) 1400.
3. R. Ramesh, “Thin Film Ferroelectric Materials and Devices” ( Kluwer Academic, London, 1997)
4. G. J. M. Dormans, P. K. Larsen, G. A. C. M. Spierings, J. Dikken, M. J. E. Ulenaers, R. Cuppens, D. J. Taylor and R. D. J. Verhaar “Processing and Performance of Integrated Ferroelectric and CMOS Test Structures for Memory Applications” Integrated Ferroelectrics 6 (1995) 93.
5. H. Takasu, “Integrated Ferroelectrics as a Strategic Device”, Integrated Ferroelectrics 14 (1997) 1.
6. S. Kobayashi, N. Tanabe, Y. Maejima, Y. Hayashi and T. Kunio, “Scaling Possibility of PZT Capacitors for High Density and Low-Voltage NVFRAM Application”, Integrated Ferroelectrics 17 (1997) 81.
7. M. Johnson, B. Bennett and M. Yang, “Hybrid Ferromagnetic Semiconductor Nonvolatile Memory”, IEEE Trans. Magn. 34(4) (1998) 1054.
8. K. Nordquist, S. Pendharkar, M. Durlam, D. Resnick, S. Tehrani, D. Mancini, T. Zhu, and J. Shi, “Process development of sub-0.5μm nonvolatile magnetoresistive random access memory arrays”, J. Vac. Sci. Technol. B 15 (1997) 2274.
9. S. H. Holmberg, R. R. Shanks and V. A. Bluhm, J. Electron Mater. 8 (1979) 333.
10. Kazuya Nakayama, Kazuhiko Kojima, Fumihito Hayakawa, Yutaka Imai,
Akio Kitagawa and Masakuni Suzuki, “Submicron Monvolatile Memory Cell Based on Reversible Phase Transition in Chalcogenide Glasses”, Jpn. J. Appl. Phys. 39 (2000) 6157.
11. O. Auciello, J.F. Scott, R. Ramesh, Phy. Today July (1998) 22
12. S. Masui, S. Kwashima, S. Fueki, K. Masutani, A. Inoue, T. Teramoto and T. Suzuki, “FeRAM Application for Next-Generataion Smart Card LSIs”, 1st International Meeting on Ferroelectric Random access Memories (2001).
13. B. M. Melinick, J. Gregory and C. A. Arajuo, Integrated Ferroelectrics, 11 (1995) 145-160.
14. D. Takashima, Y. Takeuchi, T. Miyakawa, Y. Itoh, R. Ogiwara, M. Kamoshida, K. Hoya, S. M. Doumae and Y. Oowaki, “Circuit Design Techniques for high-Density, High-Speed and Low Voltage Chain FeRAMs”, 1st International Meeting on Ferroelectric Random access Memories (2001) .
15. Y. Fujisaki, T. Kijima and H. Ishiwara, “High-performance metal—ferroelectric—insulator—semiconductor structures with a damage-free and hydrogen-free silicon—nitride buffer layer”, Appl. Phys. Lett, 78 (2001) 1285.
16. K. Nakao, U. Judai, M. Azuma, Y. Shimada and T. Otsuki, Jpn. J. Appl. Phys., 37 (1998) 5203.
17. T. S. Kulkur, B. Jacobs and G. Argos, Integ. Ferroelec. 5 (1994) 177.
18. Y. Watanabe, M. Tamamura and Y. Matsumoto, Jpn. J. Appl. Phys. 35 (1996) 1564.
19. Sung-Min Yoon and Hiroshi Ishiwara,“Memory Operations of 1T2C-Type Ferroelectric Memory Cell With Excellent Data Retention Characteristics”, IEEE TRANSACTIONS ON ELECTRON DEVICES, 48(9) (2001) 2002.
20. Y. Nako, T. Nakamura, A. Kamisawa, and H. Takasu, "Study on Ferroelec- tric Thin Films for Application to NDRO Non-volatile Memories", Symp. 6th Int. Symp. Integrated Ferroelectrics, California Monterey, (1995) 23.
21. T. Sumi et al., “256Kb Ferroelectric Nonvolatile Memory Technoloty for 1T/1C Cell with 100ns Read/Write Time at 3V”, Integrated Ferroelectric 6 (1995) 1.
22. T. Sumi et al., Jpn. J. Appl. Phys. 35 (1996) 1516.
23. J. F. Scott, Ferroelectric Memories ( Springer-Verelag, New York, 2000 )
24. 塩嵜忠, 阿部東彦, 武田英次 and 津屋英樹, 強誘電体薄膜メモリ Chap 5. (1995) 261.
25. J. F. Scott, C. A. Paz de Araujo, L. D. McMillan, H. Yoshimori, H. Watanabe, T. Mihara, M. Azuma, T. Ueda, Tetsuk Ueda, D. Ueda, and G. Kano, "Ferroelectric Thin Films in Integrated Microelectronic Devices", Ferroelectrics, 133 (1992) 47.
26. G. H. Haerting, "Ferroelectric Thin Film for Electronic Applications", J. Vac. Sci. Technol., A9(3) (1991) 414.
27. L. M. Sheppard, "Advances in Processing of Ferroelectric Thin Film", Ceramic Bulletin, 71(1) (1992) 85.
28. M. Sayer and K. Sreenivas, "Ceramic Thin Film: Fabrication and Applications", Science 247 (1990) 1056.
29. 5 G. Yi and M. Sayer, "sol-gel Processing of Complex Oxide Films", Ceramic Bulletin, 70(7) (1991) 1173.
30. O. Auciello and R. Ramesh, "Electroceramic Thin Films Part I: Processing", MRS Bulletin, 20(6) (1996) 21.
31. R. Ramesh, “Thin Film Ferroeletric Materials and Devices” (Kluwer Academic, Boston, 1997) Chap 8. 199.
32. R. Ramesh, “Thin Film Ferroeletric Materials and Devices” (Kluwer Academic, Boston, 1997) Chap 9. 221.
33. S. Aggarwal, A. S. Prakash, T. K. Song, S. Sadashivan, A. M. Dhote, B. Yang, R. Ramesh, Y. Kisler and S. E. Bernacki, “Lead Based Ferroelectric Capacitors for Low Voltage Non-volatile Memory Applications”, Integrated Ferroelectrics 19 (1999) 159.
34. K. Amanuma, T. Hase and Y. Miyasaska, “Preparation and ferroelectric properties of SrBi2Ta2O9 thin films”, Appl. Phys. Lett. 66 (1995) 221.
35. J. K. Lee, T. K. Song, H. J. Jung, “Characteristics of SrBi2Ta2O9 Thin Films Fabricated by The R.F. Magnetron Sputtering Technique”, Integrated Ferroelectrics 15 (1997) 115.
36. K. Uchiyama, K. Arita, Y. Shimada, S. Hayashi, E. Fujii, T. Otsuki, N. Solayappan, V. Joshi and C. A. Paz de Araujo, “Low Temperature Crystallization of SrBi2Ta2O9 (SBT) Films”, Integrated Ferroelectrics 30 (2000) 103.
37. B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, L. Lee and W. Jo, Nature 401 (1999) 682.
38. Uong Chon, Gyu-Chul Yi, and Hyun M. Jang, “Fatigue-free behavior of highly oriented Bi3.25La0.75Ti3O12 thin films grown on Pt/Ti/SiO2/Si(100) by metalorganic solution decomposition”, Appl. Phys. Lett. 78, (2001) 658.
39. Y. Ding, J. S. Liu, H. X. Qin, J. S. Zhu, and Y. N. Wang, “Why lanthanum-substituted bismuth titanate becomes fatigue free in a ferroelectric capacitor with platinum electrodes”, Appl. Phys. Lett. 78, (2001) 4175.
40. T. Maeder, L. agalowicz and P. Muralt, “Stabilized Platinum Electrodes for Ferroelectric Film Deposition using Ti, Ta and Zr Adhersion Layers”, Jpn. J. Appl. Phys. 37 (1998) 2007.
41. E. A. Kneer, D. P. Birnie, R. D. Schrimpf, J. C. Podlesny, and G. Teowee, "Investigation of Surface Roughness and Hillock Formation on Platinized Substrates Used for Pt/PZT/Pt Capacitor Fabrication", Integrated Ferroelectrics 7 (1995) 61.
42. K. B. Lee, S. Triumala and S. B. Desu, “Highly c-axis oriented Pb(Zr, Ti)O3 thin films grown on Ir electrode barrier and their electrical properties”, Appl. Phys. Lett. 74 (1999) 1484.
43. Takashi Nakamura, Yuichi Nakao, Akira Kamisawa, and Hidemi Takasu, “Preparation of Pb(Zr,Ti)O3 thin films on electrodes including IrO2”, Appl. Phys. Lett. 65 (1994) 1522.
44. C. U. Pinnow et al. “.Influence of deposition conditions on Ir/IrO2 oxygen barrier effectiveness”, J. Appl. Phys. 91, (2002) 9591.
45. H. N. Al-Shareef, A. I. Kingon, X. Chen, K. R. Bellur and O. Auciello, “”, J. Mater. Res. 9 (1994) 2968.
46. C. W. Law, K. Y. Tong, J. H. Li, K. Li and M. C. Poon, “Effect of oxygen Content and Thickness of Sputtered RuOx electrodes on the Ferroelectric and Fatigue Properties of Sol-Gel PZT Thin film” Thin Solid Film 354 (1999) 162.
47. H. N. Al-Shareef, B. A. Tuttle, W. L. Warren, T. J. Headly, D. Dimos, J. A. Voigt and R. D. Basby, “ Effect of B-Site Cation Stoichiometry on Electrical Fatigue of RuO2/Pb(ZrxTi1-xO3/RuO2 Capacitors”, J. Appl. Phys. 79(2) (1996) 1013.
48. C. B. Eom, R. B. Van Dover, J. M. Philips, D. J. Werder, J. H. Marshall, C. H. Chen, R. J. Cava and R. M. Fleming, “ Fabrication and Properties of Epitaxial Ferroelectric Heterostructures with (SrRuO3) isotropic Metallic Oxide Electrodes”, Appl. Phys. Lett. 63 (1993) 2570.
49. C. B. Eom, R. B. V. Dover, J. M. Phillips, R. M. Fleming, R. J. Cava, J. H. Marshall, D. J. Werder, C. H. Chen, and D. K. Fork, "Epitaxial Ferroelectric Heterostructures of Isotropic Metallic Oxide (SrRuO3) and Pb(Zr0.52Ti0.48)O3", Mater. Res. Soc. Symp. Proc. 310 (1993) 145.
50. S. M. Yoon, E. Tokumitsu, H. Ishiwara, “Preparation of PbZrxTi1-xO3/La1-xSrxCoO3 Heterostructures Using the Sol-Gel Method and their Electrical Properties”. Applied Surface Science 117/118 (1997) 447.
51. R. Dat, D. J. Lichtenwalner, Ol Auciello and A. I. Kingon, “Polycrystalline La0.5Sr0.5CoO3/PbZr0.53Ti0.47O3/La0.5Sr0.5CoO3 Ferro- electric Capacitors on Platinized Silicon with No Polarization Fatigue”, Appl. Phys. Lett., 64 (1994) 2673.
52. R. Ramesh, H. Gilchrist, T. Sands and V. G. Keramidas, “Ferroelectric La-Sr-Co-O/Pb-Zr-Ti-O/La-Sr-Co-O Heterostructures on Silicon via Template Growth”, Appl. Phys. Lett., 63 (1993) 3592.
53. M. S. Chen, T. B. Wu, and J. M. Wu, "Effects of Textured LaNiO3 Electrode on the Fatigue Improvement of Pb(Zr0.53Ti0.47)O3 Thin Films", Appl. Phys. Lett., 68 (1996) 1430.
54. M. S. Chen, T. B. Wu and J. M. Wu, “Effect of textured LaNiO3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3 thin films”, Appl. Phys. Lett. 68 (1996) 1430.
55. C. C. Yang, M. S. Chen, T. J. Hong, C. M. Wu, J. M. Wu, and T. B. Wu, "Preparation of (100)-Oriented Metallic LaNiO3 Thin Films on Si Substrates by RF Magnetron Sputtering for the Growth of Textured PZT", Appl. Phys. Lett., 66 (1995) 2643.
56. M. S. Chen, J. M. Wu, and T. B. Wu, "Effects of (100)-Textured LaNiO3 Electrode on the Crystallization and Properties of Sol-gel Derived Pb(Zr0.53Ti0.47)O3 Thin Films", Jpn. J. Appl. Phys., 34(9A) (1995) 4870.
57. D. McIntyre, J. E. Greene, G. Hakansson, J. E. Sundgren, W. D. Munz, “La0.5Sr0.5CoO3/Pb(Nb0.04Zr0.28Ti0.68)O3/La0.5Sr0.5CoO3 thin film heterostructures on Si using TiN/Pt conducting barrier”, Appl. Phys. Lett. 71 (1997) 356.
58. S. Yamamichi, P-Y. Lesaicherre, H. Yamaguchi, K. Takemura, S. sone, H. Yabuta, K. Sato, T. Tamura, K. Nakajima, S. Ohnishi, K. Tokashiki, Y. Hayashi, Y. Kato, Y. Miyasaka, M. Yoshida, and H. Ono, IEEE IEDM-95 (1995) 119
59. A. Yuuki, M. Yamamuka, T. Makita, T. Horikawa, T. Shibano, N. Hirano, H. Maeda, N. Mikami, K. One, H. Ogata, and H. Abe, IEEE IEDM-95 (1995) 115.
60. A. I. Kingon, S. K. Streiffer, C. Basceri, and S. R. Summerfelt, MRS Bulletin 21[7] (1996) 46.
61. X. Sun H, S. Reid, E. Kolawa, M. A. Nicolet, “Reactively sputtered Ti-Si-N films. II. Diffusion barriers for Al and Cu metallizations on Si”, J. Appl. Phys. 81 (1997) 664.
62. S. Veprek, S. Reiprich, S. H. Li, “Superhard nanocrystalline composite materials: The TiN/Si3N4 system”, Appl. Phys. Lett., 66 (1995) 2640.
63. O. Auciello and R. Ramesh, "Laser-Ablation Deposition and Characterization of Ferroelectric Capacitors for Nonvolatile Memories", MRS Bulletin, 20(6) (1996) 31.
64. J. Dieleman, E. van de Riet, and J. C. S. Kools, "Laser Ablation Deposition: Mechanism and Application", Jpn. J. Appl. Phys., 31(6B) (1992) 1964.
65. B. A. Tuttle and R. W. Schwartz, "Solution Deposition of Ferroelectric Thin Films", MRS Bulletin, 20(6) (1996) 49.
66. S. K. Dey., “Ferroelectric Thin Films”, eds. Paz de Araujo C., J. F. Scott and G. W. Taylor (Gordon & Breach, New York, 1996) 329.
67. O. Auciello, A. I. Kingon, and S. B. Krupanidhi, "Sputter Synthesis of Ferroelectric Films and Heterostructures", MRS Bulletin 20 (1996) 25.
68. O. Auciello, A. R. Kraus and K. D. Gifford, “Ferroelectric Thin Films”, eds. Paz de Araujo C., J. F. Scott and G. W. Taylor (Gordon & Breach, New York, 1996) 393.
69. T. Fukami, I. Mimemura, Y. Hiroshima and T. Osada, Jpn. Appl. Phys. 30 (1991) 2155.
70. H. Ichinose, Y. Shiwa, and M. Nagano, "Synthesis of BaTiO3/LaNiO3 and PbTiO3/LaNiO3 Multilayer Thin Films by Spray Combustion Flame Technique", Jpn. J. Appl. Phys., 33(10), (1994) 5903.
71. “Synthesis of PbTiO3 Films on LaNiO3-coated Substrate by the Spray-ICP Technique", J. Mater. Sci., 29, (1994) 5115.
72. O. Auciello, A. I. Kingon, and S. B. Krupanidhi, "Sputter Synthesis of Ferroelectric Films and Heterostructures", MRS Bulletin, 20 (1996) 25.
73. S. B. Krupanidhi, H. Hu, and V. Kumar, “Multi-ion-beam reactive sputter deposition of ferroelectric Pb(Zr,Ti)O3 thin films”, 71 (1992) 376.
74. W. Zhu, Z. Q. Liu, W. Lu, M. S. Tse, H. S. Tan, and X. Yao, “A systematic study on structural and dielectric properties of lead zirconate titanate/(Pb,La)(Zr(1 - x)Ti(x))O3 thin films deposited by metallo-organic decomposition technology”, J. Appl. Phys. 79 (1996) 4283.
75. B. A. Tuttle, T. J. Headley, B. C. Bunker, R. W. Schwartz, T. J. Zender, C. L. Hernandez, D. C. Goodnow, R. J. Tissot, J. Michael, and A. H. Carim, “Microstructural evolution of Pb(Zr,Ti)O3 thin films prepared by hybrid metallo-organic decomposition”, J. Mater. Res. 7 (1992) 1876.
76. G.-R. Bai, I-Fei Tsu, A. Wang, C. M. Foster, C. E. Murray, and V. P. Dravid, “In situ growth of highly oriented Pb(Zr0.5Ti0.5O3 thin films by low-temperature metal-organic chemical vapor deposition”, Appl. Phys. Lett. 72 (1998) 1572
77. O. Auciello, A. R. Kraus and K. D. Gifford, Ferroelectric Thin Films, eds. Paz de Araujo C., J. F. Scott and G. W. Taylor (Gordon & Breach, New York, 1996) Chap.12 485.
78. C. M. Foster, G. R. Bai, R. Csencsits, J. Vertrone,R. Jammy, L. A. Wills, E. Carr and Jne Amano, “Single-Crystal Pb(ZrxTi1-x)O3 Thin Films Prepared by Metal-Organic Chemical Vapor Deposition:Systematic Compositional Variation of Electronic and Optical Properties”, J. Appl. Phys. 81 (1997) 2349.
79. M. L. Hitchman and K. F. Jensen, “ Chemical Vapor Deposition,Principles and Applications ”, Academic Press Inc., New York, (1993)
80. A. Sherman, “Chemical Vapor Deposition for Microelectronics”, Noyes Publications, U.S.A., (1987).
81. H. O. Pierson, “ Handbook of Chemical Vapor Deposition, Principles, Technology and Applications ”, Noyes Publications, U.S.A., (1992)
82. 莊達仁, “ VLSI製造技術 ”, (1994) 183
83. S. Sivaram, “ Chemical Vapor Deposition, Thermal and Plasma Deposition of Electronic Materials ”, Van Nostrand Reinhold, New York, (1995)
84. R. Hiskers, S. A. DiCarolis, R. D. Jacowitz, Z. Lu, R. S. Feigelson, R. K. Route and J. L. Young, J. Cryst. Growth 128 (1993) 781.
85. R. Hiskes, S. A. DiCarolis, J. L. Young, S. S. Laderman, R. D. Jacowitz and R. C. Taber, Appl. Phys. Lett. 59 (1991) 606.
86. Y. Gao, G. Bai, K. L. Merkle, Y. Shi, H. L. M. Chang, Z. Shen, D. J. Lam,” Microstructure of PbTiO3 thin films deposited on (001)MgO by MOCVD”, J. Mater. Res. 8 (1993) 145.
87. G. R. Bai, H. L. M. Chang, C. M. Foster, Z. Shen, D. J. Lam, ” The relationship between the MOCVD parameters and the crystallinity, epitaxy, and domain structure of PbTiO3 films”, J. Mater. Res. 9 (1994) 156.
88. C. H. Peng and S. B. Desu, “Metalorganic Chemical Vapor Deposition of Ferroelectric Pb(Zr,Ti)O3 Thin Films”, J. Am. Ceram. Soc. 77 (1994) 1799.
89. C. M. Foster, Z. Li, M. Buckett, D. Miller, P. M. Baldo, L. E. Rehn, G. R. Bai, D. Guo, H. You, and K. L. Merkle, “Substrate effects on the structure of epitaxial PbTiO3 thin films prepared on MgO, LaAlO3, and SrTiO3 by metalorganic chemical-vapor deposition”, J. Appl.Pyhs. 78 (1995) 2607.
90. C. M. Foster, Z. Li, M. Buckett, D. Miller, P. M. Baldo, L. E. Rehn, G. R. Bai, D. Guo, H. You, and K. L. Merkle “Substrate effects on the structure of epitaxial PbTiO3 thin films prepared on MgO, LaAlO3, and SrTiO3 by metalorganic chemical-vapor deposition”, J. Appl. Phys. 78 (1995) 2607.
91. P. Kerlin, S. Bilodeau and P. Van Buskirk, “MOCVD of BaSrTiO3 for ULSI DRAMs”, Integrated. Ferroelectric 7 (1995) 307.
92. P. C. Van Buskirk, J. F. Roeder and S. Bilodeau, Integ. Ferroelec. 10 (1995)
93. Bo Zheng, Eric T. Eisenbraun, Jun Liu, and Alain E. Kaloyeros, “Device-quality copper using chemical vapor deposition of β-diketonate source precursors in liquid solution”. Appl. Phys. Lett. 60 (1992) 2175.
94. T. Jawahara, M. Yamamuka, A. Yunki, and Ono, Jpn. J. Appl. Phys. 35 (1996) 4880.
95. Yukio Sakashita, Toshiyuki Ono, Hideo Segawa, Kouji Tominaga, and Masaru Okada, “Preparation and electrical properties of MOCVD-deposited PZT thin films”, J. Appl. Phys. 69 (1991) 8352.
96. A.P. Wilkinson, J.S. Speck, A.K. Cheetham, S. Natarajan and J.M. Thomas, “An in situ X-ray diffraction study of the crystallization kinetics in PZT, PbZr1-xTixO3 (x=0.0, 0.55, 1.0).” Chem. Mat. 6 (1994) 750.
97. S. K. Dey, “ Ferroelectric Thin Films: Synthesis and Basic Properties” 10 (Gordon & Breach, New York, 1996)
98. Sandwip K. Dey and Prasak V. Alluri, MRS Bulletin, 21 (1996) 44.
99. D. L Schultz, and Tobin J. Marks, Adv. Mater. 6 (1994) 719.
100. R. E. Sievers and J. E. Sadlowski, Science 201 (1978) 217.
101. S. C. Thompson, D. L. cole-Hamilton, D. d. Gilliland, M. L. Jitchman and R. C. Tober. Adv. Mater. Opt. Electron. 1 (1992) 81.
102. M. Balog, M. Schieber, M. Michman and S. Patai, J. electrochem. Soc., 26 (1979) 1203.
103. W. L. Warren, D. Dimos, B. A. Tuttle, R. D. Nasby, and G. E. Pike, “Electronic domain pinning in Pb(Zr,Ti)O3 thin films and its role in fatigue”, Appl. Phys. Lett., 65 (1994) 1018.
104. W. L. Warren, D. Dimos, B. A. Tuttle, G. E. Pike, R. W. Schwartz, P. J. Clews, and D. C. McIntyre, “Polarization suppression in Pb(Zr,Ti)O3 thin films”, J. Appl. Phys. 77 (1995) 6695.
105. C. J. Brennan, R. D. Parrella and D. E. Larsen, Ferroelectrics, 151 (1994) 33.
106. S. B. Desu and I. K. Yoo, Integ. Ferroelectrics 3 (1993) 365.
107. L. K. Yoo, S. B. Desu and J. Xing, MRS Symp. Proc. 310 (1993) 165.
108. W. Y. Pan, C. F. Yue and B. A. Tuttle, Ceram. Trans. 25 (`992) 385.
109. W. L. Warren, D. Dimos, G. E. Pike, B. A. Tuttle, M. V. Raymond, R. Ramesh, and J. T. Evans, Jr., “Voltage shifts and imprint in ferroelectric capacitors”, Appl. Phys. Lett. 67 (1995) 866.
110. S. H. Kim, D. J. Kin, J. G. Hong, S. K. Streiffer and A. I. Kingon, “Imprint and fatigue Properties of Chemical Solution Dervied Pb1-xLax(ZryTi1-y)1-x/4O3 Thin films”, J. Mater. Res. 14 (1999) 1371.
111. J. F. Scott, C. A. Araujo, B. M. Melnick, L. D. McMillan, and R. Zuleeg ,”Quantitative measurement of space-charge effects in lead zirconate-titanate memories”, J. Appl. Phys., 70 (1991) 382.
112. W. H. Shepherd, “Fatigue and Aging in Sol-Gel Derived PZT Thin Films” Maters. Soc. Symp. Proc. 200, (1990) 277
113. J. J. Lee, C. L. Thio, M. Bhattacharya, and S. B. Desu, "Electrode Contacts on PZT Thin Films and their Influence on Fatigue Properties", Mat. Res. Soc. Symp. Proc.361 (1995) 241.
114. C. K. Kwok and S. B. Desu, “Role of Oxygen Vacancies on the Ferroelectric Properties of PZT Thin Films”, Mat. Res. Soc. Symp. Proc. Vol. 243, (1992) 393.
115. D. Dimos, W. L. Warren, M. B. Sinclair, B. A. Tuttle, and R. W. Schwartz, “Photoinduced hysteresis changes and optical storage in (Pb,La)(Zr,Ti)O3 thin films and ceramics”, J. Appl. Phys., 76 (1994) 4305.
116. W. L. Warren, D. Dimos, B. A. Tuttle, R. D. Nasby, and G. E. Pike, “Electronic domain pinning in Pb(Zr,Ti)O3 thin films and its role in fatigue”, Appl. Phys. Lett., 65 (1994) 1018.
117. J. F. Scott, Matthew Dawber,“A model for fatigue in ferroelectric perovskite thin films”, Appl. Phys. Lett. 76(8) (2000) 1060.
118. R. C. Brade and G. S. Ansell, J. Am. Ceram. Soc. 52(4) (1969) 192.
119. G. Arlt, Ferroelectrics 76 (1987) 451.
120. K. Tsuzuki, Jpn. J. Appl. Phys. 24 (1985) 126.
121. K. M. Lee, H. G. an, J. K. Lee, Y. T. Lee, S. W. Lee, S. H. Joo, S. D. Nam, K. S. Park, M. S. Lee, S. O. Park, H.K. Kang and J. T. Moon,”Enhanced Retention Characteristics of Pb(Zr,Ti)O3 Capacitors by Ozone Treatment”, Jpn. J. Appl. Phys. 40 (2001) 4979.
122. J. s. Lee and S. K. Joo, “Enhanced Fatigue and Data Retention Characteristics of Pb(Zr,Ti)O3 Thin Films by the Selectively Nucleated Lateral Crystallization Methood”, Jpn. J. Appl. Phys. 40 (20010 229.
123. J. W. Hong, W. Jo, D. C. Kim, S. M. Cho, H. J. Nam, H. M. Lee and J. U. Bu, “Nanoscale Investigation of domain Retention in preferentially Oriented PbZr0.53Ti0.47O3 Thin Films on Pt and on LaNiO3”, Appl. Phys. Lett. 75 (1999) 3183.
124. A. Gruverman, H. Tokumoto, A. S. Prakash, S. Aggarwal, B. Yang, M. Wutting, R. Ramesh, O. Auciello and T. Verkatesan, “Nanoscale Imaging of Domain dynamics and Retention in Ferroelectric Thin Films”, Appl. Phys. Lett. 71 (1997) 3492.
125. C. Paz de Araujo, J. F. Scott and G. W. Taylor,”Ferroelectric Thin Films:Synthesis and Basic properties” Chap.13 (Overseas Publisher Association,
126. R. Ramesh, S. Aggarwal and O. Auciello, “Science and Technology of Ferroelectric Films and Heterostructures for Non-Volatile Ferroelectric Memories”, 32 (2001) 191.
127. J. Lee, R. Ramesh, V. G. Keramidas, W. L. Warren, G. E. Pike, and J. T. Evans, Jr.,” Imprint and oxygen deficiency in (Pb,La)(Zr,Ti)O3 thin-film capacitors with La-Sr-Co-O electrodes”, Appl. Phys. Lett. 66 (1995) 1337.
128. T. Friessnegg, S. Aggarwal, R. Ramesh, B. Nielsen, E. H. Poindexter, and D. J. Keeble,” Vacancy formation in (Pb,La)(Zr,Ti)O3 capacitors with oxygen deficiency and the effect on voltage offset”, Appl. Phys. Lett. 77 (2000) 127
129. Eun Gu Lee, Dirk J. Wouters, Geert Willems, and Herman E. Maes,” Voltage shift and deformation in the hysteresis loop of Pb(Zr,Ti)O3 thin film by defects”, Appl.Phys. Lett. 69 (1996) 1223.
130. M. Tajiri and H. Nozawa,”Imprint Model Based on Thermonic Field Emission Mechanism considering Energy distribution of Trap Levels”, Proc. IEEE 8th IPFA (2001) 234.
131. N. Inoue and Y. Hayashi, “Effect of Imprint on Operation and Reliability of Ferroelectric Random Access Memory (FeRAM)”, IEEE Trans Electron dev. 48 (2001) 2266.
132. G. E. Pike, W. L. Warren, D. Dimos, B. A. Tuttle, R. Ramesh, J. Lee, V. G. Keramidas and J. T. Evans, Jr, “Voltage offsets in (Pb,La)(Zr,Ti)O3 Thin Films”, Appl. Phys. Lett. 66 (1995) 484.
133. J. Loan, “Direct Liquid Injection Support Material”, MKS Instrument, INC. (1994)
134. X. Sun, J. S. Reid, E. Kolawa, M.-A. Nicolet, and R. P. Ruiz, “Reactively sputtered Ti-Si-N films. II. Diffusion barriers for Al and Cu metallizations on Si”, J. Appl. Phys. 81 (1997) 664.
135. S. Vep ek, S. Reiprich, and Li Shizhi, “Superhard nanocrystalline composite materials: The TiN/Si3N4 system”, 66 1995) 2640.
136. A. L. Greer, in: J. H. Westbrook, R. L. Fleischer (Eds.), “Intermetallic compounds”, 1 (Wiley, New York, 1995) 371.
137. R. de Reuss, in: J. H. Westbrook, R. L. Fleischer (Eds.), “Intermetallic Compounds”, 2 (Wiely, New York, 1995) 603.
138. 劉家駿, “添加劑及成份對PZT低溫製程及鐵電特性之影響研究”, 清華大學, 碩士論文, (2001)
139. TR66A Standardized Ferroelectric Test System Operating Manual.
140. 洪天爵, "鈦酸鉛薄膜之研究-製程、微觀結構、優選晶向與鐵電特性", 清華大學, 博士論文, (1995).
141. Y. Xu, “Ferroelectric Materials and Their Applications”, (North-Holland, New York, 1991) 109.
142. C. M. Foster, G.-R. Bai, R. Csencsits, J. Vetrone, R. Jammy, L. A. Wills, E. Carr, and Jun Amano, “Single-crystal Pb(ZrxTi1 — x)O3 thin films prepared by metal-organic chemical vapor deposition: Systematic compositional variation of electronic and optical properties”, J. Appl. Phys. 81 (1997) 2349.
143. J. M. Benedetto, R. A. Moore and F. B. McLean, “Integrated Ferroelectrics”, 1 (1992) 195.
144. R. Ramesh, “Thin Film Ferroelectric Materials and Devices”, (Kluwer-Academic, Boston, 1997) 133.
145. S. Aggarwal, A. S. Prakash, T. K. Song, S. Sadashivan, A. M. Dhote, B. Yang, R. Ramesh, Y. Kisler and S. E. Bernacki, “Lead Based Ferroelectric Capacitors for Low Voltage Non-Volatile Memory Applications”, Integrated Ferroelectrics 19 (1998) 159.
146. B. A. Tuttle, T. J. Garino, J. A. Volgt, T. J. Headley, D. Dimos and M. O. eatough, “Science and Technology of Electroceamic Thin Films”, 284 (Kluwer Academic, Dordrecht, 1995) 117.
147. X. Dai, Z. Xu and D. iehland, “Normal to relaxor ferroelectric transformations in lanthanum-modified tetragonal-structured lead zirconate titanate ceramics”, J. Appl. Phys. 79 (1996) 1021.
148. R. Ramesh and V. G. Keramidas, Annu. Rev. Mater. Sci 25 (1995) 647.
149. J. S. Lee and S. K. Joo, “Enhanced Fatigue and Data Retention Characteristics of Pb(Zr,Ti)O3 Thin films by the Selectively Nucleated Lateral Crystallization Method”, Jpn. J. Appl. Phys. 40 (2001) 229.
150. J. W. Hong, W. Jo, D. C. Kim, S. M. Cho, H. J. Nam, H. M. Lee and J. U. Bu, “Nanoscale Investigation of Domain Retention in Preferentially Oriented PbZr0.53Ti0.47O3” Thin Films on Pt and on LaNiO3”, Appl. Phys. Lett. 75 (1999) 3183.
151. W. Jo, D. C. Kim and J. W. Hong, “Domain Images and Retention Properties of Pb(Zr,Ti)O3 Thin Films Observed by Electrostatic Force Microscopy”, Mat. Res. Soc. Symp. Proc. 596 (2000) 339.
152. J. M. Benedetto, R. A. Moore and F. B. McLean, “Effects of Operating Conditions on the Fast-Decay Component of the Retained Polarization in Lead Zirconate Titanate Thin Films”, J. Appl. Phys. 75 (1994) 1.
153. J. Kakalios, R. A. Street and W. B. Jackson, Phys. Rev. Lett. 59 (1987) 1037.
154. A. K. Tagantsev and I. A. Stolichnov, “Injection-Controlled Size Effect on Switching of Ferroelectric Thin Films”, Appl. Phys. Lett. 74 (1999) 1326.
155. P. K. Larsen, G. J. M. Dormans, D. J. Taylor and P. J. van Veldhoven, “Ferroelectric properties and Fatigue of PbZr0.51Ti0.49O3 Thin Films of Varying Thickness:Blocking Layer Model”, J. Appl. Lett. 76 (1994) 2405.
156. J. Zhu, X. Zhang, Y. Zhu and S. B. Desu, “Size Effects of 0.8SrBi2Ta2O9-0.2Bi3TiNbO9 Thin Films”, J. Appl. Phys. 83 (1998) 1610.
157. I. Stolichnov, A. Tagantsev, E. Colla, S. Gentil, S. Hiboux, J. Baborowski, P. Muralt and N. Setter, “Downscaling of Pb(Zr,Ti)O3 Film Thickness for Low-Voltage Ferroelectric Capacitors:Effect of Charge Relaxation at the Interfaces”, J. Appl. Phys. 88 (2000) 2154.
158. C. R. Cho, W. J. Lee, B. G. Yu and B. W. Kim, “Dielectric and Ferroelectric Response as a function of Annealing Temperature and Film Thickness of Sol-Gel Deposited Pb(Zr0.52Ti0.48)O3 Thin Film”, J. Appl. Phys. 86 (1999) 2700.
159. J. F. M. Cillessen, M. W. J. Prins and R. M. Wolf, “Thickness Dependence of the Switching Voltage in All-Oxide Ferroelecric Thin-Film Cpacitors Prepared by Pulse Laser Deposition”, J. Appl. Phys. 81 (1997) 2777.
160. H. Fujisawa, S. Hyodo, Y. Ishii, N. tomozawa, M. Shimizu and H. Niu, “Dependence of Electrical Properties of Pb(Zr,Ti)O3 Thin Films on the Grain Size and Film Thickness”, Proc. 11th. Symp. Appl. Of Ferroelectr., Montreux (IEEE, New York, 1998)
161. Yukio Sakashita, Hideo Segawa, Kouji Tominaga, and Masaru Okada, “Dependence of electrical properties on film thickness in Pb(ZrxTi1—x)O3 thin films produced by metalorganic chemical vapor deposition”, 73 (1993) 7857.
162. H. D. Chen, K. K. Li C. J. Gaskey and L. E. Cross, Mater. Res. Soc. Symp. Proc. 433 (1996) 325.
163. G. Mohan Rao and S. B. Krupanidhi, “Study of electrical properties of pulsed excimer laser deposited strontium titanate films”, J. Appl. Phys. 75 (1994) 2604.
164. S. T. Mckinstry, C. A. Randall, J. P. Maria, C. Theis, D. G. Schlom, J. Shepard, Jr., and K. Yamakawa, Mater. Res. Sco. Symp. Proc. 433 (1996) 363.
165. S. B. Ren, C. J. Lu, J. S. Liu, H. M. Shen and Y. N. Wang, Phys. Rev. B 54 (1996) R14 337.
166. S. B. Ren, C. J. Lu, J. S. Liu, H. M. Shen and Y. N. Wang, Phys. Rev. B 55 (1996) 3485.
167. Y. Gao, G. Bai, K. L. Merkle, Y. Shi. H. L. M. Chang, Z. Shen and D. J. Lam, “Microstructure of PbTiO3 Thin Films Deposited on (001)MgO by MOCVD”, J. Mater. Res. 8 (1993) 145.
168. J. S. Speck, A. Seifert, W. Pompe, and R. Ramesh, “Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films. II. Experimental verification and implications”, J. Appl. Phys. 76 (1994) 477.
169. S. Pamir Alpay and Alexander L. Roytburd, “Thermodynamics of polydomain heterostructures. III. Domain stability map”, J. Appl. Phys. 83 (1998) 4714.
170. K. S. Lee, J. H. Choi, J. Y. Lee and S. Baik, “Domain Formation in Epitaxial Pb(Zr,Ti)O3 Thin Films”, 90 (2001) 4095.
171. H. N. Al-Shareef, K. D. Gifford, S. H. Rou, P. D. Hren, O. Auciello and A. Kingon, Integrated Ferroelectrics 2 (1992) 311.
172. M. H. Kim, T. S. Park, E. Yoon, D. S. Lee, D. Y. Park, H. J. Woo, D. I. Chun and J. Ha, “Changes in Preferred Orientation of Pt Thin Films Deposition by DC Magnetron Sputtering using Ar/O2 Gas Mixtures”, J. Mater. Res. 14 (1999) 1255.
173. Y. Abe, H. Yanagisawa and K. Sasaki, “Preparation of Oxygen-Containing Pt and Pt Oxide Thin Films by Reactive Sputtering and Their Characterization”, Jpn. J. Appl. Phys. 37 (1998) 4482.
174. K. L. Saenger, C. Cabral, Jr., C. Lavoie and S. M. Rossnagel,” Thermal Stability and Oxygen-loss Characteristics of Pt(O) Films Prepared by Reactive Sputtering”, J. Appl. Phys. 86 (1999) 6084.
175. K. L. Saenger and S. M. Rossnagel, “Properties and Decomposition Behaviors of Reactively Sputtered Pt(O) Electrode Materials”, Mater. Res. Soc. Symp. Proc. 596 (2000) 57.
176. K. Lee and B. R. Rhee, “Characteristics of Ferroelectric Pb(Zr,Ti)O3 Thin Films having Pt/PtOx Electrode Barriers” Appl. Phys. Lett. 79 (2001) 821.
177. T. Shiosaki, M. Shimizu and M. Kinoshita, “Characterization of PZT Films Growth by MOCVD on 6-8 Inch Si Wafers”, Integrated Ferroelectrics 7 (1995) 111.
178. A.L. Greer, “Intermetallic Compounds” 1 (Wiley, New York, 1995) 371.
179. R. de Reuus. “Intermetaallic Compounds”, 2 (Wiely, New York, 1995) 603
180. S. Hiboux, P. Muralt and T. Maeder, “Domain and Lattice Contributions to Dielectric and Piezoelectric Properties of Pb(Zrx,Ti1-x)O3 Thin Films as a Function of composition”, J. Mater. Res. 14 (1999) 4307.
181. R. E. Koritale, M. T. lanagan, N. Chen, G. R. Bai. Y. Huang and S. K. Streiffer, “Microstructure and Properties of PbZr0.6Ti0.4O3 and PbZrO3 Thin Films Deposited on Template Layers”, J. Mater. Res. 15 (2000) 1962.
182. H. S. Song, T. S. Kim, C. E. Kim and H. J. Jung, “Fabrication and Characterization of Ferroelectric Pb(ZrxTi1-x)O3 Thin Films by Metalorganic Chemical Vapor Deposition”, J. mater. Res. 14 (1999) 487.
183. H. Fujisawa, S. Nakashima, K. Kaibara, M. Shimizu and H. Niu, “Size Effects of Epitaxial and Polycrystaaline Pb(Zr,Ti)O3 Thin films Grown by Metalorganic Chemical Vapor Deposition”, Jpn. J. Appl. Phys. 38 (1999) 5392.
184. G. R. Bai, I. Fei Tsu, A. Wang, C. M. Foster, C. E. Murray and V. P. Dravid, “In situ Growth of Highly Oriented Pb(Zr0.5Ti0.5)O3 Thin Films by Low-Temperature Metal-organic Chemical Vapor Deposition”, Appl. Pyhs. Lett. 72 (1998) 1572.
185. C. H. Lin , P. A. Friddle, X. Lu, Hayden Chen, Young kim and T. B. Wu, “Electrical characteristics of 25 nm Pb(ZrTi)O3 Thin Films Grown on Si by Metalorganic Chemical Vapor Deposition”, J. Appl. Pyhs. 88 (2000) 2157.
186. B. Yang, Y. M. Kang, S. S. Lee, K. H. Noh, N. K. Kim, S. J. Yeom, N. S. Kang and H. G. Yoon, “Highly Reliable 1Mbit Ferroelectric Memories with Newly Developed BLT Thin Films and Steady Integration Schemes”, IEDM 2001.
187. TF Analyzer 2000 FE-Module 操作手冊
188. 李信義, “磁控濺鍍鎳酸鑭薄膜于矽晶基板上其生長行為與結構特徵之X光研究”, 清華大學, 博士論文, (1996)
189. D. J. Taylor, P. K. Larsen, G. J. M. dormans and A. E. M. De Veirman, “Pulse Switching Characterization of organometallic Chemical Vapor Deposited PbZrxTi1-xO3 Thin Films for High-Density Memory Applications”, Integrated Ferroelectrics 7 (1995) 123.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. ─。〈性/女性/新女性:袁瓊瓊訪談錄〉。《中外文學》第十八卷第十期。總號二一四。1990.3。
2. 褚士瑩。〈朱天文在臺北:過簡單生活的十種方法〉。《幼獅文藝》。1998.3。
3. 陳樂融。〈陪他一段紅顏已老──論蘇偉貞小說的愛情觀照〉。《中外文學》第十二卷第四期。1983。
4. 陳炳良。〈水仙子人物再探:蘇偉貞、鍾玲等人作品析論〉。《中外文學》第十八卷第五期。1989。
5. 葉玉靜。〈錦繡天衣──女性文學紀念碑的編織工程:淺論王安憶《長恨歌》中的女性書寫〉。《中外文學》第二十六卷第十一期。1998.4。
6. 楊照。〈敗德與死亡的種種傳奇──小論蘇童〉。《聯合文學》第八卷第十二期。總號九六。1992.10。
7. 張惠娟。〈鍾曉陽作品淺論〉。《中外文學》第十七卷第四期。
8. 莊宜文。〈劉叔慧:走在華麗的文字鋼索上〉。《文訊》。1997.6。
9. 姜捷。〈水墨般的女孩(鍾曉陽)〉。《婦女雜誌》總號二一八期。1986.11。
10. 林燿德。〈在歷史的轉機地開闢小說和人生的出入境口──評施叔青「遍山洋紫荊」〉。《文訊》總號一二三。1996.1。
11. 邱妙津。〈中國傳統裡的烏托邦──兼論《荒人手記》中的「情色」與「色情」烏托邦〉。《聯合文學》總號一二一期。1994。
12. 李元貞。〈貌多實一的身體書寫──從《沈默之島》談女人身體的處境〉。《聯合文學》第十一卷第四期。總號一二四期。1995。
13. 朱西甯。〈恨歸何處──評王安憶《長恨歌》〉。《聯合文學》第十二卷第九期。
14. 石曉楓。〈論王安憶《長恨歌》的海派傳承〉。《中國現代文學理論季刊》。第十一期。1998.9。
15. 王志弘。〈城市的身世〉。《聯合文學》第十卷第五期。1994.3。