1. 石朗, “由MRAM/FeRAM與Flash卡應用潛力探究記憶體市場技術的新思維與新契機”, Compo Tech, Vol. 16, ( 2000 ) 100.
2. J.F. Scott, C. Paz de Araujo, Science 246 (1989) 1400.
3. R. Ramesh, “Thin Film Ferroelectric Materials and Devices” ( Kluwer Academic, London, 1997)
4. G. J. M. Dormans, P. K. Larsen, G. A. C. M. Spierings, J. Dikken, M. J. E. Ulenaers, R. Cuppens, D. J. Taylor and R. D. J. Verhaar “Processing and Performance of Integrated Ferroelectric and CMOS Test Structures for Memory Applications” Integrated Ferroelectrics 6 (1995) 93.
5. H. Takasu, “Integrated Ferroelectrics as a Strategic Device”, Integrated Ferroelectrics 14 (1997) 1.
6. S. Kobayashi, N. Tanabe, Y. Maejima, Y. Hayashi and T. Kunio, “Scaling Possibility of PZT Capacitors for High Density and Low-Voltage NVFRAM Application”, Integrated Ferroelectrics 17 (1997) 81.
7. M. Johnson, B. Bennett and M. Yang, “Hybrid Ferromagnetic Semiconductor Nonvolatile Memory”, IEEE Trans. Magn. 34(4) (1998) 1054.
8. K. Nordquist, S. Pendharkar, M. Durlam, D. Resnick, S. Tehrani, D. Mancini, T. Zhu, and J. Shi, “Process development of sub-0.5μm nonvolatile magnetoresistive random access memory arrays”, J. Vac. Sci. Technol. B 15 (1997) 2274.
9. S. H. Holmberg, R. R. Shanks and V. A. Bluhm, J. Electron Mater. 8 (1979) 333.
10. Kazuya Nakayama, Kazuhiko Kojima, Fumihito Hayakawa, Yutaka Imai,
Akio Kitagawa and Masakuni Suzuki, “Submicron Monvolatile Memory Cell Based on Reversible Phase Transition in Chalcogenide Glasses”, Jpn. J. Appl. Phys. 39 (2000) 6157.
11. O. Auciello, J.F. Scott, R. Ramesh, Phy. Today July (1998) 22
12. S. Masui, S. Kwashima, S. Fueki, K. Masutani, A. Inoue, T. Teramoto and T. Suzuki, “FeRAM Application for Next-Generataion Smart Card LSIs”, 1st International Meeting on Ferroelectric Random access Memories (2001).
13. B. M. Melinick, J. Gregory and C. A. Arajuo, Integrated Ferroelectrics, 11 (1995) 145-160.
14. D. Takashima, Y. Takeuchi, T. Miyakawa, Y. Itoh, R. Ogiwara, M. Kamoshida, K. Hoya, S. M. Doumae and Y. Oowaki, “Circuit Design Techniques for high-Density, High-Speed and Low Voltage Chain FeRAMs”, 1st International Meeting on Ferroelectric Random access Memories (2001) .
15. Y. Fujisaki, T. Kijima and H. Ishiwara, “High-performance metal—ferroelectric—insulator—semiconductor structures with a damage-free and hydrogen-free silicon—nitride buffer layer”, Appl. Phys. Lett, 78 (2001) 1285.
16. K. Nakao, U. Judai, M. Azuma, Y. Shimada and T. Otsuki, Jpn. J. Appl. Phys., 37 (1998) 5203.
17. T. S. Kulkur, B. Jacobs and G. Argos, Integ. Ferroelec. 5 (1994) 177.
18. Y. Watanabe, M. Tamamura and Y. Matsumoto, Jpn. J. Appl. Phys. 35 (1996) 1564.
19. Sung-Min Yoon and Hiroshi Ishiwara,“Memory Operations of 1T2C-Type Ferroelectric Memory Cell With Excellent Data Retention Characteristics”, IEEE TRANSACTIONS ON ELECTRON DEVICES, 48(9) (2001) 2002.
20. Y. Nako, T. Nakamura, A. Kamisawa, and H. Takasu, "Study on Ferroelec- tric Thin Films for Application to NDRO Non-volatile Memories", Symp. 6th Int. Symp. Integrated Ferroelectrics, California Monterey, (1995) 23.
21. T. Sumi et al., “256Kb Ferroelectric Nonvolatile Memory Technoloty for 1T/1C Cell with 100ns Read/Write Time at 3V”, Integrated Ferroelectric 6 (1995) 1.
22. T. Sumi et al., Jpn. J. Appl. Phys. 35 (1996) 1516.
23. J. F. Scott, Ferroelectric Memories ( Springer-Verelag, New York, 2000 )
24. 塩嵜忠, 阿部東彦, 武田英次 and 津屋英樹, 強誘電体薄膜メモリ Chap 5. (1995) 261.
25. J. F. Scott, C. A. Paz de Araujo, L. D. McMillan, H. Yoshimori, H. Watanabe, T. Mihara, M. Azuma, T. Ueda, Tetsuk Ueda, D. Ueda, and G. Kano, "Ferroelectric Thin Films in Integrated Microelectronic Devices", Ferroelectrics, 133 (1992) 47.
26. G. H. Haerting, "Ferroelectric Thin Film for Electronic Applications", J. Vac. Sci. Technol., A9(3) (1991) 414.
27. L. M. Sheppard, "Advances in Processing of Ferroelectric Thin Film", Ceramic Bulletin, 71(1) (1992) 85.
28. M. Sayer and K. Sreenivas, "Ceramic Thin Film: Fabrication and Applications", Science 247 (1990) 1056.
29. 5 G. Yi and M. Sayer, "sol-gel Processing of Complex Oxide Films", Ceramic Bulletin, 70(7) (1991) 1173.
30. O. Auciello and R. Ramesh, "Electroceramic Thin Films Part I: Processing", MRS Bulletin, 20(6) (1996) 21.
31. R. Ramesh, “Thin Film Ferroeletric Materials and Devices” (Kluwer Academic, Boston, 1997) Chap 8. 199.
32. R. Ramesh, “Thin Film Ferroeletric Materials and Devices” (Kluwer Academic, Boston, 1997) Chap 9. 221.
33. S. Aggarwal, A. S. Prakash, T. K. Song, S. Sadashivan, A. M. Dhote, B. Yang, R. Ramesh, Y. Kisler and S. E. Bernacki, “Lead Based Ferroelectric Capacitors for Low Voltage Non-volatile Memory Applications”, Integrated Ferroelectrics 19 (1999) 159.
34. K. Amanuma, T. Hase and Y. Miyasaska, “Preparation and ferroelectric properties of SrBi2Ta2O9 thin films”, Appl. Phys. Lett. 66 (1995) 221.
35. J. K. Lee, T. K. Song, H. J. Jung, “Characteristics of SrBi2Ta2O9 Thin Films Fabricated by The R.F. Magnetron Sputtering Technique”, Integrated Ferroelectrics 15 (1997) 115.
36. K. Uchiyama, K. Arita, Y. Shimada, S. Hayashi, E. Fujii, T. Otsuki, N. Solayappan, V. Joshi and C. A. Paz de Araujo, “Low Temperature Crystallization of SrBi2Ta2O9 (SBT) Films”, Integrated Ferroelectrics 30 (2000) 103.
37. B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, L. Lee and W. Jo, Nature 401 (1999) 682.
38. Uong Chon, Gyu-Chul Yi, and Hyun M. Jang, “Fatigue-free behavior of highly oriented Bi3.25La0.75Ti3O12 thin films grown on Pt/Ti/SiO2/Si(100) by metalorganic solution decomposition”, Appl. Phys. Lett. 78, (2001) 658.
39. Y. Ding, J. S. Liu, H. X. Qin, J. S. Zhu, and Y. N. Wang, “Why lanthanum-substituted bismuth titanate becomes fatigue free in a ferroelectric capacitor with platinum electrodes”, Appl. Phys. Lett. 78, (2001) 4175.
40. T. Maeder, L. agalowicz and P. Muralt, “Stabilized Platinum Electrodes for Ferroelectric Film Deposition using Ti, Ta and Zr Adhersion Layers”, Jpn. J. Appl. Phys. 37 (1998) 2007.
41. E. A. Kneer, D. P. Birnie, R. D. Schrimpf, J. C. Podlesny, and G. Teowee, "Investigation of Surface Roughness and Hillock Formation on Platinized Substrates Used for Pt/PZT/Pt Capacitor Fabrication", Integrated Ferroelectrics 7 (1995) 61.
42. K. B. Lee, S. Triumala and S. B. Desu, “Highly c-axis oriented Pb(Zr, Ti)O3 thin films grown on Ir electrode barrier and their electrical properties”, Appl. Phys. Lett. 74 (1999) 1484.
43. Takashi Nakamura, Yuichi Nakao, Akira Kamisawa, and Hidemi Takasu, “Preparation of Pb(Zr,Ti)O3 thin films on electrodes including IrO2”, Appl. Phys. Lett. 65 (1994) 1522.
44. C. U. Pinnow et al. “.Influence of deposition conditions on Ir/IrO2 oxygen barrier effectiveness”, J. Appl. Phys. 91, (2002) 9591.
45. H. N. Al-Shareef, A. I. Kingon, X. Chen, K. R. Bellur and O. Auciello, “”, J. Mater. Res. 9 (1994) 2968.
46. C. W. Law, K. Y. Tong, J. H. Li, K. Li and M. C. Poon, “Effect of oxygen Content and Thickness of Sputtered RuOx electrodes on the Ferroelectric and Fatigue Properties of Sol-Gel PZT Thin film” Thin Solid Film 354 (1999) 162.
47. H. N. Al-Shareef, B. A. Tuttle, W. L. Warren, T. J. Headly, D. Dimos, J. A. Voigt and R. D. Basby, “ Effect of B-Site Cation Stoichiometry on Electrical Fatigue of RuO2/Pb(ZrxTi1-xO3/RuO2 Capacitors”, J. Appl. Phys. 79(2) (1996) 1013.
48. C. B. Eom, R. B. Van Dover, J. M. Philips, D. J. Werder, J. H. Marshall, C. H. Chen, R. J. Cava and R. M. Fleming, “ Fabrication and Properties of Epitaxial Ferroelectric Heterostructures with (SrRuO3) isotropic Metallic Oxide Electrodes”, Appl. Phys. Lett. 63 (1993) 2570.
49. C. B. Eom, R. B. V. Dover, J. M. Phillips, R. M. Fleming, R. J. Cava, J. H. Marshall, D. J. Werder, C. H. Chen, and D. K. Fork, "Epitaxial Ferroelectric Heterostructures of Isotropic Metallic Oxide (SrRuO3) and Pb(Zr0.52Ti0.48)O3", Mater. Res. Soc. Symp. Proc. 310 (1993) 145.
50. S. M. Yoon, E. Tokumitsu, H. Ishiwara, “Preparation of PbZrxTi1-xO3/La1-xSrxCoO3 Heterostructures Using the Sol-Gel Method and their Electrical Properties”. Applied Surface Science 117/118 (1997) 447.
51. R. Dat, D. J. Lichtenwalner, Ol Auciello and A. I. Kingon, “Polycrystalline La0.5Sr0.5CoO3/PbZr0.53Ti0.47O3/La0.5Sr0.5CoO3 Ferro- electric Capacitors on Platinized Silicon with No Polarization Fatigue”, Appl. Phys. Lett., 64 (1994) 2673.
52. R. Ramesh, H. Gilchrist, T. Sands and V. G. Keramidas, “Ferroelectric La-Sr-Co-O/Pb-Zr-Ti-O/La-Sr-Co-O Heterostructures on Silicon via Template Growth”, Appl. Phys. Lett., 63 (1993) 3592.
53. M. S. Chen, T. B. Wu, and J. M. Wu, "Effects of Textured LaNiO3 Electrode on the Fatigue Improvement of Pb(Zr0.53Ti0.47)O3 Thin Films", Appl. Phys. Lett., 68 (1996) 1430.
54. M. S. Chen, T. B. Wu and J. M. Wu, “Effect of textured LaNiO3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3 thin films”, Appl. Phys. Lett. 68 (1996) 1430.
55. C. C. Yang, M. S. Chen, T. J. Hong, C. M. Wu, J. M. Wu, and T. B. Wu, "Preparation of (100)-Oriented Metallic LaNiO3 Thin Films on Si Substrates by RF Magnetron Sputtering for the Growth of Textured PZT", Appl. Phys. Lett., 66 (1995) 2643.
56. M. S. Chen, J. M. Wu, and T. B. Wu, "Effects of (100)-Textured LaNiO3 Electrode on the Crystallization and Properties of Sol-gel Derived Pb(Zr0.53Ti0.47)O3 Thin Films", Jpn. J. Appl. Phys., 34(9A) (1995) 4870.
57. D. McIntyre, J. E. Greene, G. Hakansson, J. E. Sundgren, W. D. Munz, “La0.5Sr0.5CoO3/Pb(Nb0.04Zr0.28Ti0.68)O3/La0.5Sr0.5CoO3 thin film heterostructures on Si using TiN/Pt conducting barrier”, Appl. Phys. Lett. 71 (1997) 356.
58. S. Yamamichi, P-Y. Lesaicherre, H. Yamaguchi, K. Takemura, S. sone, H. Yabuta, K. Sato, T. Tamura, K. Nakajima, S. Ohnishi, K. Tokashiki, Y. Hayashi, Y. Kato, Y. Miyasaka, M. Yoshida, and H. Ono, IEEE IEDM-95 (1995) 119
59. A. Yuuki, M. Yamamuka, T. Makita, T. Horikawa, T. Shibano, N. Hirano, H. Maeda, N. Mikami, K. One, H. Ogata, and H. Abe, IEEE IEDM-95 (1995) 115.
60. A. I. Kingon, S. K. Streiffer, C. Basceri, and S. R. Summerfelt, MRS Bulletin 21[7] (1996) 46.
61. X. Sun H, S. Reid, E. Kolawa, M. A. Nicolet, “Reactively sputtered Ti-Si-N films. II. Diffusion barriers for Al and Cu metallizations on Si”, J. Appl. Phys. 81 (1997) 664.
62. S. Veprek, S. Reiprich, S. H. Li, “Superhard nanocrystalline composite materials: The TiN/Si3N4 system”, Appl. Phys. Lett., 66 (1995) 2640.
63. O. Auciello and R. Ramesh, "Laser-Ablation Deposition and Characterization of Ferroelectric Capacitors for Nonvolatile Memories", MRS Bulletin, 20(6) (1996) 31.
64. J. Dieleman, E. van de Riet, and J. C. S. Kools, "Laser Ablation Deposition: Mechanism and Application", Jpn. J. Appl. Phys., 31(6B) (1992) 1964.
65. B. A. Tuttle and R. W. Schwartz, "Solution Deposition of Ferroelectric Thin Films", MRS Bulletin, 20(6) (1996) 49.
66. S. K. Dey., “Ferroelectric Thin Films”, eds. Paz de Araujo C., J. F. Scott and G. W. Taylor (Gordon & Breach, New York, 1996) 329.
67. O. Auciello, A. I. Kingon, and S. B. Krupanidhi, "Sputter Synthesis of Ferroelectric Films and Heterostructures", MRS Bulletin 20 (1996) 25.
68. O. Auciello, A. R. Kraus and K. D. Gifford, “Ferroelectric Thin Films”, eds. Paz de Araujo C., J. F. Scott and G. W. Taylor (Gordon & Breach, New York, 1996) 393.
69. T. Fukami, I. Mimemura, Y. Hiroshima and T. Osada, Jpn. Appl. Phys. 30 (1991) 2155.
70. H. Ichinose, Y. Shiwa, and M. Nagano, "Synthesis of BaTiO3/LaNiO3 and PbTiO3/LaNiO3 Multilayer Thin Films by Spray Combustion Flame Technique", Jpn. J. Appl. Phys., 33(10), (1994) 5903.
71. “Synthesis of PbTiO3 Films on LaNiO3-coated Substrate by the Spray-ICP Technique", J. Mater. Sci., 29, (1994) 5115.
72. O. Auciello, A. I. Kingon, and S. B. Krupanidhi, "Sputter Synthesis of Ferroelectric Films and Heterostructures", MRS Bulletin, 20 (1996) 25.
73. S. B. Krupanidhi, H. Hu, and V. Kumar, “Multi-ion-beam reactive sputter deposition of ferroelectric Pb(Zr,Ti)O3 thin films”, 71 (1992) 376.
74. W. Zhu, Z. Q. Liu, W. Lu, M. S. Tse, H. S. Tan, and X. Yao, “A systematic study on structural and dielectric properties of lead zirconate titanate/(Pb,La)(Zr(1 - x)Ti(x))O3 thin films deposited by metallo-organic decomposition technology”, J. Appl. Phys. 79 (1996) 4283.
75. B. A. Tuttle, T. J. Headley, B. C. Bunker, R. W. Schwartz, T. J. Zender, C. L. Hernandez, D. C. Goodnow, R. J. Tissot, J. Michael, and A. H. Carim, “Microstructural evolution of Pb(Zr,Ti)O3 thin films prepared by hybrid metallo-organic decomposition”, J. Mater. Res. 7 (1992) 1876.
76. G.-R. Bai, I-Fei Tsu, A. Wang, C. M. Foster, C. E. Murray, and V. P. Dravid, “In situ growth of highly oriented Pb(Zr0.5Ti0.5O3 thin films by low-temperature metal-organic chemical vapor deposition”, Appl. Phys. Lett. 72 (1998) 1572
77. O. Auciello, A. R. Kraus and K. D. Gifford, Ferroelectric Thin Films, eds. Paz de Araujo C., J. F. Scott and G. W. Taylor (Gordon & Breach, New York, 1996) Chap.12 485.
78. C. M. Foster, G. R. Bai, R. Csencsits, J. Vertrone,R. Jammy, L. A. Wills, E. Carr and Jne Amano, “Single-Crystal Pb(ZrxTi1-x)O3 Thin Films Prepared by Metal-Organic Chemical Vapor Deposition:Systematic Compositional Variation of Electronic and Optical Properties”, J. Appl. Phys. 81 (1997) 2349.
79. M. L. Hitchman and K. F. Jensen, “ Chemical Vapor Deposition,Principles and Applications ”, Academic Press Inc., New York, (1993)
80. A. Sherman, “Chemical Vapor Deposition for Microelectronics”, Noyes Publications, U.S.A., (1987).
81. H. O. Pierson, “ Handbook of Chemical Vapor Deposition, Principles, Technology and Applications ”, Noyes Publications, U.S.A., (1992)
82. 莊達仁, “ VLSI製造技術 ”, (1994) 183
83. S. Sivaram, “ Chemical Vapor Deposition, Thermal and Plasma Deposition of Electronic Materials ”, Van Nostrand Reinhold, New York, (1995)
84. R. Hiskers, S. A. DiCarolis, R. D. Jacowitz, Z. Lu, R. S. Feigelson, R. K. Route and J. L. Young, J. Cryst. Growth 128 (1993) 781.
85. R. Hiskes, S. A. DiCarolis, J. L. Young, S. S. Laderman, R. D. Jacowitz and R. C. Taber, Appl. Phys. Lett. 59 (1991) 606.
86. Y. Gao, G. Bai, K. L. Merkle, Y. Shi, H. L. M. Chang, Z. Shen, D. J. Lam,” Microstructure of PbTiO3 thin films deposited on (001)MgO by MOCVD”, J. Mater. Res. 8 (1993) 145.
87. G. R. Bai, H. L. M. Chang, C. M. Foster, Z. Shen, D. J. Lam, ” The relationship between the MOCVD parameters and the crystallinity, epitaxy, and domain structure of PbTiO3 films”, J. Mater. Res. 9 (1994) 156.
88. C. H. Peng and S. B. Desu, “Metalorganic Chemical Vapor Deposition of Ferroelectric Pb(Zr,Ti)O3 Thin Films”, J. Am. Ceram. Soc. 77 (1994) 1799.
89. C. M. Foster, Z. Li, M. Buckett, D. Miller, P. M. Baldo, L. E. Rehn, G. R. Bai, D. Guo, H. You, and K. L. Merkle, “Substrate effects on the structure of epitaxial PbTiO3 thin films prepared on MgO, LaAlO3, and SrTiO3 by metalorganic chemical-vapor deposition”, J. Appl.Pyhs. 78 (1995) 2607.
90. C. M. Foster, Z. Li, M. Buckett, D. Miller, P. M. Baldo, L. E. Rehn, G. R. Bai, D. Guo, H. You, and K. L. Merkle “Substrate effects on the structure of epitaxial PbTiO3 thin films prepared on MgO, LaAlO3, and SrTiO3 by metalorganic chemical-vapor deposition”, J. Appl. Phys. 78 (1995) 2607.
91. P. Kerlin, S. Bilodeau and P. Van Buskirk, “MOCVD of BaSrTiO3 for ULSI DRAMs”, Integrated. Ferroelectric 7 (1995) 307.
92. P. C. Van Buskirk, J. F. Roeder and S. Bilodeau, Integ. Ferroelec. 10 (1995)
93. Bo Zheng, Eric T. Eisenbraun, Jun Liu, and Alain E. Kaloyeros, “Device-quality copper using chemical vapor deposition of β-diketonate source precursors in liquid solution”. Appl. Phys. Lett. 60 (1992) 2175.
94. T. Jawahara, M. Yamamuka, A. Yunki, and Ono, Jpn. J. Appl. Phys. 35 (1996) 4880.
95. Yukio Sakashita, Toshiyuki Ono, Hideo Segawa, Kouji Tominaga, and Masaru Okada, “Preparation and electrical properties of MOCVD-deposited PZT thin films”, J. Appl. Phys. 69 (1991) 8352.
96. A.P. Wilkinson, J.S. Speck, A.K. Cheetham, S. Natarajan and J.M. Thomas, “An in situ X-ray diffraction study of the crystallization kinetics in PZT, PbZr1-xTixO3 (x=0.0, 0.55, 1.0).” Chem. Mat. 6 (1994) 750.
97. S. K. Dey, “ Ferroelectric Thin Films: Synthesis and Basic Properties” 10 (Gordon & Breach, New York, 1996)
98. Sandwip K. Dey and Prasak V. Alluri, MRS Bulletin, 21 (1996) 44.
99. D. L Schultz, and Tobin J. Marks, Adv. Mater. 6 (1994) 719.
100. R. E. Sievers and J. E. Sadlowski, Science 201 (1978) 217.
101. S. C. Thompson, D. L. cole-Hamilton, D. d. Gilliland, M. L. Jitchman and R. C. Tober. Adv. Mater. Opt. Electron. 1 (1992) 81.
102. M. Balog, M. Schieber, M. Michman and S. Patai, J. electrochem. Soc., 26 (1979) 1203.
103. W. L. Warren, D. Dimos, B. A. Tuttle, R. D. Nasby, and G. E. Pike, “Electronic domain pinning in Pb(Zr,Ti)O3 thin films and its role in fatigue”, Appl. Phys. Lett., 65 (1994) 1018.
104. W. L. Warren, D. Dimos, B. A. Tuttle, G. E. Pike, R. W. Schwartz, P. J. Clews, and D. C. McIntyre, “Polarization suppression in Pb(Zr,Ti)O3 thin films”, J. Appl. Phys. 77 (1995) 6695.
105. C. J. Brennan, R. D. Parrella and D. E. Larsen, Ferroelectrics, 151 (1994) 33.
106. S. B. Desu and I. K. Yoo, Integ. Ferroelectrics 3 (1993) 365.
107. L. K. Yoo, S. B. Desu and J. Xing, MRS Symp. Proc. 310 (1993) 165.
108. W. Y. Pan, C. F. Yue and B. A. Tuttle, Ceram. Trans. 25 (`992) 385.
109. W. L. Warren, D. Dimos, G. E. Pike, B. A. Tuttle, M. V. Raymond, R. Ramesh, and J. T. Evans, Jr., “Voltage shifts and imprint in ferroelectric capacitors”, Appl. Phys. Lett. 67 (1995) 866.
110. S. H. Kim, D. J. Kin, J. G. Hong, S. K. Streiffer and A. I. Kingon, “Imprint and fatigue Properties of Chemical Solution Dervied Pb1-xLax(ZryTi1-y)1-x/4O3 Thin films”, J. Mater. Res. 14 (1999) 1371.
111. J. F. Scott, C. A. Araujo, B. M. Melnick, L. D. McMillan, and R. Zuleeg ,”Quantitative measurement of space-charge effects in lead zirconate-titanate memories”, J. Appl. Phys., 70 (1991) 382.
112. W. H. Shepherd, “Fatigue and Aging in Sol-Gel Derived PZT Thin Films” Maters. Soc. Symp. Proc. 200, (1990) 277
113. J. J. Lee, C. L. Thio, M. Bhattacharya, and S. B. Desu, "Electrode Contacts on PZT Thin Films and their Influence on Fatigue Properties", Mat. Res. Soc. Symp. Proc.361 (1995) 241.
114. C. K. Kwok and S. B. Desu, “Role of Oxygen Vacancies on the Ferroelectric Properties of PZT Thin Films”, Mat. Res. Soc. Symp. Proc. Vol. 243, (1992) 393.
115. D. Dimos, W. L. Warren, M. B. Sinclair, B. A. Tuttle, and R. W. Schwartz, “Photoinduced hysteresis changes and optical storage in (Pb,La)(Zr,Ti)O3 thin films and ceramics”, J. Appl. Phys., 76 (1994) 4305.
116. W. L. Warren, D. Dimos, B. A. Tuttle, R. D. Nasby, and G. E. Pike, “Electronic domain pinning in Pb(Zr,Ti)O3 thin films and its role in fatigue”, Appl. Phys. Lett., 65 (1994) 1018.
117. J. F. Scott, Matthew Dawber,“A model for fatigue in ferroelectric perovskite thin films”, Appl. Phys. Lett. 76(8) (2000) 1060.
118. R. C. Brade and G. S. Ansell, J. Am. Ceram. Soc. 52(4) (1969) 192.
119. G. Arlt, Ferroelectrics 76 (1987) 451.
120. K. Tsuzuki, Jpn. J. Appl. Phys. 24 (1985) 126.
121. K. M. Lee, H. G. an, J. K. Lee, Y. T. Lee, S. W. Lee, S. H. Joo, S. D. Nam, K. S. Park, M. S. Lee, S. O. Park, H.K. Kang and J. T. Moon,”Enhanced Retention Characteristics of Pb(Zr,Ti)O3 Capacitors by Ozone Treatment”, Jpn. J. Appl. Phys. 40 (2001) 4979.
122. J. s. Lee and S. K. Joo, “Enhanced Fatigue and Data Retention Characteristics of Pb(Zr,Ti)O3 Thin Films by the Selectively Nucleated Lateral Crystallization Methood”, Jpn. J. Appl. Phys. 40 (20010 229.
123. J. W. Hong, W. Jo, D. C. Kim, S. M. Cho, H. J. Nam, H. M. Lee and J. U. Bu, “Nanoscale Investigation of domain Retention in preferentially Oriented PbZr0.53Ti0.47O3 Thin Films on Pt and on LaNiO3”, Appl. Phys. Lett. 75 (1999) 3183.
124. A. Gruverman, H. Tokumoto, A. S. Prakash, S. Aggarwal, B. Yang, M. Wutting, R. Ramesh, O. Auciello and T. Verkatesan, “Nanoscale Imaging of Domain dynamics and Retention in Ferroelectric Thin Films”, Appl. Phys. Lett. 71 (1997) 3492.
125. C. Paz de Araujo, J. F. Scott and G. W. Taylor,”Ferroelectric Thin Films:Synthesis and Basic properties” Chap.13 (Overseas Publisher Association,
126. R. Ramesh, S. Aggarwal and O. Auciello, “Science and Technology of Ferroelectric Films and Heterostructures for Non-Volatile Ferroelectric Memories”, 32 (2001) 191.
127. J. Lee, R. Ramesh, V. G. Keramidas, W. L. Warren, G. E. Pike, and J. T. Evans, Jr.,” Imprint and oxygen deficiency in (Pb,La)(Zr,Ti)O3 thin-film capacitors with La-Sr-Co-O electrodes”, Appl. Phys. Lett. 66 (1995) 1337.
128. T. Friessnegg, S. Aggarwal, R. Ramesh, B. Nielsen, E. H. Poindexter, and D. J. Keeble,” Vacancy formation in (Pb,La)(Zr,Ti)O3 capacitors with oxygen deficiency and the effect on voltage offset”, Appl. Phys. Lett. 77 (2000) 127
129. Eun Gu Lee, Dirk J. Wouters, Geert Willems, and Herman E. Maes,” Voltage shift and deformation in the hysteresis loop of Pb(Zr,Ti)O3 thin film by defects”, Appl.Phys. Lett. 69 (1996) 1223.
130. M. Tajiri and H. Nozawa,”Imprint Model Based on Thermonic Field Emission Mechanism considering Energy distribution of Trap Levels”, Proc. IEEE 8th IPFA (2001) 234.
131. N. Inoue and Y. Hayashi, “Effect of Imprint on Operation and Reliability of Ferroelectric Random Access Memory (FeRAM)”, IEEE Trans Electron dev. 48 (2001) 2266.
132. G. E. Pike, W. L. Warren, D. Dimos, B. A. Tuttle, R. Ramesh, J. Lee, V. G. Keramidas and J. T. Evans, Jr, “Voltage offsets in (Pb,La)(Zr,Ti)O3 Thin Films”, Appl. Phys. Lett. 66 (1995) 484.
133. J. Loan, “Direct Liquid Injection Support Material”, MKS Instrument, INC. (1994)
134. X. Sun, J. S. Reid, E. Kolawa, M.-A. Nicolet, and R. P. Ruiz, “Reactively sputtered Ti-Si-N films. II. Diffusion barriers for Al and Cu metallizations on Si”, J. Appl. Phys. 81 (1997) 664.
135. S. Vep ek, S. Reiprich, and Li Shizhi, “Superhard nanocrystalline composite materials: The TiN/Si3N4 system”, 66 1995) 2640.
136. A. L. Greer, in: J. H. Westbrook, R. L. Fleischer (Eds.), “Intermetallic compounds”, 1 (Wiley, New York, 1995) 371.
137. R. de Reuss, in: J. H. Westbrook, R. L. Fleischer (Eds.), “Intermetallic Compounds”, 2 (Wiely, New York, 1995) 603.
138. 劉家駿, “添加劑及成份對PZT低溫製程及鐵電特性之影響研究”, 清華大學, 碩士論文, (2001)139. TR66A Standardized Ferroelectric Test System Operating Manual.
140. 洪天爵, "鈦酸鉛薄膜之研究-製程、微觀結構、優選晶向與鐵電特性", 清華大學, 博士論文, (1995).141. Y. Xu, “Ferroelectric Materials and Their Applications”, (North-Holland, New York, 1991) 109.
142. C. M. Foster, G.-R. Bai, R. Csencsits, J. Vetrone, R. Jammy, L. A. Wills, E. Carr, and Jun Amano, “Single-crystal Pb(ZrxTi1 — x)O3 thin films prepared by metal-organic chemical vapor deposition: Systematic compositional variation of electronic and optical properties”, J. Appl. Phys. 81 (1997) 2349.
143. J. M. Benedetto, R. A. Moore and F. B. McLean, “Integrated Ferroelectrics”, 1 (1992) 195.
144. R. Ramesh, “Thin Film Ferroelectric Materials and Devices”, (Kluwer-Academic, Boston, 1997) 133.
145. S. Aggarwal, A. S. Prakash, T. K. Song, S. Sadashivan, A. M. Dhote, B. Yang, R. Ramesh, Y. Kisler and S. E. Bernacki, “Lead Based Ferroelectric Capacitors for Low Voltage Non-Volatile Memory Applications”, Integrated Ferroelectrics 19 (1998) 159.
146. B. A. Tuttle, T. J. Garino, J. A. Volgt, T. J. Headley, D. Dimos and M. O. eatough, “Science and Technology of Electroceamic Thin Films”, 284 (Kluwer Academic, Dordrecht, 1995) 117.
147. X. Dai, Z. Xu and D. iehland, “Normal to relaxor ferroelectric transformations in lanthanum-modified tetragonal-structured lead zirconate titanate ceramics”, J. Appl. Phys. 79 (1996) 1021.
148. R. Ramesh and V. G. Keramidas, Annu. Rev. Mater. Sci 25 (1995) 647.
149. J. S. Lee and S. K. Joo, “Enhanced Fatigue and Data Retention Characteristics of Pb(Zr,Ti)O3 Thin films by the Selectively Nucleated Lateral Crystallization Method”, Jpn. J. Appl. Phys. 40 (2001) 229.
150. J. W. Hong, W. Jo, D. C. Kim, S. M. Cho, H. J. Nam, H. M. Lee and J. U. Bu, “Nanoscale Investigation of Domain Retention in Preferentially Oriented PbZr0.53Ti0.47O3” Thin Films on Pt and on LaNiO3”, Appl. Phys. Lett. 75 (1999) 3183.
151. W. Jo, D. C. Kim and J. W. Hong, “Domain Images and Retention Properties of Pb(Zr,Ti)O3 Thin Films Observed by Electrostatic Force Microscopy”, Mat. Res. Soc. Symp. Proc. 596 (2000) 339.
152. J. M. Benedetto, R. A. Moore and F. B. McLean, “Effects of Operating Conditions on the Fast-Decay Component of the Retained Polarization in Lead Zirconate Titanate Thin Films”, J. Appl. Phys. 75 (1994) 1.
153. J. Kakalios, R. A. Street and W. B. Jackson, Phys. Rev. Lett. 59 (1987) 1037.
154. A. K. Tagantsev and I. A. Stolichnov, “Injection-Controlled Size Effect on Switching of Ferroelectric Thin Films”, Appl. Phys. Lett. 74 (1999) 1326.
155. P. K. Larsen, G. J. M. Dormans, D. J. Taylor and P. J. van Veldhoven, “Ferroelectric properties and Fatigue of PbZr0.51Ti0.49O3 Thin Films of Varying Thickness:Blocking Layer Model”, J. Appl. Lett. 76 (1994) 2405.
156. J. Zhu, X. Zhang, Y. Zhu and S. B. Desu, “Size Effects of 0.8SrBi2Ta2O9-0.2Bi3TiNbO9 Thin Films”, J. Appl. Phys. 83 (1998) 1610.
157. I. Stolichnov, A. Tagantsev, E. Colla, S. Gentil, S. Hiboux, J. Baborowski, P. Muralt and N. Setter, “Downscaling of Pb(Zr,Ti)O3 Film Thickness for Low-Voltage Ferroelectric Capacitors:Effect of Charge Relaxation at the Interfaces”, J. Appl. Phys. 88 (2000) 2154.
158. C. R. Cho, W. J. Lee, B. G. Yu and B. W. Kim, “Dielectric and Ferroelectric Response as a function of Annealing Temperature and Film Thickness of Sol-Gel Deposited Pb(Zr0.52Ti0.48)O3 Thin Film”, J. Appl. Phys. 86 (1999) 2700.
159. J. F. M. Cillessen, M. W. J. Prins and R. M. Wolf, “Thickness Dependence of the Switching Voltage in All-Oxide Ferroelecric Thin-Film Cpacitors Prepared by Pulse Laser Deposition”, J. Appl. Phys. 81 (1997) 2777.
160. H. Fujisawa, S. Hyodo, Y. Ishii, N. tomozawa, M. Shimizu and H. Niu, “Dependence of Electrical Properties of Pb(Zr,Ti)O3 Thin Films on the Grain Size and Film Thickness”, Proc. 11th. Symp. Appl. Of Ferroelectr., Montreux (IEEE, New York, 1998)
161. Yukio Sakashita, Hideo Segawa, Kouji Tominaga, and Masaru Okada, “Dependence of electrical properties on film thickness in Pb(ZrxTi1—x)O3 thin films produced by metalorganic chemical vapor deposition”, 73 (1993) 7857.
162. H. D. Chen, K. K. Li C. J. Gaskey and L. E. Cross, Mater. Res. Soc. Symp. Proc. 433 (1996) 325.
163. G. Mohan Rao and S. B. Krupanidhi, “Study of electrical properties of pulsed excimer laser deposited strontium titanate films”, J. Appl. Phys. 75 (1994) 2604.
164. S. T. Mckinstry, C. A. Randall, J. P. Maria, C. Theis, D. G. Schlom, J. Shepard, Jr., and K. Yamakawa, Mater. Res. Sco. Symp. Proc. 433 (1996) 363.
165. S. B. Ren, C. J. Lu, J. S. Liu, H. M. Shen and Y. N. Wang, Phys. Rev. B 54 (1996) R14 337.
166. S. B. Ren, C. J. Lu, J. S. Liu, H. M. Shen and Y. N. Wang, Phys. Rev. B 55 (1996) 3485.
167. Y. Gao, G. Bai, K. L. Merkle, Y. Shi. H. L. M. Chang, Z. Shen and D. J. Lam, “Microstructure of PbTiO3 Thin Films Deposited on (001)MgO by MOCVD”, J. Mater. Res. 8 (1993) 145.
168. J. S. Speck, A. Seifert, W. Pompe, and R. Ramesh, “Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films. II. Experimental verification and implications”, J. Appl. Phys. 76 (1994) 477.
169. S. Pamir Alpay and Alexander L. Roytburd, “Thermodynamics of polydomain heterostructures. III. Domain stability map”, J. Appl. Phys. 83 (1998) 4714.
170. K. S. Lee, J. H. Choi, J. Y. Lee and S. Baik, “Domain Formation in Epitaxial Pb(Zr,Ti)O3 Thin Films”, 90 (2001) 4095.
171. H. N. Al-Shareef, K. D. Gifford, S. H. Rou, P. D. Hren, O. Auciello and A. Kingon, Integrated Ferroelectrics 2 (1992) 311.
172. M. H. Kim, T. S. Park, E. Yoon, D. S. Lee, D. Y. Park, H. J. Woo, D. I. Chun and J. Ha, “Changes in Preferred Orientation of Pt Thin Films Deposition by DC Magnetron Sputtering using Ar/O2 Gas Mixtures”, J. Mater. Res. 14 (1999) 1255.
173. Y. Abe, H. Yanagisawa and K. Sasaki, “Preparation of Oxygen-Containing Pt and Pt Oxide Thin Films by Reactive Sputtering and Their Characterization”, Jpn. J. Appl. Phys. 37 (1998) 4482.
174. K. L. Saenger, C. Cabral, Jr., C. Lavoie and S. M. Rossnagel,” Thermal Stability and Oxygen-loss Characteristics of Pt(O) Films Prepared by Reactive Sputtering”, J. Appl. Phys. 86 (1999) 6084.
175. K. L. Saenger and S. M. Rossnagel, “Properties and Decomposition Behaviors of Reactively Sputtered Pt(O) Electrode Materials”, Mater. Res. Soc. Symp. Proc. 596 (2000) 57.
176. K. Lee and B. R. Rhee, “Characteristics of Ferroelectric Pb(Zr,Ti)O3 Thin Films having Pt/PtOx Electrode Barriers” Appl. Phys. Lett. 79 (2001) 821.
177. T. Shiosaki, M. Shimizu and M. Kinoshita, “Characterization of PZT Films Growth by MOCVD on 6-8 Inch Si Wafers”, Integrated Ferroelectrics 7 (1995) 111.
178. A.L. Greer, “Intermetallic Compounds” 1 (Wiley, New York, 1995) 371.
179. R. de Reuus. “Intermetaallic Compounds”, 2 (Wiely, New York, 1995) 603
180. S. Hiboux, P. Muralt and T. Maeder, “Domain and Lattice Contributions to Dielectric and Piezoelectric Properties of Pb(Zrx,Ti1-x)O3 Thin Films as a Function of composition”, J. Mater. Res. 14 (1999) 4307.
181. R. E. Koritale, M. T. lanagan, N. Chen, G. R. Bai. Y. Huang and S. K. Streiffer, “Microstructure and Properties of PbZr0.6Ti0.4O3 and PbZrO3 Thin Films Deposited on Template Layers”, J. Mater. Res. 15 (2000) 1962.
182. H. S. Song, T. S. Kim, C. E. Kim and H. J. Jung, “Fabrication and Characterization of Ferroelectric Pb(ZrxTi1-x)O3 Thin Films by Metalorganic Chemical Vapor Deposition”, J. mater. Res. 14 (1999) 487.
183. H. Fujisawa, S. Nakashima, K. Kaibara, M. Shimizu and H. Niu, “Size Effects of Epitaxial and Polycrystaaline Pb(Zr,Ti)O3 Thin films Grown by Metalorganic Chemical Vapor Deposition”, Jpn. J. Appl. Phys. 38 (1999) 5392.
184. G. R. Bai, I. Fei Tsu, A. Wang, C. M. Foster, C. E. Murray and V. P. Dravid, “In situ Growth of Highly Oriented Pb(Zr0.5Ti0.5)O3 Thin Films by Low-Temperature Metal-organic Chemical Vapor Deposition”, Appl. Pyhs. Lett. 72 (1998) 1572.
185. C. H. Lin , P. A. Friddle, X. Lu, Hayden Chen, Young kim and T. B. Wu, “Electrical characteristics of 25 nm Pb(ZrTi)O3 Thin Films Grown on Si by Metalorganic Chemical Vapor Deposition”, J. Appl. Pyhs. 88 (2000) 2157.
186. B. Yang, Y. M. Kang, S. S. Lee, K. H. Noh, N. K. Kim, S. J. Yeom, N. S. Kang and H. G. Yoon, “Highly Reliable 1Mbit Ferroelectric Memories with Newly Developed BLT Thin Films and Steady Integration Schemes”, IEDM 2001.
187. TF Analyzer 2000 FE-Module 操作手冊
188. 李信義, “磁控濺鍍鎳酸鑭薄膜于矽晶基板上其生長行為與結構特徵之X光研究”, 清華大學, 博士論文, (1996)189. D. J. Taylor, P. K. Larsen, G. J. M. dormans and A. E. M. De Veirman, “Pulse Switching Characterization of organometallic Chemical Vapor Deposited PbZrxTi1-xO3 Thin Films for High-Density Memory Applications”, Integrated Ferroelectrics 7 (1995) 123.